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Prominent BEM-researchers in Brazil

e José Claudio Faria Telles
e Webe Joao Mansur other universities
* Luiz Wrobel (at Brunel University)

And large team at COPPE/UFRJ and

* Euclides de Mesquita Neto
At UNICAMP
e Paulo Sollero

* Wilson Sérgio Venturini (passed away last July) |

_ . _ At Sao Carlos
e Joao Batista de Paiva ~ (UESC)
« Humberto Breves Coda

» Delfim Soares Junior — at UFJF —~ New generation
* Francisco Ceélio de Araujo — at UFOP
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ANNOUNCEMENT

« BETEQ 2011 - Xll International Conference on
Boundary Element and Meshless Techniques

12-15 July 2011, Brasilia, Brazil
A few days In Rio de Janeiro iIs mandatory!
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Recently graduated student and works in progress at PUC-RIo

Recently concluded Ph.D Thesis:

« M. F. F. Oliveira, Conventional and simplied-hybrid boundary element
methods applied to axisymmetric elasticity problems in fullspace and
halfspace, PUC-Rio (2009). Co-advisor: Patrick Selvadurai (McGill
University)

Ph.D Theses in progress

o C. A. Aguilar M., Comparison of the computational performance of the
advanced mode superposition technique with techniques that use
numerical Laplace transforms (since September 2008).

 D. Huaman M., Gradient elasticity formulations with the hybrid
boundary element method (since September 2008)

M.Sc. Thesis in progress

« E.Y.MamaniV., Application of a generalized Westergaard stress
function for the analysis of fracture mechanics problems (since January
2010). Co-advisor: A. A. O. Lopes
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(Intended) Contents of this presentation

Variationally-based, hybrid boundary and finite elements
« Developments for time-dependent problems
 Developments in gradient elasticity

« Dislocation-based formulations (for fracture mechanics)

 From the collocation (conventional of hybrid) boundary
element method to a meshless formulation

Or: The expedite boundary element method
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Approximations on the boundary

r 0jij+b =0 o” +b =0
U; =y, dy, u’ =u,, d’
=11, t’=t,t"

i l

d,,d” . nodal atributes

t,,t, - surface atributes

2|
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Fundamental solution

* *
O i+t Aim Pm=0

* *

* * o * * 7 -
u, =u, p, +c, =u,_p +u C pln Q

l l A sm

* *

Oy =0 Dy :Dl.jkp Upp p P 1N Q

t; =ty Py =0, 11, P, ON T
* Properties

im

J.Q O jin,; A2 ==0, Jr £l = =0,
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The conventional, collocation BEM

H(d—d?)=G(t—t")

Derived from the Somigliana’s identity

~S

means congruence in terms of weighted residuals (collocation method)

(inherent approximation error due to rigid body displacements!)

d”,t

are already an expedite means of taking a particular solution into account

o || O, AT |d, =H,,d, =G,t, =| | u},t,d0

d = nodal displacement attributes

Where: u, = displacement interpolation functions
t,, = boundary traction force attributes
t,, = traction force interpolation functions

Jim ) Wi Stress and displacement expressions of the problem’s fundamental solution
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Linear algebra properties of H

d*=Hd < p=H'p"y d =Hd & p=H p’

Spectral properties:

PACAM 2010 — Foz do Iguacu, Brazil Spectral properties of the double layer potential matrix H



Consistent formulation of the BEM

il
H(d-d’)=GP, (t-t")
Where the orthogonal projector
1 T\ tpT
P, =I1-P,=1-R(R'R) R
. Rﬂs — -[F tlﬁuz’;dr

comes from the fact that there is an arbitrary amount of rigid body displacements in the
fundamental solution

*

* * . * * 7 * -
uizuimpm—l—c':uimpm—l_’uis Csmpm In Q
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Literature Review — part |

; ; . Coined by Pian in 1967 “... to signify elements which maintain either equilibrium or compatibility in the
Hybrld formulatlons. {element and then to satisfy compatibility or equilibrium respectively along the interelement boundary”

Parallel developments
/\

—
Hellinger, E., 1914. Die allgemeinen Ansatze der Mechanik
der Kontinua, Enz. math. Wis, 4, 602-694.

