

BEM for solving problems governed by Helmholtz equations

An overview

Martin Schanz

Institute of Applied Mechanics, Graz University of Technology

NSF Workshop on the Emerging Applications and Future Directions of the Boundary Element Method September 3, 2010

2 Boundary element formulation

3 Fast BEM

4 Challenges in the development of BEM

PDE for acoustics

$$\nabla^{2} \rho(\mathbf{x}, t) - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \rho(\mathbf{x}, t) = 0 \qquad (\mathbf{x}, t) \in \Omega \times (0, \infty)$$

$$p(\mathbf{y}, t) = g_{D}(\mathbf{y}, t) \qquad (\mathbf{y}, t) \in \Gamma_{D} \times (0, \infty)$$

$$q(\mathbf{y}, t) = (\mathcal{T} \rho)(\mathbf{y}, t) = \frac{\partial \rho}{\partial n} = g_{N}(\mathbf{y}, t) \qquad (\mathbf{y}, t) \in \Gamma_{N} \times (0, \infty)$$

$$p(\mathbf{x}, 0) = \frac{\partial \rho}{\partial t} = 0 \qquad (\mathbf{x}, t) \in \Omega \times (0)$$

in the domain Ω with boundary $\Gamma = \Gamma_D \cup \Gamma_N$, and the speed of sound *c* Viscous fluid

$$\nabla^2 \rho(\mathbf{x},t) - \frac{1}{c^2} \frac{\partial^2 \rho}{\partial t^2}(\mathbf{x},t) - \frac{R}{\rho c^2} \frac{\partial \rho}{\partial t}(\mathbf{x},t) = 0$$

with the flow resistance R

Wave number

$$k = \frac{\omega}{c}$$
 for viscous fluids $\bar{k} = k \left(1 + i \frac{R}{2\rho\omega} \right) = k + i\mu$

with the density ρ and the absorption coefficient μ

Martin Schanz	BEM: Helmholtz equations	3 / 33

Fundamental solutions

Ideal, compressible fluid

$$G(\mathbf{x},t|\mathbf{y},\tau)=\frac{1}{4\pi r}\delta\left(t-\tau-\frac{r}{c}\right)$$

with $r = |\mathbf{x} - \mathbf{y}|$ and the Dirac distribution $\delta(x)$

Viscous fluid

$$G(\mathbf{x},t|\mathbf{y},\tau) = \frac{e^{\alpha \frac{t'}{2}}}{4\pi r} \left[\delta\left(t' - \frac{r}{c}\right) + \frac{\alpha r}{2\sqrt{(t')^2 - \frac{r^2}{c^2}}} I_1\left(\frac{\alpha}{2}\sqrt{(t')^2 - \frac{r^2}{c^2}}\right) H\left(t' - \frac{r}{c}\right) \right]$$

with the modified Bessel function of first kind $I_1(x)$ and $t' = t - \tau$ Half space solution

for
$$q = 0$$
: $G^{H}(\mathbf{x}, t | \mathbf{y}, \tau) = G(\mathbf{x}, t | \mathbf{y}, \tau) + G(\mathbf{x}', t | \mathbf{y}, \tau)$
for $p = 0$: $G^{H}(\mathbf{x}, t | \mathbf{y}, \tau) = G(\mathbf{x}, t | \mathbf{y}, \tau) - G(\mathbf{x}', t | \mathbf{y}, \tau)$

with the *mirror* point \mathbf{x}'

Laplace/Fourier domain

$$\hat{G}(\mathbf{x},\mathbf{y}) = \frac{1}{4\pi r} e^{kr}$$
 or $\bar{G}(\mathbf{x},\mathbf{y}) = \frac{1}{4\pi r} e^{-ikr}$

BEM: Helmholtz equations

Integral equations

Representation formula in time domain

$$\rho(\mathbf{x},t) = \int_0^t \int_{\Gamma} \left[G(\mathbf{x} - \mathbf{y}, t - \tau) q(\mathbf{y}, \tau) - \frac{\partial G}{\partial \mathbf{n}} (\mathbf{x} - \mathbf{y}, t - \tau) \rho(\mathbf{y}, \tau) \right] \mathrm{d}\Gamma_y \mathrm{d}\tau$$

