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Prominent BEM-researchers in Brazil
• José Cláudio Faria Telles• José Cláudio Faria Telles
• Webe João Mansur
• Luiz Wrobel (at Brunel University)

And large team at COPPE/UFRJ and
other universities

Luiz Wrobel (at Brunel University)

• Euclides de Mesquita Neto
A UNICAMP

• Paulo Sollero
At UNICAMP

• Wilson Sérgio Venturini  (passed away last July)

• João Batista de Paiva
Humberto Breves Coda

At São Carlos 
(UESC)

• Humberto Breves Coda

• Delfim Soares Júnior – at UFJF New generationDelfim Soares Júnior at UFJF
• Francisco Célio de Araújo – at UFOP

NSF_BEM_workshop:  BEM research and new developments in Brazil

g



ANNOUNCEMENT
• BETEQ 2011 - XII International Conference on 

Boundary Element and Meshless Techniques
12 15 J l 2011 B ili B il12-15 July 2011, Brasilia, Brazil 
A few days in Rio de Janeiro is mandatory!
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ANNOUNCEMENT

A few days in Rio de Janeiro is mandatory!
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R tl l d d Ph D Th i

• Recently graduated student and works in progress at PUC-Rio

Recently concluded Ph.D Thesis:
• M. F. F. Oliveira, Conventional and simplied-hybrid boundary element 

methods applied to axisymmetric elasticity problems in fullspace and 
halfspace, PUC-Rio (2009). Co-advisor: Patrick Selvadurai (McGillhalfspace, PUC Rio (2009). Co advisor: Patrick Selvadurai (McGill 
University)

Ph.D Theses in progressp g
• C. A. Aguilar M., Comparison of the computational performance of the

advanced mode superposition technique with techniques that use 
numerical Laplace transforms (since September 2008).

• D. Huamán M., Gradient elasticity formulations with the hybrid
boundary element method (since September 2008)

M S Th i iM.Sc. Thesis in progress
• E. Y. Mamani V., Application of a generalized Westergaard stress 

function for the analysis of fracture mechanics problems (since January
2010) Co-advisor: A A O Lopes2010). Co-advisor: A. A. O. Lopes
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(Intended) Contents of this presentation
• Variationally-based, hybrid boundary and finite elements

• Developments for time-dependent problems

Developments in gradient elasticity• Developments in gradient elasticity

• Dislocation-based formulations (for fracture mechanics)Dislocation based formulations (for fracture mechanics)

• From the collocation (conventional of hybrid) boundary ( y ) y
element method to a meshless formulation
Or: The expedite boundary element method
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Approximations on the boundary
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Fundamental solution

0** =Δ+ mimjji pσ

* * * * * *      in   r r
i im m i im m is sm mu u p c u p u C p= + ≡ + Ω

, mimjji p

Ω== in         **
,

***
mpkmijkpmijmij puDpσσ

Γ== on     *****
mjjimmimi pptt ησ

• Properties

mjjimmimi pp η

imjjim d δσ −=Ω∫Ω  *
, imim δdt −=Γ∫Γ

*
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The conventional, collocation BEM

)()( pp ttGddH −≅−
Derived from the Somigliana’s identity

≅ means congruence in terms of weighted residuals (collocation method)

pp td , are already an expedite means of taking a particular solution into account

(inherent approximation error due to rigid body displacements!)

, are already an expedite means of taking a particular solution into account

or AAAA ttutGdHdu iimmnmnninjjim ⎟
⎠
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imjim u,σ Stress and displacement expressions of the problem’s fundamental solution
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Linear algebra properties of H

1=∗p
Ω IHH =+
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Ω

Γ
η
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p
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η
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Spectral properties:

PACAM 2010 – Foz do Iguaçu, Brazil Spectral properties of the double layer potential matrix H 



Consistent formulation of the BEM

( ) ( )p p
R
⊥− = −H d d GP t t( ) ( )

Where the orthogonal projector

∫

( ) 1T T
R R

−⊥ = − = −P I P I R R R R

∫Γ Γ= dr
isis utR AA

with

f h f h h i bi f i id b d di l i h

* * * * * *       in   r r
i im m i im m is sm mu u p c u p u C p= + ≡ + Ω

comes from the fact that there is an arbitrary amount of rigid body displacements in the 
fundamental solution 
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Literature Review – part I
Hybrid formulations: Coined by Pian in 1967 “... to signify elements which maintain either equilibrium or compatibility in the 

element and then to satisfy compatibility or equilibrium respectively along the interelement boundary” 

Parallel developments

Trefftz E 1926 Ein Gegenstück zum

Hellinger, E., 1914. Die allgemeinen Ansätze der Mechanik 
der Kontinua, Enz. math. Wis, 4, 602-694. 