4_____—

Reissner, E. 1950. On a variational theorem in elasticity,
J. Math. Phys., 29, 90-95 .

\ 4

Hu, H.-C., 1955. On some variational principles in the theory
of elasticity and the theory of plasticity, Scientia Sinica, 4, 33-54

Pian, T. H. H., 1964. Derivation of element stiffness matrices
by assumed stress distribution. AIAA J., 2, 1333-1336

- - =

Dumont, N. A., 1989. The hybrid boundary element method:
an alliance between mechanical consistency and simplicity.
Applied Mechanics Reviews, 42, no. 11, Part 2, S54-S63

(and variations)

Trefftz, E., 1926. Ein Gegenstiick zum
Ritzschen Verfahren. Proc. 2nd International
Congress of Applied Mechanics, Zurich, Switzerland.

Jirousek, J. & Leon, N., 1977. A powerful finite element for
plate bending, Com. Meths. in Appl. Mech. Engng., 12, 77-96.

Qin, Q. H., 2003. The Trefftz Finite and Boundary Element
Method, WITPress.

SManz variationsz



Present theoretical investigation

Motivation: we are here

W\ Addd s dll P

KA oys T4y o

Double layer potential matrix

>k
)

Mechanical assumptions,
linear algebra consequences

Theoretical tool:
Displacement virtual work

principle (elastostatics):

d*=Hd < p=H'p"

PACAM 2010 — Foz do Iguagu, Brazil Spectral properties of the double layer potential matrix H




The Ouroboros!

Collocation
BEM rruq,myumqn xR PJBVUUUrU\-'uruhU g
Hybrid (Tail?) : M )u(q;o'q’q VWY o
BEM Expedite
(Head?)
/ Variational issues BEM
Integration issues
Hybrid Fundamental solutions
Displacement Matrix spectral properties
BEM (Generalized inverses) Consistent

Consistency issues Collocation

Applications BEM
Here and
Simplified now) _
Hybrid N 2 e
- 54\1* 99'!‘0# i ; . mu"om“v’o.
BEM

(from Wikipedia)

Dumont, N. A.: "The hybrid boundary element method — fundamentals”, in preparation to
be submitted to Engineering Analysis with Boundary Elements

BEM/MRM 32 — The boundary element method revisited



The conventional, collocation BEM
uilibri un

donT p-p’=L"(t—t")
(displacements)

Stiffness matrix:
fonT
(tractions)

Compatibility:
H(d-d")=G _(t—t")

/1 1Integral statement based on a funda-
mental solution .

Figure 5. Transformations carried out in the conventional boundary element method.

NSF_BEM_workshop: BEM research and new developments in Brazil



The hybrid BEM

Equilibrium:

don T H'p =p-p’

(displacements)

Stiffness matrix:
K, =H'"(F+VV")'H

Compatibility:
Fp' =H(d-d")

Figure 7. Transformations carried out in the hybrid stress boundary element method.

Dumont, N. A.: “Variationally-Based, Hybrid Boundary Element Methods”,
Computer Assisted Mechanics and Engineering Sciences (CAMES) Vol 10 pp 407-430, 2003
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The hybrid displacement BEM

Equilibrium: <N
p-p’ =L, (t-t")

AN

Ggﬂm_pitlb:lm};ib s Compatibility:
P =L, (d-d) Fp =G (t—t")

Figure 6. Transformations carried out in the hybrid displacement boundary element method.

donT
(displacements)

Stiffness matrix:
K, =L'"G."F(G,")'L
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Definition of the matrices involved

Simplified HBEM: F" « HU"
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The Ouroboros!

External reference
(d,p)

system

HTp* =p <~ Hd=d (p* | d*) Internal reference

system

multipliers

Gt = d>X< e GTp* = dL (t dL ) System of Lagrange

T L
Lt=p & Ld=d
G and L should be rectangular, in

There are more virtual work statements; general,;
Several restrictions apply! G should be consistent

v
Dumont, N.A., An assessment of the spectral properties of the
matrix G used in the boundary element methods, Computational
Mechanics, 22(1), pp. 32-41, 1998
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The Ouroboros!

External reference
(d,p)

Some isolated virtual work statements system

HTp* =p <~ Hd=d (p* | d*) Internal reference

system

multipliers

Gt = d>X< e GTp* = dL (t dL ) System of Lagrange
L't=p < Ld=d’

There are more virtual work statements;
Several restrictions apply!

