BEM for modeling fracture mechanics problems

Andrés Sáez

University of Seville (Spain)

Collaborators: J. Domínguez, Ch. Zhang, F. García-Sánchez, R. Rojas-Díaz, M. Wünsche

Future Directions of the Boundary Element Method

September 1-3, 2010

Cleveland, Ohio, USA (The University of Akron Campus)

Motivation:

Structural Integrity of Advanced Materials

Design of structural materials demands for high performance applications: we want lighter materials and new capacities

- In Tailored materials with good strength/weight ratio \rightarrow composites
- Multifield materials for control and smart structures applications → piezoelectricity...

Damage Tolerance Philosophy

■ Existence of a flaw (crack...) in a mechanical component will no imply the end of its service life → need to evaluate its performance and reliability

Motivation:

Structural Integrity of Advanced Materials

Tools to clearly characterize how a damaged structural element behaves are thus needed in order to predicts its:

- working conditions &
- remaining service life

Structural Integrity of Advanced Materials

The AIM is to extend to this new class of materials the damage estimation techniques previously developed for *classic* materials

WE'LL TACKLE THE PROBLEM FROM A NUMERICAL POINT OF VIEW (BEM)

A. Sáez UNIVERSIDAD DE SEVILLA

Outline

- Fracture mechanics of advanced materials:
 - Anisotropic materials (composites)
 - Multifield materials:
 - Piezoelectric
 - □ Magnetoelectroelastic
- Why BEM for fracture?
- BEM strategies for fracture mechanics
- Dual or Hypersingular BEM
 - Statics
 - Dynamics
- Concluding remarks

JNIVERSIDAD DE SEVILLA

Fracture mechanics of anisotropic materials

- Anisotropic materials in nature: Zinc, magnesium, wood, ice...
- Engineered materials: composites

2-D anisotropic behavior law

$$\begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ 2\varepsilon_{12} \end{cases} = \begin{pmatrix} a_{11} & a_{12} & a_{16} \\ a_{12} & a_{22} & a_{26} \\ a_{16} & a_{26} & a_{66} \end{pmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix}$$

The existence of a crack will alter the stress fields and may lead to failure for loads much lower than the design load bearing capacity of the component

UNIVERSIDAD DE SEVILLA

BEM for modeling fracture mechanics problems

Displacement and stress fields around the crack tip⁽¹⁾:

 $\sigma = Kf(\theta, C_{ij})/\sqrt{r}$

 $u = Kg(\theta, C_{ij})\sqrt{r}$

When tackling the problem numerically, the selected method should fulfill some requirements:

- Adequate representation of the mechanical fields around the crack
- SIF (or other fracture parameters) accurate computation
- Easy crack discretization

Fracture mechanics of multifield materials

Ability to **convert energy** among mechanical and non-mechanical fields:

Piezoelectric Materiales

Direct piezoelectric effect ⁽¹⁾: a voltage is produced when the material is under tension or compression stress.

Inverse piezoelectric effect: when a potential difference is applied across the crystal it causes its deformation.

10

Pb Ti, Zr

A. Sáez

PZT unit cell:

- 1. PZT unit cell in the symmetric cubic state above the Curie temperature.
- Tetragonally distorted unit cell below the Curie temperature.

UNIVERSIDAD DE SEVILLA

(1)

- Are always anisotropic
- Show larger PE coupling for artificial materials (e.g., PZT ceramics)

(2)

- 1. unpoled ferroelectric ceramic
- 2. during and
- 3. after poling (piezoelectric ceramic).