Trefftz, E., 1926. Ein Gegenstück zum 
Ritzschen Verfahren. Proc. 2nd International 
Congress of Applied Mechanics, Zurich, Switzerland. 

Reissner, E. 1950. On a variational theorem in elasticity, 
J. Math. Phys., 29, 90-95 . 

Hu, H.-C., 1955. On some variational principles in the theory 
of elasticity and the theory of plasticity, Scientia Sinica, 4, 33-54 

Pian, T. H. H., 1964. Derivation of element stiffness matrices
by assumed stress distribution. AIAA J., 2, 1333-1336by assumed stress distribution. AIAA J., 2, 1333 1336

Jirousek, J. & Leon, N., 1977. A powerful finite element  for
plate bending, Com. Meths. in Appl. Mech. Engng., 12, 77-96. 

Qin Q H 2003 The Trefftz Finite and Boundary Element
Dumont, N. A., 1989. The hybrid boundary element method: 
an alliance between mechanical consistency and simplicity. Qin, Q. H., 2003. The Trefftz Finite and Boundary Element 

Method, WITPress.

(Many variations) 

y p y
Applied Mechanics Reviews, 42, no. 11, Part 2, S54-S63 

(and variations)



Present theoretical investigation
Motivation: we are here

Double layer potential matrix

Mechanical assumptions,

Theoretical tool:

p ,
linear algebra consequences

Displacement virtual work 
principle (elastostatics): The Ouroboros (from  Wikipedia)

PACAM 2010 – Foz do Iguaçu, Brazil Spectral properties of the double layer potential matrix H 



The Ouroboros!

Collocation

BEM
(Tail?)

Variational issues
Integration issues

Hybrid

BEM Expedite

BEM
(Head?)

( )

Integration issues
Fundamental solutions

Matrix spectral properties
(Generalized inverses)

Consistency issues

Hybrid
Displacement

BEM Consistent
Collocation

Applications

Galerkin Simplified
H b id

BEM
(Here and

now)

(from  Wikipedia)
BEM

Hybrid

BEMSymmetric
Galerkin

BEM

BEM/MRM 32 – The boundary element method revisited

Dumont, N. A.: "The hybrid boundary element method – fundamentals", in preparation to
be submitted to Engineering Analysis with Boundary Elements



The conventional, collocation BEM
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The hybrid BEM

Dumont N A : “Variationally-Based Hybrid Boundary Element Methods”
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Dumont, N. A.: Variationally-Based, Hybrid Boundary Element Methods ,
Computer Assisted Mechanics and Engineering Sciences (CAMES) Vol 10 pp 407-430, 2003



The hybrid displacement BEM
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Definition of the matrices involved
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Simplified HBEM: ∗ ∗←F HU
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The Ouroboros!

External reference 
system( ),d p

Some isolated virtual work statements

T ∗ ∗= ⇔ =H p p Hd d
T L∗ ∗⇔Gt d G d

( ),∗ ∗p d Internal reference 
system

T L= ⇔ =Gt d G p d
T L= ⇔ =L t p Ld d

( ), Lt d System of Lagrange 
multipliers

= ⇔ =L t p Ld d
There are more virtual work statements;
Several restrictions apply!

G and L should be rectangular, in 
general;
G should be consistent

Dumont, N.A., An assessment of the spectral properties of the 
matrix G used in the boundary element methods Computationalmatrix G used in the boundary element methods, Computational 
Mechanics, 22(1), pp. 32-41, 1998
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The Ouroboros!

External reference 
system( ),d p

Some isolated virtual work statements

T ∗ ∗= ⇔ =H p p Hd d
T L∗ ∗⇔Gt d G d

( ),∗ ∗p d Internal reference 
system

T L= ⇔ =Gt d G p d
T L= ⇔ =L t p Ld d

( ), Lt d System of Lagrange 
multipliers

= ⇔ =L t p Ld d
There are more virtual work statements;
Several restrictions apply!

