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BEM in elastodynamics

Boundary Element Methods in elastodynamics have a long history.

Kupradze’s work
◮ Theoretical studies date back to 1930s(?)
◮ Kupradze’s functional equation method (collocate BIEs in the exterior

of the domain under consideration)

More recently
◮ Early developments by Banaugh, Goldsmith (1963,4), Doyle(1966)
◮ Rizzo, Cruse (1968)
◮ Subsequent developments by many others.

BEM is suitable in elastodynamics because

It can deal with exterior problems
◮ No reflection from artificial boundaries
◮ Hence no need for special techniques for no reflection
◮ High accuracy

Others
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Applications

NDE

Earthquake engineering

Others

But,

Ordinary BEM cannot be applied to large problems because it scales
as O(N2).

This problem was (almost) solved by fast BEMs such as FMBEM.

FMM in Helmholtz was proposed by Rokhlin (1990) — diagonal forms

Subsequent developments in EM community are impressive (Chew is
the biggest contributor).

FMM in elastodynamics
◮ Chew’s group (1997), Fukui(1998), Fujiwara(1998, 2000),

Yoshida(2001),.....
◮ To be discussed later.
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Formulation

n

D0

∂D1

∂D2

D

Our problem is to solve

µ∆ui + (λ + µ)uj ,ij + ρω2ui = 0 in D

subject to

ui = u0
i on ∂D1

Tui := Cijkluk,lnj = t0
i on ∂D2

radiation condition for ui as r = |x | → ∞

ui : displacement, (λ, µ): the Lamé constants,

Cijkl = λδijδkl + µ(δikδjl + δilδjk),

ρ: density, ω: frequency, u0
i and t0

i : given data on ∂D1 and ∂D2.
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The solution to this problem is well-known to have the following integral
representation:

ui (x) =

∫

∂D

Γij(x − y)tj(y)dSy −

∫

∂D

ΓIij(x , y)uj (y)dSy , x ∈ D

where Γ is the fundamental solution for elastodynamics given by:

Γij(x) =
1

µ

(

GT (r)δij +
1

k2
T

∂

∂xi

∂

∂xj

(GT (r) − GL(r))

)

GL,T =
e ikL,T r

4πr
, kL =

√

ρ

λ + 2µ
ω, kT =

√

ρ

µ
ω

ΓIij is the double layer kernel defined by

ΓIij(x , y) =
∂

∂yl

Γik(x − y)Cklmjnm(y)

and ti = Cijkluk,lnj is the traction.
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On the boundary:

ui(x)

2
=

∫

∂D

Γij(x − y)tj(y)dSy −

∫

∂D

ΓIij(x , y)uj (y)dSy , x ∈ ∂D

This equation and the boundary conditions give the boundary integral
equation for elastodynamics.

Conventional approaches lead to O(N2) numerical methods.

Fast methods such as FMM are needed in large scale problems.
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FMMs for elastodynamics in frequency domain

Oo

Os

Ss

X

Y

∂D

We assume x ∈ Oo and consider evaluating

Vi(x) =

∫

Ss

Γij(x − y)tj(y)dSy −

∫

Ss

ΓIij(x , y)uj (y)dSy , x ∈ ∂D

Key observation:

Γij(x) =
1

µk2
T

(

eipr
∂

∂xp
ejqr

∂

∂yq
GT (r) +

∂

∂xi

∂

∂yj
GL(r)

)

(1)

holds modulo Dirac’s delta.
With this observation, together with the FMM tools for Helmholtz
equation, one can formulate FMM for elastodynamics.
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Use FMM tools for Helmholtz in GT ,L(r):

Γij(x) =
1

µk2
T

(

eipr
∂

∂xp
ejqr

∂

∂yq
GT (r) +

∂

∂xi

∂

∂yj
GL(r)

)

Low frequency FMM

G (x − y) =
ik

4π

∑

n,m

∑

n′,m′

(−1)mI−m
n (

−→
Yy)

(2n + 1)(2n′ + 1)Ĉm,m′

n,n′ (
−→
YX )Im′

n′ (
−→
Xx)

Im
n (

−→
Ox) = jn(k|

−→
Ox |)Y m

n

(−→
Ox/|

−→
Ox |
)

,

Diagonal form

G (x− y) =
ik

(4π)2

∫

|k̂|=1
e ik·(x−X)T (k̂,

−→
YX )e−ik·(y−Y)dS ,

T (k̂,
−→
YX ) =

∞
∑

n=0

in(2n + 1)Pn

(

k̂ ·
−→
YX/|

−→
YX |

)

h
(1)
n

(

k|
−→
YX |

)

.