Boundary integral equation in time domain

$$4\pi c(\mathbf{x}) p(\mathbf{x}, t) = \int_{\Gamma} q\left(\mathbf{y}, t - \frac{r}{c}\right) \frac{1}{r} d\Gamma_{y} + \int_{\Gamma} p\left(\mathbf{y}, t - \frac{r}{c}\right) \frac{1}{r^{2}} \frac{\partial r}{\partial \mathbf{n}} d\Gamma_{y}$$
$$+ \int_{\Gamma} \frac{\partial}{\partial t} p\left(\mathbf{y}, t - \frac{r}{c}\right) \frac{1}{rc} \frac{\partial r}{\partial \mathbf{n}} d\Gamma_{y}$$

with an analytical integration in time

Boundary integral equation in Laplace/Fourier domain

$$c(\mathbf{x})\hat{\rho}(\mathbf{x}) + \int_{\Gamma} \hat{\rho}(\mathbf{y}) \frac{\partial \hat{G}(\mathbf{x},\mathbf{y})}{\partial \mathbf{n}} d\Gamma_{y} = \int_{\Gamma} \hat{q}(\mathbf{y}) \hat{G}(\mathbf{x},\mathbf{y}) d\Gamma_{y}$$

Martin Schanz

BEM: Helmholtz equations

Integral equation in operator notation

■ 1st Boundary integral equation

$$(\mathcal{V}*q)(\mathbf{x},t) = \mathcal{C}(\mathbf{x})p(\mathbf{x},t) + (\mathcal{K}*p)(\mathbf{x},t) \qquad (\mathbf{x},t) \in \Gamma \times (0,\infty)$$

■ 2nd Boundary integral equation

$$(\mathcal{D}*\rho)(\mathbf{x},t) = (\mathcal{I} - \mathcal{C}(\mathbf{x})) q(\mathbf{x},t) - (\mathcal{K}'*q)(\mathbf{x},t) \qquad (\mathbf{x},t) \in \Gamma \times (0,\infty)$$

Operators

$$(\mathcal{V} * q)(\mathbf{x}, t) = \int_{0}^{t} \int_{\Gamma} G(\mathbf{x} - \mathbf{y}, t - \tau) q(\mathbf{y}, \tau) ds_{\mathbf{y}} d\tau$$

$$\mathcal{C}(\mathbf{x}) = \mathcal{I} + \lim_{\epsilon \to 0} \int_{\partial B_{\epsilon}(\mathbf{x}) \cap \Omega} (\mathcal{T}_{\mathbf{y}} G)(\mathbf{x} - \mathbf{y}, 0) ds_{\mathbf{y}}$$

$$(\mathcal{K} * p)(\mathbf{x}, t) = \lim_{\epsilon \to 0} \int_{0}^{t} \int_{\Gamma \setminus B_{\epsilon}(\mathbf{x})} (\mathcal{T}_{\mathbf{y}} G)(\mathbf{x} - \mathbf{y}, t - \tau) p(\mathbf{y}, \tau) ds_{\mathbf{y}} d\tau$$

$$(\mathcal{K}' * q)(\mathbf{x}, t) = \lim_{\epsilon \to 0} \int_{0}^{t} \int_{\Gamma \setminus B_{\epsilon}(\mathbf{x})} (\mathcal{T}_{\mathbf{x}} G)(\mathbf{x} - \mathbf{y}, t - \tau) q(\mathbf{y}, \tau) ds_{\mathbf{y}} d\tau$$

$$(\mathcal{D} * p)(\mathbf{x}, t) = -\lim_{\epsilon \to 0} \int_{0}^{t} \mathcal{T}_{\mathbf{x}} \int_{\Gamma \setminus B_{\epsilon}(\mathbf{x})} (\mathcal{T}_{\mathbf{y}} G)(\mathbf{x} - \mathbf{y}, t - \tau) p(\mathbf{y}, \tau) ds_{\mathbf{y}} d\tau$$

BEM: Helmholtz equations

Source terms

7/33

■ Multiple sound sources at discrete points ξ_j with intensity $A_j(t)$ yield an additional term in the integral equation

$$\sum_{j=1}^{q_{num}} A_j \left(t - \frac{|\mathbf{x} - \xi_j|}{c} \right) \frac{1}{|\mathbf{x} - \xi_j|}$$