G and L should be rectangular, in
general,;

G should be consistent

Fp =d ——> Kd=p

Results at internal points: no integral statement actually required
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Spectral properties for the hybrid BEM

For a finite domain:

P Is the orthogonal projector onto the PJ_ I P
) space of rigid body displacements and T

Then, HPW — 0 — HTPV — 0 == Definition of PV

For consistency, F*PV p— O
w K=H(F+P) H = Kd=p

Results at internal points: no integral statement actually required!
&

P solved from either F*p>x< — Hd o HTp>l< =P with PVp>x< = ()

*

*_ * * 7 * . *
and u, =u,, pm+ci O-ij_gijm P
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Some applications already implemented

« 2D and 3D potential and elasticity problems
« 2D and 3D acoustics

e 2D general time-dependent problems (in the
frequency domain):
* Advanced mode superposition analysis
* Use of numerical inverse transforms

o 2D sensitivity analysis
o 2D FGM-analysis for potential problems

o 2D fracture-mechanics analysis — evaluation of stress
Intensity factors

« Axysimmetric fullspace and halfspace elastostatics
e 2D (and 3D) gradient elasticity analysis

NSF_BEM_workshop: BEM research and new developments in Brazil



Example of application of non-singular fundamental solutions: two dimensional

transient heat conduction in a homogeneous square plate

Va
u(t) — 1 (1’1) 0.875 @
(0,1) 0.750
u(®)=0 u(x,»,0)=0 u(t) =1
0.125 h
>
(0,0) u(®)=0 (1,0) X | . R . —
k=1 Conductivity Distorced 4x4 mesh

c=1 Specific heat



Temperature results along the edge x = 0 for several time instants

1
t=0.625
0'8 1 t:la425
E 1= 0.325
=
«~ 0.6 - : i
© o Classical modal analysis.
| - t-,:".- "
Y Q?;fv . Serendipity elements.
g 04 1 u:" & Quadratic elements.
Q it
- of «
0 - Hybrid formulation
Analytical 3 mass matrices.
. (M=1)
0 - (m=3)
0 0.2 0.4 0.6 0.8 1

Co-ordinate x



Westergaard’s Stress Function as a Fundamental Solution

- Example 8 — inclined edge crack in a rectangular plate

4.50 o N .
§ 3.50
o :
& « 15 R
L . .
- < >
§ 2.50 Pl SRY3 | —e— KI - Numeric
% 10 < L, =1 —a— KII - Numeric
- —a— Kl - Analytic
$ 150 ] — i
s —x— KII - Analytic
n
25
0.50
3 4 5 6 7 8 9 10 11 12 13 14 15
-0.50
S S — e— — e S S S »
-1.50

Number of Elements Along the Crack



Westergaard’s Stress Function as a Fundamental Solution

Example 3 — semicircular crack in an infinite continuum

15 -
13- X
1,1 -
o —S - —s a
09 S . —— ————————— - — —9
2 1
o _
‘g 0.7 - —+—KI-Ratio 1.0
P —a—KIl - Ratio 1.0
205 - KI- Analytical
[¢D])
c - — — — —KII- Analytical
0 0.3 - — ——%— KI - Ratio 1.06
[¢b])
E/:) e —e— KIl - Ratio 1.06
0,1 -
-0,10 30 40 50 60 70 80 90 100
Number of elements
03 - — — 9% X
_0,5 _



Westergaard’s Stress Function as a Fundamental Solution

Modeling a curved crack

Previous development:
superposition of elipsis

Current development:
Superposition of
halfcracks

Inspired by:

Tada, H., Ernst, H. A., Paris, P. C. (1993), Westergaard stress functions for displacement-
prescribed crack problems — I, Int. Journal of Fracture, Vol. 61, pp 39-53