(3)

Applications for PE materials:

actuators

BEM for modeling fracture mechanics problems

Applications for PE materials: Smart structures

How do we model PE materials?:

Extended notation for piezoelectricity (Barnett & Lothe, 1975)

Extended displacements vector

$$u_I = \begin{cases} u_i & I = 1, 2, 3 \\ \varphi & I = 4 \end{cases}$$

Electric potential

PE behavior law

Extended stress tensor $\sigma_{iJ} = \begin{cases} \sigma_{ij} & I = 1,2,3 \\ I = I, I = A \end{cases}$

Electric displacement

elastic, piezoelectric & dielectric constants

A. Sáez UNIVERSIDAD DE SEVILLA

BEM for modeling fracture mechanics problems

Magnetoelectroelastic materials Composite materials consisting of both piezoelectric and piezomagnetic phases may exhibit a magnetoelectric YMnO₃ coupling effect that is not shown by any of the material phases alone. The magnetoelectric coupling of the resulting composite may be much larger that that of a single phase BiMnO₃ magnetoelectric material (Van Suchtelen, 1972; Nan, 1994; Benveniste, 1995). Terfenol-D E ~ 100GPa 3 PZT E ~ 90GP Η Terfenol-D Terfenol-D Terfenol-D nduced Striar E . 100CP Composite mode **Conductive Epoxy** Piezoelectric Ceramic/Polymer Laminated [2-2] Magnetoelectric Composite NERSID, Terfenol-D PZT- Terfenol-D Composite **5**H Composite A Sáez UNIVERSIDAD DE SEVILLA **BEM for modeling fracture mechanics problems** 15

Modeling MEE materials

Magnetoelectroelastic materials may be formulated in an elastic-like fashion by using the following generalized notation:

Extended displacement vector $u_{I} = \begin{cases} u_{i} & I = 1, 2, 3 \\ \phi & I = 4 \\ \phi & I = 5 \end{cases}$

Electric potential

Electric displacement

Magnetic potential

Magnetic induction

Extended stress tensor

 $\sigma_{_{ij}}$

I = 1, 2, 3I = 4

RSIDAD DE SEVILLA

A. Sáez

BEM for modeling fracture mechanics problems

Why study fracture in multifield materials?:

- structural integrity
- cracks alter the electric/magnetic reading: may lead to adopt wrong

decissions (the structure is no longer smart)

the electric and magnetic fields have influence on the crack growth

process

A Sáez

Fracture mechanics of multifield materials

 χ_1

Generalized intensity factors:

- stress intensity factors (SIF): K₁ and K₁₁
- electric displacement intensity factor (EDIF): K_D
- magnetic induction intensity factor (MIIF): K_B

Fracture of PE materials

 x_2

Parton, V.Z., Fracture mechanics of piezoelectric materials, Acta Astronautica, 3 (1976), pp. 671-683.
Pak, Y.E., Crack extension force in a piezoelectric material, Journal of Applied Mechanics, Transactions ASME, 57 (1990), pp. 647-653.

Fracture of MEE materials

Song, Z.F., Sih, G.C., Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation, Theor. and Appl. Fract. Mechanics, 39 (2003), pp. 189-207.
Wang, B.L., Mai, Y.-W., Crack tip field in piezoelectric/piezomagnetic media, European Journal of Mechanics, A/Solids, 22 (2003), pp. 591-602.

 $= K f(\theta, C_{ij}) / \sqrt{r}$

 $u = Kg(\theta, C_{ii})\sqrt{r}$

A. Sáez UNIVERSIDAD DE SEVILLA

BEM for modeling fracture mechanics problems

Why BEM for fracture?

Is BEM able to answer properly the questions we previously raised?

$$\sigma = Kf(\theta, C_{ij})/\sqrt{r}$$
$$u = Kg(\theta, C_{ij})\sqrt{r}$$

When tackling the problem numerically, the selected method should fulfill some requirements:

- Adequate representation of the field variables around the crack
- SIF (or other fracture parameters) accurate computation
 - Easy crack discretization

The answer is YEAH !!!!