G and L should be rectangular, in 
general;
G should be consistent

∗ ∗ ∗=F p d =Kd p
Results at internal points: no integral statement  actually required
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Spectral properties for the hybrid BEM

For a finite domain:

W W
⊥ = −P I PWP is the orthogonal projector onto the 

space of rigid body displacements and  

T
W V= ⇒ =HP 0 H P 0Then,

W WW

Definition of
VP

V
∗ =F P 0

Kd
For consistency,

( ) 1T −∗K H F P H =Kd p

Results at internal points: no integral statement actually required!

and ( )T
V

∗= +K H F P H in

Results at internal points: no integral statement  actually required!

∗ ∗ =F p Hd∗p solved from either or T ∗ =H p p with V
∗ =P p 0

and
* * * r
i im m iu u p c= + * * * ij ijm mpσ σ=

NSF_BEM_workshop:  BEM research and new developments in Brazil



Some applications already implemented
• 2D and 3D potential and elasticity problems
• 2D and 3D acoustics
• 2D general time-dependent problems (in the

frequency domain):
• Advanced mode superposition analysisAdvanced mode superposition analysis
• Use of numerical inverse transforms

• 2D sensitivity analysis
• 2D FGM-analysis for potential problems
• 2D fracture-mechanics analysis – evaluation of stress 

intensity factorsintensity factors
• Axysimmetric fullspace and halfspace elastostatics
• 2D (and 3D) gradient elasticity analysis( ) g y y
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Example of application of non-singular fundamental solutions: two dimensional 
transient heat conduction in a homogeneous square plate

y

)1,1(
)1,0(

1)( =tu

0)( =tu 1)( =tu0)0,,( =yxu

x)0,0( )0,1(0)( =tu

1k Conductivity Distorced 4x4 mesh1=k

1=c

Conductivity

Specific heat

Distorced 4x4 mesh



Temperature results along the edge x = 0 for several time instants

Analytic solution

Classical modal analysisClassical modal analysis.

Serendipity elements.
Quadratic elements.

Hybrid formulation
3 mass matrices.



Westergaard’s Stress Function as a Fundamental Solution

- Example 8 – inclined edge crack in a rectangular plate
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Westergaard’s Stress Function as a Fundamental Solution

1,5

Example 3 – semicircular crack in an infinite continuum
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Westergaard’s Stress Function as a Fundamental Solution

3
4

Modeling a curved crack

2
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y
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1

2 5

Previous development: 
superposition of elipsis

Current development:Current development:
Superposition of
halfcracks

Inspired by:p y
Tada, H., Ernst, H. A., Paris, P. C. (1993), Westergaard stress functions for displacement-
prescribed crack problems – I, Int. Journal of Fracture, Vol. 61, pp 39-53



Westergaard’s Stress Function as a Fundamental Solution
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Westergaard’s Stress Function as a Fundamental Solution
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Westergaard’s Stress Function as a Fundamental Solution
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qx gradient along the line segment A‐B due to an external source
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Westergaard’s Stress Function as a Fundamental Solution
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Westergaard’s Stress Function as a Fundamental Solution
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Westergaard’s Stress Function as a Fundamental Solution
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EXAMPLE: gradient qz along a line segment
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R. A. P. Chaves, “The Hybrid Simplified Boundary Element Method Applied to Time-Dependent Problems”, Ph.D. Thesis, PUC-Rio, 
Brazil, 2003 



Numerical example

Non-convex axisymmetric volume with multiply connected surfaces

Unitary ring sources (10, -5)

BETEQ 2009 - International Conference on Boundary Element Techniques                                         Athens, July 2009



An expedite formulation of the BEM
Some numerical assessments for 2D potential problems

( )
π4

)()(ln),(:sol_9
2

1
2

1 yyxxyxu −+−
=

Numerical and analytical values 
of potentials at internal pointsof potentials at internal points

T ∗ =H p p
T ∗ =V p 0

* * * r+ r
i im m iu u p c= +

ICCES 2010  – AN EXPEDITE FORMULATION OF THE BOUNDARY ELEMENT METHOD



An expedite formulation of the BEM
Some numerical assessments for 2D potential problems

