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Outline for the talk

1. Examples of porous/cellular solids in engineering

2. Stress analysis:  two approaches.

3. Homogenization: microstructural parameters, fabric tensor

4. Modeling of representative volume elements (RVEs)

5. Issues in elastic modeling

6. Issues in strength and fracture



Examples of Porous/Cellular Solids

Cellular Polymeric Foams

Metallic Foams

Porous Ceramics



Porous ceramic for biomedical 
application (dental)

ZirconiaPorosity is controlled
by design for desired
properties, i.e., tissue
growth, metallic diffusion



Cancellous Bone 
(of bone: having a porous structure)



Degradation of bone due to osteoporosis:

Note: the trabecular “structure” stays the same but the solid
density clearly changes.



Some Terminology

Solid volume fraction:  

Vm :  volume  of the solid matrix

Vp :   volume of the pores

Porosity, φ = 1 - Vs

For Vs > 0.3, transition from a cellular solid to a solid containing
isolated pores. The structural density ρs is also frequently used.

Vs =
Vm

Vm +Vp



Stress Analysis of Porous Solids
• Key point of understanding: porosity (or solid density)
is a necessary but insufficient parameter for describing
the elastic properties.

• In foams and sintered materials, the elastic properties are
independent of the absolute dimensions of the microstructure.

• We also need a measure of the shape, orientation, and
distribution of the pores. This is often (but not always)
a tensor property. Cell shape matters much more than cell size.

• Most (but not all) cellular solids are structurally anisotropic: the
anisotropy occurs due to the shape and distribution of the cells.
The “matrix” material is itself isotropic.



How can Boundary Element/Green’s Function
analysis be helpful???

1. Stress analysis of a homogenized, anisotropic
material.

2. Mechanical property analysis on Representative
Volume Elements (RVEs).

3. Efficient three-dimensional strength analysis on
RVEs.



Homogenization Approach
For any homogenization approach, we assume that the
length scale of interest for stress analysis is longer than
any microstructurally important length scale (pore diameter,
grain size, inclusion spacing, etc.).

σij = Cijkl (x) εkl σij = C*ijkl εkl



Homogenization: Fabric Tensor
Approach

Whitehouse (1974) and Harrigan and Mann (1984) noted that
the Mean Intercept Length (MIL) in a voided/cellular solid plots
as an ellipsoid
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(2-dimensional example)

Note: a similar approach has been used for contact normal distributions in granular
media (Oda, or Satake, for example) and for crack density/orientation in rock
(Harrigan and Mann)
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The orientation distribution function (ODF) describing the
structural anisotropy is then (Zysset, 1998)

L n( ) = 1
nTHn

H is the Fabric Tensor, a measure of
structural anisotropy

Where n is a unit direction in space.



This ODF can be expanded in the tensor form of a spherically-
harmonic Fourier series (Kanatani, 1984) as

L n( ) = f ! g +G :F n( ) +G ' ::F ' n( ) + ! ! !
Where f (=1), F, F’ are (known) even-ranked tensorial basis
coefficients and g, G, and G’ are even-ranked generalized fabric
tensors.

If we restrict ourselves to isotropic, transversely isotropic, and
orthotropic structural anisotropies, the series can be truncated as

L n( ) = f ! g +G :F n( )

Other material symmetries require retaining higher-order terms in
the expansion. Also, G and H are related, H = gI+G.



The fabric tensor can be related to the elastic constants.

Cowin (mid to late 1980’s): stress is an isotropic function of strain and
fabric. Leads to expressions for the orthotropic stiffnesses of the form

Ei = m1 + m2IIH + m3Hi + m4Hi
2 , i = 1,2,3

Gij = m5 + m6IIH + m7 Hi + H j( ) + m8 Hi
2 + H j

2( ), i, j = 1,2,3, i ! j

Issues with the Cowin formulation:

• Numerous parameters to determine
• Invertibility of compliance to stiffness tensors not guaranteed
• Positive definiteness of strain energy not guaranteed.