Pn: Legendre polynomial of the order n
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FMMs in wave problems

Low frequency FMM
◮ series expansion of the kernel function
◮ good accuracy for all frequencies
◮ scales O(N) in low frequency, but slows down in high frequency

diagonal form
◮ plane wave expansion of the kernel function
◮ good accuracy for high frequency but breaks down in low frequency
◮ scales O(N log(2) N)

wideband FMM
◮ use low freq FMM for smaller cells and diagonal forms for larger cells
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Diagonal forms in elastodynamics
For example, Diagonal forms for elastodynamics can be obtained as
follows:

Vi(x) =

∫

Ss

Γij(x − y)tj(y)dSy −

∫

Ss

ΓIij(x , y)uj (y)dSy

= −
1

(4π)2

∫

|k̂|=1

(

k2
L k̂ie

ikLk̂·(x−X)L̃L(k̂,X )

+k2
T eipr k̂pe ikT k̂·(x−X)L̃T

r (k̂,X )
)

dSk̂

L̃L(k̂,X ), L̃T
r (k̂,X ): coefficients of the local expansion

L̃L(k̂,X ) = T (k̂, kL,
−→
YX )M̃L(k̂,Y )

L̃T
r (k̂,X ) = T (k̂, kT ,

−→
YX )M̃T

r (k̂,Y ) (M2L)

T (k̂, kL,T ,
−→
YX ) =

∞
∑

n=0

in(2n + 1)Pn

(

k̂ ·

−→
YX

|
−→
YX |

)

h
(1)
n

(

kL,T |
−→
YX |

)

M̃L(k̂,Y ) and M̃T
r (k̂,Y ) multipole moments for the diagonal forms.
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Multipole moments for the diagonal forms are defined by

M̃L(k̂,Y ) = −ikL

∫

Ss

e−ikLk̂·(y−Y)

(

k̂i ti (y) + iui(y)kL(λni (y) + 2µk̂i k̂jnj(y))
)

dSy

M̃T
r (k̂,Y ) = −ikT

∫

Ss

e−ikT k̂·(y−Y)

(

eijr k̂j ti (y) + iµui(y)kT k̂j (eijr k̂l + eljr k̂i )nl(y)
)

dSy
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The shift formulae for M̃ and L̃ take the following forms:

M̃L(k̂,Y1) = M̃L(k̂,Y0)e
−ikLk̂·

−−−→
Y1Y0

M̃T
r (k̂,Y1) = M̃T

r (k̂,Y0)e
−ikT k̂·

−−−→
Y1Y0 (M2M)

L̃L(k̂,X1) = L̃L(k̂,X0)e
ikLk̂·

−−−→
X0X1

L̃T
r (k̂,X1) = L̃T

r (k̂,X0)e
ikT k̂·

−−−→
X0X1 (L2L)

Note that this formulation includes 4 moments for every combination of
(n,m).

The scalar moment M̃L corresponds to P wave

The vector moments M̃T represent S wave

in a natural manner.
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Low frequency FMM and Wideband FMM in

elastodynamics

Low frequency FMM can be formulated similarly.

LL
n′,m′(X ) =

∑

n,m

(2n + 1)Ĉm,m′

n,n′ (
−→
YX , kL)M

L
n,m(Y ) (M2L), etc.

Ĉ
m,m′

n,n′ (
−→
YX , kL) : coefficients

Wideband FMM needs conversions between the low frequency FMM
and diagonal form

M̃L(k̂,Y ) =
∞
∑

n=0

n
∑

m=−n

i−n(2n + 1)Y m
n (k̂)ML

n,m(Y ), etc.