( )
π4

)()(ln),(:sol_9
2

1
2

1 yyxxyxu −+−
=

* * *
ij ijm mpσ σ=

Numerical and analytical values 
of gradients at internal points

ICCES 2010  – AN EXPEDITE FORMULATION OF THE BOUNDARY ELEMENT METHOD



Contents of this presentation
• Variationally-based, hybrid boundary and finite elements

• Developments for time-dependent problems

Developments in gradient elasticity• Developments in gradient elasticity

• Dislocation-based formulations (for fracture mechanics)Dislocation based formulations (for fracture mechanics)

• From the collocation (conventional of hybrid) boundary ( y ) y
element method to a meshless formulation
Or: The expedite boundary element method
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GENERALIZED 
HELLINGER-REISSNER POTENTIAL

( )( )∫(∫ ( )∫ ~~1 +Γ−+Ω−−− duuduuut ηδσρδδσ ��( )( )∫(∫ ( )∫
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,
0
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dtdtudufu

duuduuu

ijijiiijiji

iijijt iiijij

ησδρσδ

ηδσρδδσ

��( ) ( ) )ΓΩ jjjj

0~δu Γalong0=δ iu uΓalong

δui = 0 at both time interval extremities t0 and t1i



Literature Review – part I (continued)

Przemieniecki, J.S. (1968). Theory of Matrix Structural Analysis, 
Dover Publications, New York  
(displacement-based free vibration analysis – truss and beam):

Voss, H., 1987, A New Justification of Finite Dynamic Element

( ) ( ) )( 8
64

6
42

4
0

2
0 ωωωω O+−−−−−= KMKMMKK

Gupta, Paz: several other displacement-based elementsVoss, H., 1987, A New Justification of Finite Dynamic Element 
Methods, Numerical Treatment of Eigenvalue Problems, Vol. 4, 
232-242, eds. J. Albrecht, L. Collatz, W. Velte, W. Wunderlich, 
Int. Series on Num. Maths. 83, Birkhäuser Verlag, Stuttgart

Gupta, Paz: several other displacement based elements 
for plane-state problems. Coined finite dynamic elements, 
although they only have been applied to free vibration 
analysis (better, then: finite harmonic elements!)

?

( ) ( ) ( ) )( 8
64

6
42

4
20

2
0 ωωωω O+−−−−−−= KMKMKMKK

? 

Dumont N A & Oliveira R (1993) 1997 The Dumont N A & Oliveira R 2001 From frequency-

Directly based on Pian and Przemieniecki: General , consistent finite and boundary dynamic
element families: acoustics, free vibration, transient problems via an advanced modal analysis.

Dumont, N. A. & Oliveira, R., (1993) 1997. The 
exact dynamic formulation of the hybrid 
boundary element method, Procs. XVIII 
CILAMCE, Brasília, 29 - 31 October, 357-364 

Dumont, N. A. & Oliveira, R., 2001. From frequency-
dependent mass and stiffness matrices to the 
dynamic response of elastic systems. Int. J. Sol. 
Struct., 38, 10-13, 1813-1830 



Literature Review – part II
Lancaster, P., 2002. Lambda-Matrices & Vibrating Systems, Dover Publications
(from 1966)

d...)HHH(p...)FFF( 2
4
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2

0
*

2
4

1
2

0 +ω+ω+=+ω+ω+

pp)HHH( *T4T2T +ω+ω+ pp...)HHH( 210 =+ω+ω+
Dumont, N. A.: “On the Inverse of Generalized Lambda Matrices with Singular Leading Term”, IJNME, Vol 66(4), 
571-603, 2006

)(pd)MMK( 42 ω+ωω
H F H KT − =10VH T

0 = 0VF 0 =

)(pd...)MMK( 2
4

1
2

0 ω=+ω−ω−
(Przemieniecki)

Dumont, N. A.: “On the solution of generalized non-linear complex-symmetric eigenvalue problems”, IJNME, Vol 71, 1534-1568, 
2007

Sleipjen, G. L. G., Van der Horst, H. A., 1996, A Jacobi-Davidson iteration method for linear eigenvalue problems, 

Nonlinear eigenvalue problem:

SIAM J. Matrix Anal. Appl., 17, 401-425
Arbenz, P, Hochstenbach, M. E., 2004.  A Jacobi-Davidson method for solving complex-symmetric eigenvalue

problems, SIAM J. Sci. Comput. 25, 5, 1655-1673 



Problems  with viscous damping

( ) 0ΦΩMΦΩCΦK =+−∑
=

−
n

j

j
j

j
ji

1

212
0

0000K ⎤⎡ 0 "