Zysett approach (late 1990’s):

• Similar approach, but enforced positive-definiteness of the stiffness
tensor.

• Homogenization assumption: the anisotropy of the constitutive law is
independent of the physical units of the microstructural property,

• Through a free-energy potential formulation, the fabric-stiffness
relations are Ei = E0!s
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Gij = G0!s
kHi

mH j
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S !g,!G( ) = ! kS g,G( ) "! > 0



With either approach, the unknown constants must be
determined either from physical or numerical experiments.

For example, from the Zysett 2003 review article, for trabecular
bone specimens,

Ei = 17607!s
3.2Hi

3.2 MPa
Ei

" ij

= 45800!s
3.2Hi

2.4H j
2.4 MPa

Gij = 7799!s
3.3Hi

1.6H j
1.6 MPa

Note:
• The principal axes of the fabric tensor and the principal material
axes are coincident (Cowin, 1985; Odgaard, 1997)
• Poisson ratios are independent  of structural density (Gibson and
Ashby, 1999)





Boundary Element Analysis with Anisotropic Green’s
Functions

In plane-strain, the displacement Green’s function is of the form

Uij P,Q( ) = ! ij pn( ) log zn " z 'n( )
n
#

where zn = x1 + pnx2 , z 'n = x '1+ pnx '2
P = x '1, x '2( ), Q = x1, x2( )

The Stroh-roots pn for an orthotropic solid are determined in
plane-strain from
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In terms of fabric, the roots are given by
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Note that the Stroh roots are independent of the solid density -- they
are a measure of the structural anisotropy.



Example calculation: principal stress variation with bone density in a
bone/titanium specimen (anisotropic, bimaterial Green’s function)



Another approach: the Micromechanical Approach (see, for
example, the review article by Kachanov, 2005). Relies on
forming an elastic potential for stress as

f = f0 + !f
Where f0 is the potential with no inhomogeneities and Δf is the
potential due to the inhomogeneities. Furthermore, Δf is formed
as

!f = !f j
j=1

J

"
Where Δf j is due to an individual inhomogeneity.



A long history in this area (thanks to Will Parnell, Dept. of
Mathematics, Univ. Manchester):

• 1960’s: many results for bounds on elastic constants based on
arrays of spherical particles. Hill, Hashin, Rosen, Tsai and Halpin.

• 1970’s: Classical asymptotic homogenization developed. Sanchez-
Palencia, Bensoussan, Bakhvalov.

• 1980’s: Development of improved bounds using microstructural
information.

These techniques are best suited for Vv > 0.5



Two dimensional computational model of a porous ceramic (ρs = 0.52):

Example BEM calculation: effective orthotropic properties.

Symmetric Galerkin
code from L. Gray and
A-V Phan used for this
analysis.



The model is subjected to simple mechanical tests (tension,
shear) to determine the elastic constants.

Bulk material (isotropic): E = 230 MPa, ν = 0.240, G = 92.7 MPa

For the voided material, E1 = 35.3 MPa, E2 = 57.8 MPa, ν12 =
0.360, ν21 = 0.226, and G12 = 33.9 MPa.

These results were obtained under displacement boundary
conditions, these provide lower bounds on the elastic constants
(Hashin, 1965). Traction BC’s provide upper bounds.

Next step: determine the fabric tensor, then investigate
usefulness of predictions with anisotropic BEM code.



Issues in Elastic Modeling

Relation between fabric tensor and microstructural
parameter approach.

Improved bound estimates, static vs dynamic “tests” for
elastic constants.

3D RVE modeling for orthotropic properties - speed.

Rapid determination of the fabric tensor from image
analysis.



Issues in Strength and Fracture

Main objective is strength prediction with structural density
(fracture risk assessment).

Fabric dependence on strength unclear. Cowin (1986)
attempted a relation between fabric and Tsai-Wu failure
theory.

Damage accumulation/evolution.

Usefulness of homogenized fracture toughness.

Use of combined BEM/DEM models.
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