Westergaard’s Stress Function as a Fundamental Solution




Westergaard’s Stress Function as a Fundamental Solution

U potential along the line segment A-B due to an external source

-0.43

-0.44 ‘\
F

-0.45 \ o
-0.46

-0.47

- ~
\1/

U potential

-0.5
Analityc
-0.51
----- numeric
-0.52
0 5 10 15 20 25 30 35 40 45 50

Number of pointalong the line dashed A-B




Westergaard’s Stress Function as a Fundamental Solution

gx gradient

0.010

0.009

0.008

0.007

0.006

0.005

26
gx gradient along the line segment A-B due to an external source /\

Analityc

----- numeric

T T T T T T T T T

5 10 15 20 25 30 35 40 45
Number of pointalong the line dashed A-B

50




Westergaard’s Stress Function as a Fundamental Solution

Stress intensity factors in terms of p* and J integral - node A

1.10
—————————————————— -4
1.05
©
S 1 (O
T 1.00 - X
g
X 095 - )
o Pttt
g 0.90 — 4y bR | ——Analytic | ]
S - + —from p*1 1.0 05
- i I A B
I B s il a | ==%=-fromJ | :
Dt R EEE
0.80 T T T T 1
0 20 40 60 80 100

Number of elements along the crack



Westergaard’s Stress Function as a Fundamental Solution

Kl numeric / Kl analytic

1.10

1.05

1.00 ==ttt

0.95

0.90

0.85

0.80

Stress intensity factors in terms of p* and J integral - node B

- .- o= -
- - -
P
- -

-
-

x’ q:

W,
¥f ) An- . n '
11_ ‘ ) b 20.2 | =—+—Analytic |
\ Ans | Ani ¢  an : 1.0 05
‘ 02 N " B H -« =from p*n —ady %
& . e A B
'T a : ¢ T | -=%--fromJ | j

PEEEEEEL L

ANNNRRRRR|

0 20

40 60
Number of elements along the crack

80 100



Westergaard’s Stress Function as a Fundamental Solution

1.5

1.3

1.1

Gradient qy

0.5

0.3

0.1

-0.1

Gradient qy along the line segment y=0.20

AN

\\

Analytic

— =3 Elements

7 Elements

— — 19 Elements

- - = 49 Elements

99 Elements

...................

...................

-0.5

0.5

Points along the dashed line



EXAMPLE: gradient g, along a line segment

Analytic
0.20 -
— 48 elements
0.15 - — 76 elements
S 14Z (0.04,0.67) _2(0.43,1)
0.10 -
(0,0.71) Source
Q%?, 0.6)
0.05 - (0.86, 0.43)
0.00 . KZ)
4 14 (0.2, 0) (0.63,0)

-0.05 \ \ T \ ‘ ‘ ‘ |

0 0.1 0.2 0.3 04 05 0.6 0.7 0.8

R. A. P. Chaves, “The Hybrid Simplified Boundary Element Method Applied to Time-Dependent Problems”, Ph.D. Thesis, PUC-RIo,

Brazil, 2003



Numerical example

Non-convex axisymmetric volume with multiply connected surfaces

“ 4 6.0 4.4
2 : T 2
. — Analytical 8 4
z) ) L |
- &} o BEM i 6 S
F s SHBEM £ e 4
g9 ) #
g o 8 £l 5
R P A CR .
— 'ﬂ = ]
= f . ju éé
20 e"q_ 3.6 —
: p
.EHJ 6U
CI.U T | T | T I T I T | T | T 3_2. T | T | T | T | T | T | T
10 20 30 40 50 60 70 10 20 30 40 50 60 70
A= (1.0,-20) A= (2.0,0.0) “DEF . .
B= (4.0, 2.0) B'= (5.0, 8.0) Nodes alﬁng thC houndar_ﬁf ABCDEFA H{Jdﬂb d]{‘.ll'lg t]'ﬂ.‘: bUU‘J‘lddI}’ f-"tHCDFFA
C= (80, 20) C= (20, 80) ) ]
D= (80, 500 D= (6.0, 3.0) e Unitary ring sources (10, -5)
E= (4.0, 9.0)
F= (1.0, 8.0)

Athens, July 2009

BETEQ 2009 - International Conference on Boundary Element Techniques



An expedite formulation of the BEM

Some numerical assessments for 2D potential problems

In((x—x)? +(r—)?)
Az

Irregularly shaped structure with 124 nodes sol_9: u(x,y)=

FA
P G0

o2, 58

30
| Numerical and analytical values
of potentials at internal points

:] 535

20 ol T =%

] 17 —_—

‘_. 153 T
K4 *
3 V p — O
o

10 ]