Nonlinear eigenproblem:

0CM0
0CMC0

MMCM0
0000K

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

ΦΦΦ

ΦΦΦ
ΦΦΦ

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎡

−

−

1,11110

1,00100

32

322

221

0

n

nn

i
ii

i

#%##
"
…

#%####
"%
"
"

Augmented 
formulation:

000CMCM
MMCMC

000M0

⎤⎡Ω
⎥
⎤

⎢
⎡ ΦΦΦ⎥
⎥
⎤

⎢
⎢
⎡

⎥
⎦

⎢
⎣ ΦΦΦ

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

−

−−−−

01001003221

2211

1,11,10,1

n

n

nnnn

n

ii
ii

……"
"

"
"

#%####

0

00

00

0000M

0CM
0CMC

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Ω

Ω

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ΦΦΦ

ΦΦΦ

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

−

−−−−−

−

1

1

0

1,11,10,1

1,11110

1,00100

32

322

3221

nnnnn

n

n

i
ii

"
#%##

…

"
#%##

"

#%####
"%#
""

0000M ⎥⎦⎢⎣ n "

ΦΩΦΩΦΩΦΩ

⎞⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∑ ∑∑

= =

−−

=

−−

jj

n

j

j

k

kj
j

k
j

k

kj
j

k i

1222

1

2

1

21
2

2

22 IMC TT

Orthogonality
properties:

ΩΦΩΦΩΦΩΦΩΦΦ =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++∑ ∑∑

=

−

=

−
−

=

−−
n

j

j

k

kj
j

k
j

k

kj
j

k i
1

12

1

2
22

1

12
0 MCK TTT

properties:



Summary
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(Set of coupled, higher-order differential equations) 

e. g.

d ΦMode superposition : (15)
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d = ΦηMode superposition : (15)
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(Set of uncoupled, second-order differential equations) ( p , q )



Frequency-domain formulation

0, 2 =++ iijji ukb ρσ ζωω ik 222 +=where

(Laplace/Fourier transforms or)Solution:

St t l d i

(Laplace/Fourier transforms or)

Advanced mode-superposition technique
Solution:
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Structural dynamics

( ) ( )bbb ppT=+ ΦηηηηΩ ��
Diffusion-type problems

( ) ( )pp −=−+− ΦηηηηΩ

Structural dynamics with viscous damping
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Initial displacements and velocities
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EVALUATION OF RESULTS AT INTERNAL POINTS
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EVALUATION OF RESULTS AT INTERNAL POINTS
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Example 1: Initial velocity – Displacement at point A
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Transient Analysis – Example 2: Gravitational force

59 ll d59 equally spaced,
linear boundary elements
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υ= 0  (can be solved in the frame of the theory of potential)



0.00002
Example 2: Gravitational force – Displacement at point A

-0.00008
a

-0.00018

g = -9.81 m/s2

35 m

(20, 30)E 
= 

21
0,

00
0 

M
pa

0 
kg

/m
3

0 00028
50

 m
(25, 10)

(0, 15) (10, 15)
A

E

ρ 
= 

7,
85

0

Analytic
-0.00028 ( , )

(35, 0)(15, 0)
59 elements

-0.00038

-0.00048
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2



-0.00001
Example 2: Gravitational force – Displacements along a line segment

t 0 004

-0.00011

t=0.004

-0.00021 t=0.008

-0 00041

-0.00031

9 81 / 2

35 m

00
 M

pa

t=0.012

-0.00051

-0.00041 g = -9.81 m/s2

50
 m

(20, 30)

(20, 26.2)

E 
= 

21
0,

00

= 
7,

85
0 

kg
/m

3

-0.00061 (25, 10)

(0, 15)

ρ 
=

t=0.016
Analytic

59 elements

-0.00071
0 5 10 15 20 25

(20, 1) (35, 0)(15, 0) t=0.0259 elements



Plane frame with 6 members and 12 d.o.f. 
b itt d t t i l lsubmitted to a triangular pulse
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(Weaver, W., Jr., and Johnston, P. R., 
1987. Structural Dynamics by Finite 
Elements, Prentice-Hall Inc., Englewood 
Cliffs, New Jersey )

z
L L 3L L 2L

• NSF_BEM_workshop:  BEM research and new developments in Brazil



Plane frame with 6 members and 12 d.o.f. 
b itt d t t i l lsubmitted to a triangular pulse

Displacement results with 1 and 4 mass matrices, as 
compared with values given by Weaver and Johnston.