So far we have not tried a wideband FMM in elastodynamics. Examples of
the use of such techniques are found in Maxwell’s equations (to be shown
later)
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Numerical examples
Low frequency FMM
The first example is taken from Yoshida’s thesis(2001) (9 years old).

Penny shaped crack subject to a plane incident P wave from below
whose stress magnitude is p0. Poisson’s ratio: 0.25.

Figure: Scattering by a penny shaped crack
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Figure: Total CPU time(sec) (kTa0 = 3.2)

Total CPU time (sec) vs the number of unknowns.
“Tdir ka=3.2”: CPU time for conventional BIEM,
“Tffm ka=3.2”: CPU time for FM-BIEM.
Machine: PC with DEC Alpha21264 (500MHz).
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Figure: Numerical result and analytical solution (kTa0 = 3.2)

Magnitudes of the crack opening displacement obtained with FMM
vs analytical solutions.
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Diagonal forms

Figure: Total CPU time(sec) (kTa0 = 5)

Taken from Yoshida et
al.(2001)

Single penny shaped
crack problem subject to
plane P wave. (wave
number: kT a0 = 5)

“crout”: conventional
BIEM,
“FMM-Wigner3j”: Low
frequency FMM,
“FMM-diag”: diagonal
form.

Machine: PC with DEC
Alpha21264 (600MHz).
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Figure: Real part of the crack opening
displacements (kTa0 = 3, 72,192DOF)

Infinite elastic body
which contains an array
of 4 × 4 × 4 penny
shaped cracks of the
same radius a0

Incident plane P wave
from below

The centres of cracks are
located regularly at the
interval of 4a0 in all the
coordinate directions

directions of the cracks
are taken at random.
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Bibliographical remarks
References on FMMs for elastodynamics are still scarce.

2D
◮ Chen et al.(1997) Chew’s group. Diagonal form. Many moments.
◮ Fukui (1998) Low frequency FMM for elastodynamics using Galerkin’s

vector. This formulation uses 4 types of moments.
◮ Fujiwara (1998) Low frequency FMM using 8 types of moments.

3D
◮ Fujiwara (2000) Diagonal form approach in terms of 12 components

of plane waves applied to low frequency problems related to earthquake.
◮ Yoshida et al.(2001a) (also available in English (Yoshida’s

thesis(2001)) Low frequency FMM for crack problems in 3D. 4
moments.

◮ Yoshida et al.(2001b) Diagonal form version. Immature error control.
◮ Chaillat et al.(2007,8) Diagonal forms
◮ Sanz et al.(2008) SPAI preconditioner
◮ Tong and Chew (2009) Use of Nyström’s method
◮ Chaillat et al.(2009) Multi-domain problems and applications to

seismological problems.
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Time domain
Time domain FMM in elastodynamics is a possibility.
We here present a few numerical examples.

1152 spherical holes (Otani and Nishimura (2004))
1,105,290 spatial DOF, 200 time steps
CPU time: 10H 47Min
Memory used: 152.8GB (19.1GB/process)Nishimura (Kyoto Univ.) Elastodynamics and Periodic FMM 3/9/2010 24 / 49



NDT application: laser ultrasonics

laser

interferometer

YAG laser

lens

200mm

50mm

10mm5mm
5mm

5mm

10mm
5mm

crack

MN
1

MF
1MF

2

MF
3

Specimen (Aluminium aloy)

rectangular surface crack
length=10mm, depth=5mm,
distance from the laser
spot=15mm

Energy of the pulse laser:
19mJ

48900DOF

134 time steps

solved with Fast BIEM

Yoshikawa et al.(2007)

Nishimura (Kyoto Univ.) Elastodynamics and Periodic FMM 3/9/2010 25 / 49



-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0 2e-06 4e-06 6e-06 8e-06 1e-05

time (sec)

ve
lo

ci
ty

(m
/s

ec
)

VN
1

vB
z

VN
1: Measured velocity at MN

1

vB
z : Computed velocity at MN

1 obtained with Fast BIEM
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Periodic FMM for Wave Problems

There are a number of interesting applications which are reduced to
periodic boundary value problems for wave problems.