A. Sáez UNIVERSIDAD DE SEVILLA

Some BEM advantages

- The mesh is reduced in one dimension
- Automatic satisfaction of the radiation conditions at infinity
- Ability to capture high stress gradients
- Easy implementation of elements modeling crack-tip fields in fracture

Some disadvantages

- Singular integrations
- (Need appropriate fundamental solution)

Continuous

BEM strategies for fracture mechanics

 $c_{IJ}u_J(\xi) + \int_{\Gamma} p_{IJ}^*(\xi, x)u_J(x)d\Gamma(x) = \int_{\Gamma} u_{IJ}^* p_J d\Gamma$

Dual or hypersingular BEM

$$c_{IJ}u_{J}(\xi) + \int_{\Gamma} p_{IJ}^{*}(\xi, x)u_{J}(x)d\Gamma(x) = \int_{\Gamma} u_{IJ}^{*}p_{J}dI$$
$$c_{IJ}p_{J} + N_{r}\int_{\Gamma} s_{rIJ}^{*}u_{J}d\Gamma = N_{r}\int_{\Gamma} d_{rIJ}^{*}p_{J}d\Gamma$$

- Meshing strategy?
- Availability of reasonable fundamental solutions for statics?
- Singular and hypersingular integrations?
- Computation of fracture parameters?
- What about dynamics?

Meshing strategy

Traction BIE (TBIE) \rightarrow displacement field C ¹

discontinuous TBIE (Γ +)

Static fundamental solution $u_{IJ}^{*S} = \operatorname{Re}\left[\sum_{R=1}^{5} A_{JR} H_{RI} \ln(z_{R}^{x} - z_{R}^{\xi})\right] \longrightarrow d_{IJ}^{*S} = d_{rIJ}^{*S} N_{r} \propto \operatorname{Re}\left[\frac{\mu_{R} N_{1} - N_{2}}{(z_{R}^{x} - z_{R}^{\xi})}\right]$ $p_{IJ}^{*S} = \operatorname{Re} \left| \sum_{R=1}^{5} L_{JR} H_{RI} \frac{\mu_{R} n_{1} - n_{2}}{(z_{R}^{*} - z_{R}^{\xi})} \right| \longrightarrow s_{rIJ}^{*S} \propto \operatorname{Re} \left[\frac{\mu_{R} n_{1} - n_{2}}{(z_{R}^{*} - z_{R}^{\xi})^{2}} \right]$ $\boldsymbol{\xi} = (\xi_1, \xi_2)$ $z_R^{\xi} = \xi_1 + \mu_R \xi_2$ **Observation** point ξ: $\Leftarrow \mathbf{x} = (x_1, x_2)$ $z_{R}^{x} = x_{1} + \mu_{R} x_{2}$ Collocation point x: $c_{IJ}u_{J}(\boldsymbol{\xi}) + \int_{\Gamma} p_{IJ}^{*}u_{J}d\Gamma(\mathbf{x}) = \int_{\Gamma} u_{IJ}^{*}p_{J}d\Gamma(\mathbf{x})$ $X_2 \Delta$ Anisotropic (elastic): Eshelby et al. (1953) Piezoelectric: Barnett & Lothe (1975) MEE: Liu et al. (2001)

A. Sáez DADDE SEVILLA $\Gamma_{e}(x)$

 dx_2

 (N_1, N_2)

 $(n_1, n_2) = (\frac{dx_2}{d\Gamma}, -\frac{dx_1}{d\Gamma})$

25

Evaluation of Strongly Singular and Hypersingular Integrals

Regularization technique follows the works by García-Sánchez et al. (EABE2004, C&S2005, TAFM2008). This approach is valid for any of the 2-D fundamental solutions derived by Stroh's formalism and has no restrictions on the type/shape of the boundary elements:

SIDAD DE SEVILLA

$$p_{IJ}^*(\mathbf{x},\boldsymbol{\xi}) = \frac{1}{\pi} \Re \left[L_{JM} Q_{MI} \frac{\mu_M n_1 - n_2}{z_M^x - z_M^{\boldsymbol{\xi}}} \right]$$