Eigenvalues obtained for the problem with 1, 2, 3 and 4 
mass matrices.

NSF_BEM_workshop:  BEM research and new developments in Brazil



Contents of this presentation
• Variationally-based, hybrid boundary and finite elements

• Developments for time-dependent problems

Developments in gradient elasticity• Developments in gradient elasticity

• Dislocation-based formulations (for fracture mechanics)Dislocation based formulations (for fracture mechanics)

• From the collocation (conventional or hybrid) boundary ( y ) y
element method to a meshless formulation
Or: The expedite boundary element method

NSF_BEM_workshop:  BEM research and new developments in Brazil



A Family of 2D and 3D Hybrid Finite Elements for 
Strain Gradient Elasticity

Ney Augusto Dumont
Daniel Huamán Mosqueira
e-mail: dumont@puc-rio.br

BETeq – International Conference on Boundary Element & Meshless Techniques XI
12-14 July 2010, Berlin



Conclusions (1)

kkjijiji g ,
2ττσ −= Total stress

• The hybrid BEM / FEM (a two-field formulation) is a natural variational tool to deal with
gradient elasticity

• Singular and nonsingular fundamental solutions were either redeveloped for BEM or originally
developed for FEM gradient elasticity implementations

• General families of finite elements were obtained

• Extension to time-dependent problems in the frequency domain is straightforwardExtension to time dependent problems in the frequency domain is straightforward
(in progress – already done for truss and beam elements)

• Simple implementations for truss and beam elements: was a fruitful apprenticeship
(disagreement with some results in the literature - symmetry and representation of constant( g y y p
strain state)

• Treatment of the normal displacement gradient on Г is different from Mindlin’s
proposition (our results still remain to be validated)

• Numerical examples for 2D problems are being implemented

BETeq – International Conference on Boundary Element & Meshless Techniques XI
12-14 July 2010, Berlin



Conclusions (2)

kkjijiji g ,
2ττσ −= Total stress

• .
• .

jjj ,

• .
• Treatment of the normal displacement gradient on Г is different from Mindlin’s

proposition (our results still remain to be validated)

• Numerical examples for 2D problems are being implemented:

• Orthogonality to rigid body displacements: OK!

• Symmetry of the flexibility matrix F*: OK!• Symmetry of the flexibility matrix F : OK!

• Patch tests for linear displacements fields: OK!

• Patch tests for non-linear displacement fields: convergence still questionable.

BETeq – International Conference on Boundary Element & Meshless Techniques XI
12-14 July 2010, Berlin



Contents of this presentation
• Variationally-based, hybrid boundary and finite elements

• Developments for time-dependent problems

Developments in gradient elasticity• Developments in gradient elasticity

• Dislocation-based formulations (for fracture mechanics)Dislocation based formulations (for fracture mechanics)

• From the collocation (conventional or hybrid) boundary ( y ) y
element method to a meshless formulation
Or: The expedite boundary element method

NSF_BEM_workshop:  BEM research and new developments in Brazil



Conclusions

• Implementation extremely advantageous for:

Expedite formulation of the boundary element method (in progress)

• large problems 
• problems with complicated fundamental solutions (time-dependent, 
axisymmetric, for gradient elasticity, etc)

• Numerical accuracy still under investigation, but comparable to theNumerical accuracy still under investigation, but comparable to the 
conventional BEM
•Evaluation of results at internal points requires no further integrations
•However,  results close to the boundary require the knowledge of the null 

V ( hi h b b i d i G S id l i i i i i lspace V (which may be obtained via Gauss-Seidel iteration in principle 
with a simple pre-conditioning of HT)

Work in progressWork in progress
•Implementation in Fortran for large 2D  potential and elasticity 
problems in the frequency domain
•Implementation for strain gradient elasticityImplementation  for strain gradient elasticity

ICCES 2010  – AN EXPEDITE FORMULATION OF THE BOUNDARY ELEMENT METHOD