*_ * * 7 ‘“
ui _uimpm+ )

0- """TI""I"'"I"T"'T"I"' ,
-5 0 5 10 15 20 25 w 2 » “
ICCES 2010 — AN EXPEDITE FORMULATION OF THE BOUNDARY ELEMENT METHOD




An expedite formulation of the BEM

Some numerical assessments for 2D potential problems

Irregularly shaped structure with 124 nodes

FA
P G0

o2, 58

30
o ’ _ 2 . 2
sol 9: u(x,y):ln((x x) +(—n) )
A
0.004-
4
]
20 b
46 o005
45
K
h . . .
13 —
10 P .

Numerical and analytical values
of gradients at internal points

0001+

0_ T .. LI B B N N B B B B B S B B B B B R R 1' — T 1 T T y ! v T .
10 P 30 410
-5 0 5 10 15 20 25

ICCES 2010 — AN EXPEDITE FORMULATION OF THE BOUNDARY ELEMENT METHOD




Contents of this presentation

« Variationally-based, hybrid boundary and finite elements
m=m) « Developments for time-dependent problems

 Developments in gradient elasticity

« Dislocation-based formulations (for fracture mechanics)

 From the collocation (conventional of hybrid) boundary
element method to a meshless formulation

Or: The expedite boundary element method
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GENERALIZED
HELLINGER-REISSNER POTENTIAL

j;; [_ jg(5%’j_,05iii XMZ- —ﬁi)a’Q +J;.5Gy.77j(ui —i?l.)dl“+
T ;lgﬁi(aﬁ’j+];i — P, )dQ_jréﬁi(Uynj _f_,-)dr)dt =0

e

81/71- — O along F

u

&,{, — O at both time interval extremities t, and t,
l



Literature Review — part | coninueq)

Przemieniecki, J.S. (1968). Theory of Matrix Structural Analysis,

Dover Publications, New York
(displacement-based free vibration analysis — truss and beam):

K=K,-0oM,-0'M,-K,)-0’(M, -K,)+ O0(c®)

Voss, H., 1987, A New Justification of Finite Dynamic Element Gupta, Paz: several other displacement-based elements
Methods, Numerical Treatment of Eigenvalue Problems, Vol. 4, for plane-state problems. Coined finite dynamic elements,
232-242, eds. J. Albrecht, L. Collatz, W. Velte, W. Wunderlich, although they only have been applied to free vibration

Int. Series on Num. Maths. 83, Birkhauser Verlag, Stuttgart analysis (better, then: finite harmonic elements!)

//

)—a)4(M2 —K4)—a)6(M4 _K6)+ O(0°)

Directly based on Pian and Przemieniecki: General , consistent finite and boundary dynamic
element families: acoustics, free vibration, transient problems via an advanced modal analysis.

/\

— .~
Dumont, N. A. & Oliveira, R., (1993) 1997. The Dumont, N. A. & Oliveira, R., 2001. From frequency-
exact dynamic formulation of the hybrid dependent mass and stiffness matrices to the
boundary element method, Procs. XVIII dynamic response of elastic systems. Int. J. Sol.

CILAMCE, Brasilia, 29 - 31 October, 357-364 Struct., 38, 10-13, 1813-1830




Literature Review — part I

Lancaster, P., 2002. Lambda-Matrices & Vibrating Systems, Dover Publications

(from 1966)
/
—

(F, + o'F, +®'F, +..)p" =(H, + o’H, + o*H, +...)d
(H, +o’H, +o‘H, +..)p =p

Dumont, N. A.: “On the Inverse of Generalized Lambda Matrices with Singular Leading Term”, IINME, Vol 66(4),
571-603, 2006

V- (K,— o™, —o'M, +..)d = p(®)

(Przemieniecki) {H vV =0 F,V =0 H'F 'H = K}

Nonlinear eigenvalue problem:

Dumont, N. A.: “On the solution of generalized non-linear complex-symmetric eigenvalue problems”, IINME, Vol 71, 1534-1568,
2007

Sleipjen, G. L. G., Van der Horst, H. A., 1996, A Jacobi-Davidson iteration method for linear eigenvalue problems,
SIAM J. Matrix Anal. Appl., 17, 401-425