CHANGE OF VARIABLES

$$\chi_R = z_R^x - z_R^{\xi} = (x_1 - \xi_1) + \mu_R(x_2 - \xi_2)$$

THE JACOBIAN IS BUILT-IN THE FUNDAMENTAL SOLUTION

$$\frac{d\chi_R}{d\Gamma} = \frac{d\chi_R}{dx_1}\frac{dx_1}{d\Gamma} + \frac{d\chi_R}{dx_2}\frac{dx_2}{d\Gamma} = -n_2 + \mu_R n_1$$

BEM for modeling fracture mechanics problems

For instance, for the hypersingular integrations:

NSF Workshop On the Emerging Applications and Future Directions of the BEM. Akron, Sep. 2010

Some results: BEM vs FEM & Experimental Results. Composite material.

NSF Workshop On the Emerging Applications and Future Directions of the BEM. Akron, Sep. 2010

Some results: BEM vs FEM & Analytic. Piezoelectric material.

Some results: BEM vs Analytic. MEE material.

What about dynamics?

 $|\eta|=1$

For instance, in the frequency domain, the fundamental solution is obtained as:

$$\mathbf{u}_{\mathrm{IJ}}^{*}(\mathbf{x},\boldsymbol{\xi},\boldsymbol{\omega}) = \frac{1}{8\pi^{2}} \int \frac{\gamma_{\mathrm{IJ}}^{\mathrm{m}}}{\rho c_{\mathrm{m}}^{2}} \Phi\left(\mathbf{k}_{\mathrm{m}}(\boldsymbol{\omega}) |\mathbf{\eta} \cdot (\mathbf{x} - \boldsymbol{\xi})|\right) \mathrm{dS}(\mathbf{\eta})$$

$$F_{2}$$

 $u_{II}^{*S}(\mathbf{x},\boldsymbol{\xi})$

$$\frac{1}{8\pi^2} \int \frac{\gamma_{IJ}^m}{\rho c_m^2 E_{qq}^m} \left[\Phi\left(k_m(\omega) | \boldsymbol{\eta} \cdot (\mathbf{x} - \boldsymbol{\xi}) | \right) + 2\ln | \boldsymbol{\eta} \cdot (\mathbf{x} - \boldsymbol{\xi}) | \right] dS(\boldsymbol{\eta}) - \frac{1}{8\pi^2} \int \frac{\gamma_{IJ}^m}{\rho c_m^2 E_{qq}^m} 2\ln | \boldsymbol{\eta} \cdot (\mathbf{x} - \boldsymbol{\xi}) | dS(\boldsymbol{\eta}) - \frac{1}{8\pi^2} \int \frac{\gamma_{IJ}^m}{\rho c_m^2 E_{qq}^m} \frac{1}{2\ln | \boldsymbol{\eta} \cdot (\mathbf{x} - \boldsymbol{\xi}) | dS(\boldsymbol{\eta})} dS(\boldsymbol{\eta}) \right] dS(\boldsymbol{\eta}) = \frac{1}{8\pi^2} \int \frac{\gamma_{IJ}^m}{\rho c_m^2 E_{qq}^m} \frac{1}{2\ln | \boldsymbol{\eta} \cdot (\mathbf{x} - \boldsymbol{\xi}) | dS(\boldsymbol{\eta})} dS(\boldsymbol{\eta})$$

regular:
$$\mathbf{u}_{IJ}^{*\dot{R}}(\mathbf{x},\boldsymbol{\xi},\omega)$$

Anisotropic: Wang & Achenbach (1995) Piezoelectric: Denda et al. (2004) MEE: Rojas-Díaz et al. (2008) $u_{II}^{*}(\mathbf{X}, \boldsymbol{\xi}, \boldsymbol{\omega}) = u_{II}^{*S}(\mathbf{X}, \boldsymbol{\xi}) + u_{II}^{*R}(\mathbf{X}, \boldsymbol{\xi}, \boldsymbol{\omega})$

A. Sáez UNIVERSIDAD DE SEVILLA

BEM for modeling fracture mechanics problems

singular:

(statics)

Some dynamic results: Combined magneto-electro-mechanical impacts. Curved crack in infinite MEE domain

NERSIDA

SEV

Some dynamic results: Finite cracked MEE plate under combined magneto-electro-mechanical impacts.