Moving sound sources (without volume) can be treated by the Helmholtz equation for the velocity potential in a moving coordinate system using a different fundamental solution

$$G_m(\mathbf{x},t;\mathbf{y},\tau) = \frac{\delta(t-\tau-r/c)}{4\pi[1-M_R]}$$

with $M_R = \frac{\mathbf{v} \cdot \mathbf{r}}{rc}$

Martin Schanz

BEM: Helmholtz equations

Irregular frequencies

- Non-uniqueness for exterior problems, e.g., scattering
- Burton-Miller approach (also Brakhage and Werner)

$$(\mathcal{V}q)(\mathbf{x},t) + lpha(\mathcal{D}p)(\mathbf{x},t) = \mathcal{C}(\mathbf{x})p(\mathbf{x},t) + (\mathcal{K}p)(\mathbf{x},t) + lpha\left[(\mathcal{I} - \mathcal{C}(\mathbf{x}))q(\mathbf{x},t) - (\mathcal{K}'q)(\mathbf{x},t)
ight]$$
 $(\mathbf{x},t) \in \Gamma \times (0,\infty)$

• The factor α can be chosen arbitrarily but often

$$\alpha = \frac{i}{k}$$

- For small frequencies the CHIEF-method can also be used
- There exist techniques with modified fundamental solutions

Collocation and Galerkin method

- Collocation method 1st integral equation is used and solved at distinct points.
 Collocation points usually are the nodal values
- Galerkin method Introduction of arbitrary but fixed extensions, g̃_D and g̃_N,

$$p = \tilde{p} + \tilde{g}_D \quad \text{with} \quad \tilde{g}_D(\mathbf{x}, t) = g_D(\mathbf{x}, t) \quad (\mathbf{x}, t) \in \Gamma_D \times (0, \infty)$$
$$q = \tilde{q} + \tilde{g}_N \quad \text{with} \quad \tilde{g}_N(\mathbf{x}, t) = g_N(\mathbf{x}, t) \quad (\mathbf{x}, t) \in \Gamma_N \times (0, \infty)$$

yields for the 1st and 2nd integral equation

$$\mathcal{V} * \tilde{\boldsymbol{q}} - \mathcal{K} * \tilde{\boldsymbol{p}} = f_D, \quad (\mathbf{x}, t) \in \Gamma_D \times (0, \infty)$$
$$\mathcal{D} * \tilde{\boldsymbol{p}} + \mathcal{K}' * \tilde{\boldsymbol{q}} = f_N, \quad (\mathbf{x}, t) \in \Gamma_N \times (0, \infty)$$

with the right hand side

$$f_D = C\tilde{g}_D + \mathcal{K} * \tilde{g}_D - \mathcal{V} * \tilde{g}_N$$

$$f_N = (\mathcal{I} - \mathcal{C}) \tilde{g}_N - \mathcal{K}' * \tilde{g}_N - \mathcal{D} * \tilde{g}_D$$

Martin Schanz

BEM: Helmholtz equations

Spatial discretisation

Geometrical approximation

$$\Gamma_h = \bigcup_{e=1}^{N_e} \tau_e$$

 τ_e denote N_e boundary elements, e.g., surface triangles

Shape functions

$$p(\mathbf{y},t) = \sum_{i=1}^{N} p_i(t) \varphi_i(\mathbf{y})$$
 and $q(\mathbf{y},t) = \sum_{j=1}^{M} q_j(t) \psi_j(\mathbf{y})$.

- Semi-discrete equations
 - Galerkin method

$$\begin{bmatrix} \mathsf{V} & -\mathsf{K} \\ \mathsf{K}^\mathsf{T} & \mathsf{D} \end{bmatrix} * \begin{bmatrix} \mathsf{q} \\ \mathsf{p} \end{bmatrix} = \begin{bmatrix} \mathsf{f}_{D} \\ \mathsf{f}_{N} \end{bmatrix}$$

V * q = Cp + K * p

Collocation method

Temporal discretisation

Calculations in frequency (Fourier) domain

Formal transformation of the equation system \sim frequency dependent matrices. Often only the frequency response is required in acoustics. The remaining part is to solve the equation system, e.g.,

- GMRES
- BiCGStab
- for symmetric Galerkin Block-CG

Preconditioning is essential!