Examples — Maxwell’s equations

Metamaterials
◮ Periodic structure with metalic inclusions
◮ The periodicity is much smaller than the wavelength.
◮ One may control the optical properties of the composite quite freely.
◮ Negative refractive index, Super-lens, Cloaking

super-lens
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Examples (cont.)

Photonic crystals
◮ Periodic structure of dielectric materials
◮ The periodicity is of the order of the wavelength of light
◮ Works as a waveguide.
◮ Interesting properties such as frequency selectivity, localised modes, etc.

item Optical devices
◮ digital camera

We have developped a 2-periodic FMM for Maxwell’s equations in 3D.
(Periodic in 2 directions. Scattering in the other direction.)
J. Comp. Phys. (2008), Waves in Random and Complex Media (2009)
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Numerical example — skin of worm

Maxwell’s equation in 3D

1

2
3

incident wave reflected wave 

transmitted wave 

1

2
3

periodic boundaryperiodic boundary

H=185nm
D D=165nm

L=225nm

k

E
H

incident wave

fibre

fibre

fibre

fibre

fibre

water

water

water

Modelled by Miyamoto and Kosaku (2002, 2005)

6 layers of glass fibres in water

Diameter of the fibre: 165nm
distance between fibre centres in the x1 direction: 185nm,
Period length: L2 = L3 = 225mn

Incident plane wave
◮ Incident wave length: 475nm
◮ Incident angle from x2 axis: varies around 30◦.
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Skin of worm — energy transmittance

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 0.5  1  1.5  2  2.5  3  3.5

50403020

E
ne

rg
y

beta2

incident angle

Energy transmittance
Total energy

http://nkiso.u-tokai.ac.jp/form/event/ssf/sympo54/struct color/struct color.htm

Wideband FMM, 107,568 DOF
Agrees with experiments.
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It is of interest to investigate elastic counterparts of photonic crystals and
metamaterials.

Phononic crystals (775 papers found in Scopus)
◮ Bandgap structures
◮ Can we guide elastic waves as freely as we wish?

Acoustic metamaterials (64 papers found in Scopus)
◮ Negative density
◮ Negative modulus of elasticity
◮ Negative refractive index
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principle of metamaterials

How can you measure mass? Shake it!

Mẍ = f (x = Xe−iωt , f = Fe−iωt)

M = −
F

ω2X

M

f (t)

x(t)
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If you have internal structures

Mẍ = f + ky

m(ẍ + ÿ) = −ky

x = Xe−iωt , y = Ye−iωt ,

f = Fe−iωt

M

m
k

f (t)

x(t)

y(t)

One will conclude M = − F
ω2X

if one does not know the inside of the box.

−
F

ω2X
= M +

m

1 −

(

ω

ω0

)2
, ω0 =

√

k

m
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negative mass

apparent mass

M + m

M

ω
ω0

One may utilise the resonance to control the apparent material
properties in metamaterials with internal structure.

negative mass and negative elastic modulus may lead to propagating
waves with c =

√

µ/ρ.
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Periodic FMM in Elastodynamics
governing eq.

µmui,jj + (λm + µm)uj,ij + ρmω2ui = 0 x ∈ Dm

B.C.

displacement ui and traction ti

are continuous across ∂Dk ∩ ∂Dm

Radiation condition for ui − uI

i as r = |x| → ∞

periodic B.C.

ui (x1,
ζ

2
, x3) = eiβ2ui (x1,−

ζ

2
, x3)

∂ui

∂x2
(x1,

ζ

2
, x3) = eiβ2

∂ui

∂x2
(x1,−

ζ

2
, x3)

ui (x1, x2,
ζ

2
) = eiβ3ui (x1, x2,−

ζ

2
)

∂ui

∂x3
(x1, x2,

ζ

2
) = eiβ3

∂ui

∂x3
(x1, x2,−

ζ

2
)

where βi = kL,Tpi ζ, kL,Tζ 6= 2nπ ± βi
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BIE for periodic B.V.P
Boundary Integral Equation for periodic B.V.P (ordinary BIE for inclusions)

1

2

[

ui (x) + αti (x)
]

=
[

uI
i + αt I

i

]

+ p.v.