Concluding remarks

✓ BEM works for fracture applications!!, leading to accurate evaluation of the relevant fracture parameters

Some additional issues

Realistic boundary conditions

- Include other relevant variables (T...) and material nonlinearities
- Develop adequate fracture criteria for multifield materials
- Improve fundamental solutions
- ✤ and much more...

Thanks for your attention!!

andres@us.es

A. Sáez UNIVERSIDAD DE SEVILLA

BEM for modeling fracture mechanics problems

Some references of our group's work:

Wünsche, M., García-Sánchez, F., Sáez, A., Zhang, Ch. A 2D time-domain collocation-Galerkin BEM for dynamic crack analysis in piezoelectric solids (2010) Engineering Analysis with Boundary Elements, 34 (4), pp. 377-387.

Rojas-Díaz, R., García-Sánchez, F., Sáez, A. Analysis of cracked magnetoelectroelastic composites under time-harmonic loading (2010) International Journal of Solids and Structures, 47 (1), pp. 71-80.

Rojas-Díaz, R., García-Sánchez, F., Sáez, A., Zhang, Ch. Dynamic crack interactions in magnetoelectroelastic composite materials (2009) International Journal of Fracture, 157 (1-2), pp. 119-130.

García-Sánchez, F., Zhang, C., Sáez, A.

2-D transient dynamic analysis of cracked piezoelectric solids by a time-domain BEM (2008) Computer Methods in Applied Mechanics and Engineering, 197 (33-40), pp. 3108-3121.

Rojas-Díaz, R., Sáez, A., García-Sánchez, F., Zhang, C. Time-harmonic Green's functions for anisotropic magnetoelectroelasticity (2008) International Journal of Solids and Structures, 45 (1), pp. 144-158.

García-Sánchez, F., Rojas-Díaz, R., Sáez, A., Zhang, Ch. Fracture of magnetoelectroelastic composite materials using boundary element method (BEM) (2007) Theoretical and Applied Fracture Mechanics, 47 (3), pp. 192-204.

Sáez, A., García-Sánchez, F., Domínguez, J. Hypersingular BEM for dynamic fracture in 2-D piezoelectric solids (2006) Computer Methods in Applied Mechanics and Engineering, 196 (1-3), pp. 235-246.

A. Sáez UNIVERSIDAD DE SEVILLA

Some references of our group's work:

García-Sánchez, F., Sáez, A., Domínguez, J. Two-dimensional time-harmonic BEM for cracked anisotropic solids (2006) Engineering Analysis with Boundary Elements, 30 (2), pp. 88-99.

García-Sánchez, F., Sáez, A., Domínguez, J. Anisotropic and piezoelectric materials fracture analysis by BEM (2005) Computers and Structures, 83 (10-11 SPEC. ISS.), pp. 804-820.

García, F., Sáez, A., Domínguez, J. Traction boundary elements for cracks in anisotropic solids (2004) Engineering Analysis with Boundary Elements, 28 (6), pp. 667-676.

Sáez, A., Domínguez, J. Dynamic crack problems in three-dimensional transversely isotropic solids (2001) Engineering Analysis with Boundary Elements, 25 (3), pp. 203-210.

Sáez, A., Domínguez, J. Far field dynamic Green's functions for BEM in transversely isotropic solids (2000) Wave Motion, 32 (2), pp. 113-123.

Sáez, A., Ariza, M.P., Domínguez, J. Three-dimensional fracture analysis in transversely isotropic solids (1997) Engineering Analysis with Boundary Elements, 20 (4), pp. 287-298.

A. Sáez

UNIVERSIDAD DE SEVILLA