- Calculation in time domain
 - Direct approach with shape functions in time and approximation of the time derivative

$$p_i(t) = \sum_{k=0}^n p_i^k \Theta_k(t), \quad q_j(t) = \sum_{k=0}^n q_j^k \Theta_k(t) \qquad \dot{p}(\mathbf{x}, t) = \frac{p(\mathbf{x}, t) - p(\mathbf{x}, t - \Delta t)}{\Delta t}$$

final, recursion formula

$$\mathbf{C}_{0}\mathbf{d}^{m} = \mathbf{D}_{0}\bar{\mathbf{d}}^{m} + \sum_{k=1}^{m} \left(\mathbf{P}_{k}\mathbf{q}^{m-k} - \mathbf{Q}_{k}\mathbf{p}^{m-k}\right)$$

Convolution Quadrature Method (CQM)

Martin Schanz

BEM: Helmholtz equations

11/33

CQM: Basic equations

- Equal time steps Δt
- $\bullet t_n = n \cdot \Delta t, \quad n = 0, \dots, N-1$
- Only the Laplace transform of the fundamental solution is needed

$$\begin{split} \left\langle \left(\mathcal{V} * q\right)(\mathbf{x}; t_{n}), w(\mathbf{x}) \right\rangle_{\Gamma} \\ &= \sum_{i,j}^{E} \int_{\mathrm{supp}(\varphi_{i})} \varphi_{i}(\mathbf{x}) \int_{0}^{t_{n}} \int_{\mathrm{supp}(\varphi_{j})} G(\mathbf{x}, \mathbf{y}; t_{n} - \tau) \ q_{j}(\tau) \ \varphi_{j}(\mathbf{y}) \ \mathrm{ds_{y}} \ \mathrm{d\tau} \ \mathrm{ds_{x}} \\ &\approx \sum_{i,j}^{E} \sum_{k=0}^{n} \omega_{ij}^{n-k}(\hat{G}, \Delta t) \ q_{j}(k\Delta t) = \sum_{i,j}^{E} \sum_{k=0}^{n} V_{n-k}[i,j] \ q_{j}(k\Delta t) \end{split}$$

$$\begin{split} \text{with} \ \left(s_{\ell} = \frac{\gamma(\zeta^{\ell} \mathscr{R})}{\Delta t}, \ \zeta = e^{\frac{2\pi i}{L}}\right) \\ &\omega_{ij}^{n-k}(\hat{G}, \Delta t) = \frac{\mathscr{R}^{-(n-k)}}{L} \int_{\mathrm{supp}(\varphi_{i})} \varphi_{i}(\mathbf{x}) \int_{\mathrm{supp}(\varphi_{i})} \sum_{\ell=0}^{L-1} \hat{G}(\mathbf{x}, \mathbf{y}; s_{\ell}) \zeta^{-(n-k)\ell} \varphi_{j}(\mathbf{y}) \ \mathrm{ds_{y}} \ \mathrm{ds_{x}} \end{split}$$

and with $\mathscr{R} = 10^{-\frac{5}{2(N-1)}}$, L = N - 1, $\gamma(z)$: characteristic function of a multistep method, e.g., a BDF2. Rearrangement of CQM (Banjai and Sauter)

Equation system with CQM time discretisation

$$\sum_{k=0}^{n} \frac{\mathscr{R}^{-(n-k)}}{L} \sum_{\ell=0}^{L-1} \begin{bmatrix} \hat{\mathsf{V}}(s_{\ell}) & -\hat{\mathsf{K}}(s_{\ell}) \\ \hat{\mathsf{K}}^{\mathsf{T}}(s_{\ell}) & \hat{\mathsf{D}}(s_{\ell}) \end{bmatrix} \begin{bmatrix} \mathsf{q}(k\Delta t) \\ \mathsf{p}(k\Delta t) \end{bmatrix} \zeta^{-(n-k)\ell} = \begin{bmatrix} \mathsf{f}_{D}(n\Delta t) \\ \mathsf{f}_{N}(n\Delta t) \end{bmatrix}$$