Arbenz, P, Hochstenbach, M. E., 2004. A Jacobi-Davidson method for solving complex-symmetric eigenvalue
problems, SIAM J. Sci. Comput. 25, 5, 1655-1673




Problems with viscous damping

n
' ' : . 2j-1 2j
Nonlinear eigenproblem: Koq)—Z(le(I)Q j +Mj(I)Q J): 0
j=1
'K, 0 0 0 0 |
0 M, iC, M, --- M, | Dy, Dy, Dy, |
Qfﬁ:ﬂfﬁiﬂ 0 iC, M, iC, 0| By By o Dy,
' 0 M, iC, ° 0 : ; :
: : (Dn—l,O q)n—l,l (Dn—l,n—l_
0 M, 0 0 0 |
[iC, M, iC, M, M, |
M, iC, M, iC, - 0 [ @y @y .. @D, 0 .. 0]
B iC, M, iC, 0 D, o, - O, 010 Q .. 0 o
M, iC, 0| : S SRR
: . . . . . _(Dn—l,O (Dn—l,l (Dn—l,n—l__o o - Qn—l_
™M, 0 0 0 - 0|
n [ 2j ' 2j '
_ Q?0"iC, 00 + ) O 0™ 0QY T | =1
Orthogonality j=1\ k=2 P
properties: n (2)=2 piiy X )
QKD+ | Y QDNLC,0QY T+ > Q0™ 00V |=Q
J=1\_k=1 k=1



2i
Equation in the time domain K. d- Z( 1) M, 8 d —p(l‘)
2 4 °q
€. g. {K d+M,—- o'd -M, od —+ M, 8_ P(f)}
"ot * ot > ot®

(Set of coupled, higher-order differential equations)

[fmm (K(w) - 0*M() Jp = 0}

Mode superposition : d — CDT] (15)

an+i7' = CDTp (17)

(Set of uncoupled, second-order differential equations)



Frequency-domain formulation

O-Ji’j+bi +/0k2ui — O where k2 = a)z + Zlé/a)

Solution: (Laplace/Fourier transforms or)

Advanced mode-superposition technique

Structural dynamics

Q*(n-n’)+ii-i =@ (p-p°*)

Diffusion-type problems
Qn-n')+a-1" =" (p-p’)

Structural dynamics with viscous damping




Initial displacements and velocities

/

N = [(I)eTlKo(Dez TICDeTlKod

T
L nrig — q)ringd

In case of viscous damping:

d _ U D, N
id ®Q D,Q, [N,

- O/K,®, @K@, |[n,] [®'K,d
DK, 0,0 ©K®,Q,|n,] [i®K,d




EVALUATION OF RESULTS AT INTERNAL POINTS

p'(0) =S(@)|d(@)-d"(@)] Wi S(w)=F (o) H(o)

l replaced by

-1
p' (@)~ 0”8 [d(w)-d"(@)] Wi sz"si{Zw”FJ 20" H
P i=0 i=0 i=0

l

p'(r)= Z S,00% (n-7’)
i=0



EVALUATION OF RESULTS AT INTERNAL POINTS

p'(1)=Y $,00%(n—n’) u(f)=2 > ojup =) uQp’
i=0 i=0

j=0 i=0

w0 =YY us, o0 (n-1')

for n=3 i=0 =0

u(t) = [u;S,®@ + (u;S, +u;S, ) @Q? + (u;S, +u’S, +uiS, ) PQ* +
+ (uj;S3 +u;S, +u.S, + uZSO) (I)QG] n

[ S is required for p>x< — F_lHd = Sd J
I



Example 1: Initial velocity — Displacement at point A

0.0025 - §\ E = 210,000 Mpa p=7850kgm® |

\

§ S

§ (10,9 vp=-25mis |~
0.0005 | |N\ A | nalytic

30 m }

\ —— 34 elemernts
-0.0015 -
-0.0035 - k\
-0.0055



Transient Analysis — Example 2: Gravitational force

59 equally spaced,

% ' 35m , linear boundary elements
| i
§ : lg = -9.81 m/s? :
S E | L Z”: 4g sin(k,, x) [1-cos(o, 7]
e (20, 30) ! ~ (2n-1) 1 ®°
w! o | n
¥ E
- '
: N ' [ o, =K,
= | 7
(0, 15), J
: K (Zn 1)
. 2L
5.0
AN

v=0 (can be solved in the frame of the theory of potential)



Example 2: Gravitational force — Displacement at point A
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Example 2: Gravitational force — Displacements along a line segment

t=0.004
-0.00011 -
000021 - \
-0.00031 -
é“ii—-""-ss-n? """ E“
-000041 N Zo; : lg =081 m/SZ : ‘ t_0.012
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Plane frame with 6 members and 12 d.o.f.