∫

∂D

[

ΓP
ij (x − y) + αTikΓ

P
kj(x − y)

]

tj(y)dSy

− p.f.

∫

∂D

[

ΓP
Iij(x − y) + αTikΓ

P
Ikj (x − y)

]

uj(y)dSy Burton-Miller

periodic Green’s function

ΓP
ij (x − y) = lim

R→∞

∑

ω∈L(R)

Γij(x − y − ω)e iβ·ω

L(R) = {(0, ω2, ω3)|ω2 = pζ, ω3 = qζ, |p|, |q| ≤ R , p, q ∈ Z}

fundamental solution for 3D elastodynamics

Γij(x − y) =
1

µ

[

e ikT|x−y|

4π|x − y|
δij +

1

k2
T

∂2

∂xi∂xj

(

e ikT|x−y|

4π|x − y|
−

e ikL|x−y|

4π|x − y|

)]
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Algorithm for periodic FMM

unit cell

level 1

level 2

level 3

 replica cells

M

M M MM
L

-2iβe 3iβ2iβ
ee

2

1

Periodised M2L
replica cells

L

level 0

M2LM2L

M2L
M2L
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M2L in Periodic FMM (low freq. FMM)

unit cell  
replica cells

M M
H

-2iβe
2

1

M2L
replica cells

level 0

M2L

Me Me2iβ 3iβ

mutipole moments of the replica cell(ω)

Mn,m(ω) = Mn,m(O)eiβ·ω

M2L formula

Ln′,m′(O) =
∑

n

∑

m

(2n + 1)Ĉm,m′

n,n′ (−ω)Mn,m(k̂,O)eiβ·ω

Periodisation

Ln′,m′(O) =
∑

n

∑

m

(2n + 1)
∑

ω∈L′

(

Ĉ
m,m′

n,n′ (−ω)eiβ·ω
)

Mn,m(O)
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periodised M2L

We compute the influence from far replica cells by the ‘periodised M2L’
given by:

LL

n,m(O) =

∞
∑

n

n
∑

m=−n

(2n + 1)

(

∑

ω∈L′

Ĉ
m′,m
n′,n (−ω, kL)eiβ·ω

)

ML

n′,m′(O)

=

∞
∑

n

n
∑

m=−n

(2n + 1)ĈPm′,m
n′,n (kL)ML

n′,m′(O)

LT

r ;n,m(O) =

∞
∑

n

n
∑

m=−n

(2n + 1)ĈPm′,m
n′,n (kT)MT

r ;n′,m′(O)

Evaluation of ĈPm′,m
n′,n is reduced to the computation of the lattice

sum
∑

ω∈L′ h
(1)
n (|ω|kL,T)Y m

n

(

− ω
|ω|

)

eiβ·ω, which is extremely slow to
converge.

We use Fourier analysis to compute the lattice sums.
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numerical examples

unit

cell

scattering of plane waves by a doubly periodic
layer of elastic spheres (Isakari and Nishimura
(2010))

collocation method, piecewise constant element
(18000 elements, 108,000DOF)

Flexible GMRES (criterion of convergence:
10−5)

preconditioner: part of matrix computed
directly in the FMM algorithm
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numerical examples: scattering by holes

Incident angle is θ = 0.0◦, P-wave incidence.
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numerical examples: scattering by holes

The far field patterns in the transmission side for kTζs slightly smaller and
larger than kTζ = 2π and 4π differ considerably. (Rayleigh’s anomaly)
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numerical examples: scattering by elastic inclusions

We have computed reflection and transmission coefficients in the
frequency range of ω = 0.0 ∼ 8.2

Incident angle is θ = 0.0◦, P-wave incidence.
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numerical examples: scattering by elastic inclusions
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Agrees with results in reference.
Anomalies of resonance type are seen.
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Conclusion

Use of FMM in elastodynamics is effective in frequency domain.

Time domain FMM in elastodynamics is a possibility.

Periodic FMM is extended to elastodynamics.

FMM in elastodynamics deserves more attention!
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