Rearrangement of the sums

$$\frac{\mathscr{R}^{-n}}{L}\sum_{\ell=0}^{L-1} \begin{bmatrix} \hat{\mathsf{V}}(\boldsymbol{s}_{\ell}) & -\hat{\mathsf{K}}(\boldsymbol{s}_{\ell}) \\ \hat{\mathsf{K}}^{\mathsf{T}}(\boldsymbol{s}_{\ell}) & \hat{\mathsf{D}}(\boldsymbol{s}_{\ell}) \end{bmatrix} \zeta^{-n\ell} \sum_{k=0}^{L-1} \mathscr{R}^{k} \begin{bmatrix} \mathsf{q}(k\Delta t) \\ \mathsf{p}(k\Delta t) \end{bmatrix} \zeta^{k\ell} = \begin{bmatrix} \mathsf{f}_{D}(n\Delta t) \\ \mathsf{f}_{N}(n\Delta t) \end{bmatrix}$$

with the condition

 $\omega_{-1} = \omega_{-2} = \ldots = 0 \qquad \text{and} \quad n < L - 1$

Introduction of 'weighted' transformed variables ('weighted' FFT)

$$\mathsf{p}_{\ell}^{*} = \sum_{k=0}^{L-1} \mathscr{R}^{k} \mathsf{p}(k\Delta t) \zeta^{k\ell} \qquad \mathsf{q}_{\ell}^{*} = \sum_{k=0}^{L-1} \mathscr{R}^{k} \mathsf{q}(k\Delta t) \zeta^{k\ell}$$

where the respective inverse operation is

$$\mathsf{p}(n\Delta t) = \frac{\mathscr{R}^{-n}}{L} \sum_{\ell=0}^{L-1} \mathsf{p}_{\ell}^* \zeta^{-n\ell} \qquad \mathsf{q}(n\Delta t) = \frac{\mathscr{R}^{-n}}{L} \sum_{\ell=0}^{L-1} \mathsf{q}_{\ell}^* \zeta^{-n\ell}$$

Martin Schanz

BEM: Helmholtz equations

Decoupled problems in Laplace domain

Calculation at 'complex frequencies' $s_{\ell}, \ell = 0, 1, \dots, L-1$

$$\begin{bmatrix} \hat{\mathsf{V}}(s_{\ell}) & -\hat{\mathsf{K}}(s_{\ell}) \\ \hat{\mathsf{K}}^{\mathsf{T}}(s_{\ell}) & \hat{\mathsf{D}}(s_{\ell}) \end{bmatrix} \begin{bmatrix} \mathsf{q}^{*}(s_{\ell}) \\ \mathsf{p}^{*}(s_{\ell}) \end{bmatrix} = \begin{bmatrix} \hat{\mathsf{f}}_{D}(s_{\ell}) \\ \hat{\mathsf{f}}_{N}(s_{\ell}) \end{bmatrix}$$

with now $\hat{V} \in \mathbb{C}^{F \times F}$, $\hat{K} \in \mathbb{C}^{F \times E}$, and $\hat{D} \in \mathbb{C}^{E \times E}$

- Singular integration with integration by parts ⇒ only weak singular integrals (formula by Erichsen and Sauter)
- Solution strategy in each frequency step
 - LDL-factorization of V
 - Computation of the *Schur-Complement*

$$\hat{S} = \hat{K}^T \hat{V}^{-1} \hat{K} + \hat{D}$$

Determination of the displacements and tractions

$$\begin{split} \hat{\mathbf{S}}\mathbf{p}^* &= \hat{\mathbf{f}}_N - \hat{\mathbf{K}}^\mathsf{T} \hat{\mathbf{V}}^{-1} \hat{\mathbf{f}}_D \\ \mathbf{q}^* &= \hat{\mathbf{V}}^{-1} \left(\hat{\mathbf{f}}_D + \hat{\mathbf{K}} \mathbf{p}^* \right) \end{split}$$

- Only L/2 calculations are necessary due to conjugate complex frequencies s_{ℓ}
- Computing the time domain results

Acoustic column: Problem description

- Mesh with 3044 elements on 1524 nodes
- Shape functions: *p* linear and *q* constant
- $c = 1 \frac{m}{s}$
- Time step size according to $\beta = \frac{c\Delta t}{t} = 0.3$
- Code used: HyENA-Library http://www.mech.tugraz.at/HyENA

Different time discretisations

Collocations versus SGBEM

Illustrative example

O Arausio, The Roman Theater at Orange, France http://www.theculturedtraveler.com/Heritage/Archives/Arausio.htm

Martin Schanz

Fast BE formulations

Every fast BEM needs a proper kernel decomposition

$$k(\mathbf{x}-\mathbf{y},t-\tau)\approx k^{*}(\mathbf{x},\mathbf{y},t,\tau)$$

This decomposition can be done

- analytically by infinite series ~> Fast Multipole Methods
- by interpolation ~→ Panel clustering (black box technique)
- algebraically ~> ACA
- Most algorithms are developed for the elliptic case, i.e., for the frequency domain.