SR P()

2P(1)

(Weaver, W., Jr., and Johnston, P. R.,
® 1987. Structural Dynamics by Finite
Elements, Prentice-Hall Inc., Englewood
6 Cliffs, New Jersey )
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Plane frame with 6 members and 12 d.o.f.

le+077
] s
z, ’:3
—_ ] . a4
E 0.5 : v
- E ..--‘""—/ ’_z"::ﬁ
g L
=] 0.17 f’xi;;::::;f
% le+06 7 A
J — b -
w 7 - ‘ff
g ] & g
E 0.05 1 = /""’-’;';;;--'
o ] E ;':;5”
= £
B /7,
0o ot = f
_ 0.02 E g
1 le+05 i
4 : L
-0.05+ i
4 [
4 F-
&
] /
1 J
-0.11 /
1 r
/
£
] /
-0.15- 1653/
] 2 4 6 8 10 12
mumeracdo dos autovalores
Displacement results with 1 and 4 mass matrices, as Eigenvalues obtained for the problem with 1, 2, 3 and 4
compared with values given by Weaver and Johnston. mass matrices.
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Contents of this presentation

« Variationally-based, hybrid boundary and finite elements
« Developments for time-dependent problems

mmm) » Developments in gradient elasticity
« Dislocation-based formulations (for fracture mechanics)

* From the collocation (conventional or hybrid) boundary
element method to a meshless formulation

Or: The expedite boundary element method
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Conclusions

2
O,;=1;—8 T Totalstress

e The hybrid BEM / FEM (a two-field formulation) is a natural variational tool to deal with
gradient elasticity

« Singular and nonsingular fundamental solutions were either redeveloped for BEM or originally
developed for FEM gradient elasticity implementations

e General families of finite elements were obtained

o Extension to time-dependent problems in the frequency domain is straightforward
(in progress — already done for truss and beam elements)

« Simple implementations for truss and beam elements: was a fruitful apprenticeship
(disagreement with some results in the literature - symmetry and representation of constant
strain state)

 Treatment of the normal displacement gradient on I' is different from Mindlin’s
proposition (our results still remain to be validated)

*  Numerical examples for 2D problems are being implemented
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Conclusions ¢
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Treatment of the normal displacement gradient on I' is different from Mindlin’s
proposition (our results still remain to be validated)

Numerical examples for 2D problems are being implemented:
e Orthogonality to rigid body displacements: OK!
e  Symmetry of the flexibility matrix F*: OK!
» Patch tests for linear displacements fields: OK!

« Patch tests for non-linear displacement fields: convergence still questionable.
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Contents of this presentation

« Variationally-based, hybrid boundary and finite elements
« Developments for time-dependent problems
 Developments in gradient elasticity

« Dislocation-based formulations (for fracture mechanics)

mmm) » From the collocation (conventional or hybrid) boundary
element method to a meshless formulation

Or: The expedite boundary element method
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Conclusions

Expedite formulation of the boundary element method (in progress)

* Implementation extremely advantageous for:
* large problems
e problems with complicated fundamental solutions (time-dependent,
axisymmetric, for gradient elasticity, etc)
* Numerical accuracy still under investigation, but comparable to the
conventional BEM
eEvaluation of results at internal points requires no further integrations
However, results close to the boundary require the knowledge of the null
space V (which may be obtained via Gauss-Seidel iteration in principle
with a simple pre-conditioning of H')

Work in progress

eImplementation in Fortran for large 2D potential and elasticity
problems in the frequency domain
eImplementation for strain gradient elasticity

ICCES 2010 — AN EXPEDITE FORMULATION OF THE BOUNDARY ELEMENT METHOD