Algebraic – Low Rank Approximation

- Analytic and/or algebraic approximation techniques
 - prescribed approximation error ϵ
- Singular Value Decomposition $\mathcal{O}(n^3)$
- Adaptive Cross Approximation
 - rank k approximation of A

$$\mathsf{S}_k = \sum_{\nu=1}^k \gamma_\nu^{-1} \, \mathbf{u}_\nu \, \mathbf{v}_\nu^{\mathcal{T}}$$

initialize $S_0 = 0$, $R_0 = A - S_0$ repeat find $\gamma_{v+1} = max(B_v)$

 $\begin{array}{l} \mbox{find } \gamma_{\nu+1} = \max(\mathsf{R}_{\nu}) \\ \mbox{compute } \mathbf{u}_{\nu+1}, \, \mathbf{v}_{\nu+1} \\ \mbox{update } \mathsf{R}_{\nu+1} = \mathsf{R}_{\nu} - \gamma_{\nu+1}^{-1} \mathbf{u}_{\nu+1} \mathbf{v}_{\nu+1}^{\mathcal{T}} \\ \mbox{store only } \gamma_{\nu+1}, \mathbf{u}_{\nu+1}, \mathbf{v}_{\nu+1} \\ \mbox{until } \|\mathsf{R}_{\nu}\|_{F} \leq \epsilon \|\mathsf{A}\|_{F} \end{array}$

black box method

K_n itself is not touched,

- K_n must belong to a class of asymptotically smooth functions!
- reduces storage requirement and computational time

Examples for fast BE formulations

25/33

- In time domain
 - Plane wave expansion [6]

Panel clustering in combination with CQM [7] The kernel expansion is performed with Čebyšev interpolation

$$\omega_{n}^{*}(\mathbf{x}-\mathbf{y}) = \sum_{\mu,\nu} \mathcal{L}_{c}^{(\mu)}(\mathbf{x}) \mathcal{L}_{s}^{(\nu)}(\mathbf{y}) \omega_{n}(\mathbf{x}_{\mu}-\mathbf{y}_{\nu})$$

- FMM in combination with CQM [9]
- ACA in combination with CQM in its decoupled version [8]

In frequency domain

- FMM with different kernel expansions for high and low frequencies [4]
- ACA [2]
- Panel clustering [5]

Martin Schanz

BEM: Helmholtz equations

Results for the column: Flux

Challenges and funding in Austria

29/33

Challenges

- Effective kernel expansions for higher frequencies
- Clustering for oscillatory kernels [3]
- Robust and fast solving of the equation system construction of preconditioner without having the matrix
- Effective and robust time domain formulation [1]

Funding in Austria

- FWF (Austrian science fund)
 - 100% funding of personnel costs, 5% overhead for conferences and consumables, project specific costs

BEM: Helmholtz equations

- Only for basic research (no application)
- $\blacksquare pprox 30\%$ of all proposals get funded
- Reapplication is possible
- FFG (Austrian Research Promotion Agency)
 - Funding for research in and with industry
 - Percentage of funding is dependent on size of the company
 - Support for applicants for EU-projects
- EU-Projects

Martin Schanz

Perspective of BEM

http://www.iabem2011.it

References I

References II

Martin Schanz

BEM: Helmholtz equations

References III

T. Saitoh, S. Hirose, T. Fukui, and T. Ishida.
 Development of a time-domain fast multipole BEM based on the operational quadrature method in a wave propagation problem.
 In V. Minutolo and M. H. Aliabadi, editors, *Advances in Boundary Element Techniques VIII*, pages 355–360, Eastleigh, 2007. EC Ltd.

Martin Schanz

BEM: Helmholtz equations