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PDE for acoustics

Ideal, compressible fluid governed by the sound pressure p

∇
2p (x, t)− 1

c2

∂2

∂t2 p (x, t) = 0 (x, t) ∈ Ω× (0,∞)

p (y, t) = gD (y, t) (y, t) ∈ ΓD× (0,∞)

q (y, t) = (T p)(y, t) =
∂p
∂n

= gN (y, t) (y, t) ∈ ΓN × (0,∞)

p (x,0) =
∂p
∂t

= 0 (x, t) ∈ Ω× (0)

in the domain Ω with boundary Γ = ΓD ∪ΓN , and the speed of sound c
Viscous fluid

∇
2p (x, t)− 1

c2

∂2p
∂t2 (x, t)− R

ρc2

∂p
∂t

(x, t) = 0

with the flow resistance R
Wave number

k =
ω

c
for viscous fluids k̄ = k

(
1 + i

R
2ρω

)
= k + iµ

with the density ρ and the absorption coefficient µ
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Fundamental solutions

Ideal, compressible fluid

G (x, t|y,τ) =
1

4πr
δ

(
t− τ− r

c

)
with r = |x−y| and the Dirac distribution δ(x)
Viscous fluid

G (x, t|y,τ) =
eα

t′
2

4πr

[
δ

(
t ′− r

c

)
+

αr

2
√

(t ′)2− r2

c2

I1

(
α

2

√
(t ′)2− r2

c2

)
H
(

t ′− r
c

)]

with the modified Bessel function of first kind I1(x) and t ′ = t− τ

Half space solution

for q = 0 : GH (x, t|y,τ) = G (x, t|y,τ) + G
(
x′, t|y,τ

)
for p = 0 : GH (x, t|y,τ) = G (x, t|y,τ)−G

(
x′, t|y,τ

)
with the mirror point x′

Laplace/Fourier domain

Ĝ (x,y) =
1

4πr
ekr or Ḡ (x,y) =

1
4πr

e−ikr
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Integral equations

Representation formula in time domain

p (x, t) =
∫ t

0

∫
Γ

[
G (x−y, t− τ)q (y,τ)− ∂G

∂n
(x−y, t− τ)p (y,τ)

]
dΓy dτ

Boundary integral equation in time domain

4πc (x)p (x, t) =
∫

Γ
q
(

y, t− r
c

) 1
r

dΓy +
∫

Γ
p
(

y, t− r
c

) 1
r2

∂r
∂n

dΓy

+
∫

Γ

∂

∂t
p
(

y, t− r
c

) 1
rc

∂r
∂n

dΓy

with an analytical integration in time

Boundary integral equation in Laplace/Fourier domain

c(x)p̂(x) +
∫

Γ
p̂ (y)

∂Ĝ (x,y)

∂n
dΓy =

∫
Γ

q̂ (y) Ĝ (x,y)dΓy
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Integral equation in operator notation

1st Boundary integral equation

(V ∗q)(x, t) = C(x)p(x, t) + (K∗p)(x, t) (x, t) ∈ Γ× (0,∞)

2nd Boundary integral equation

(D∗p)(x, t) = (I −C(x))q(x, t)− (K′ ∗q)(x, t) (x, t) ∈ Γ× (0,∞)

Operators

(V ∗q)(x, t) =
∫ t

0

∫
Γ

G(x−y, t− τ)q(y,τ)dsy dτ

C(x) = I + lim
ε→0

∫
∂Bε(x)∩Ω

(TyG)(x−y,0)dsy

(K∗p)(x, t) = lim
ε→0

∫ t

0

∫
Γ\Bε(x)

(TyG)(x−y, t− τ)p(y,τ)dsy dτ

(K′ ∗q)(x, t) = lim
ε→0

∫ t

0

∫
Γ\Bε(x)

(TxG)(x−y, t− τ)q(y,τ)dsy dτ

(D ∗p)(x, t) =− lim
ε→0

∫ t

0
Tx

∫
Γ\Bε(x)

(TyG)(x−y, t− τ)p(y,τ)dsy dτ
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Source terms

Multiple sound sources at discrete points ξj with intensity Aj (t) yield an additional
term in the integral equation

qnum

∑
j=1

Aj

(
t− |x−ξj |

c

)
1

|x−ξj |

Moving sound sources (without volume) can be treated by the Helmholtz equation
for the velocity potential in a moving coordinate system using a different
fundamental solution

Gm (x, t;y,τ) =
δ(t− τ− r/c)

4π[1−MR]

with MR =
v · r
rc
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Irregular frequencies

Non-uniqueness for exterior problems, e.g., scattering

Burton-Miller approach (also Brakhage and Werner)

(Vq)(x, t) + α(Dp)(x, t) = C(x)p(x, t) + (Kp)(x, t)

+ α
[
(I −C(x))q(x, t)− (K′q)(x, t)

]
(x, t) ∈ Γ× (0,∞)

The factor α can be chosen arbitrarily but often

α =
i
k

For small frequencies the CHIEF-method can also be used

There exist techniques with modified fundamental solutions
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Collocation and Galerkin method

Collocation method - 1st integral equation is used and solved at distinct points.
Collocation points usually are the nodal values

Galerkin method
Introduction of arbitrary but fixed extensions, g̃D and g̃N ,

p = p̃ + g̃D with g̃D(x, t) = gD(x, t) (x, t) ∈ ΓD× (0,∞)

q = q̃ + g̃N with g̃N(x, t) = gN(x, t) (x, t) ∈ ΓN × (0,∞)

yields for the 1st and 2nd integral equation

V ∗ q̃−K∗ p̃ = fD, (x, t) ∈ ΓD× (0,∞)

D∗ p̃ +K′ ∗ q̃ = fN , (x, t) ∈ ΓN × (0,∞)

with the right hand side

fD = Cg̃D +K∗ g̃D−V ∗ g̃N

fN = (I −C) g̃N −K′ ∗ g̃N −D∗ g̃D
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Spatial discretisation

Geometrical approximation

Γh =
Ne⋃

e=1

τe

τe denote Ne boundary elements, e.g., surface triangles

Shape functions

p(y, t) =
N

∑
i=1

pi (t)ϕi (y) and q(y, t) =
M

∑
j=1

qj (t)ψj (y) .

Semi-discrete equations
Galerkin method [

V −K
KT D

]
∗
[

q
p

]
=

[
fD
fN

]
Collocation method

V∗q = Cp + K∗p
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Temporal discretisation

Calculations in frequency (Fourier) domain
Formal transformation of the equation system ; frequency dependent matrices.
Often only the frequency response is required in acoustics. The remaining part is
to solve the equation system, e.g.,

GMRES
BiCGStab
for symmetric Galerkin Block-CG

Preconditioning is essential!
Calculation in time domain

Direct approach with shape functions in time and approximation of the time derivative

pi (t) =
n

∑
k=0

pk
i θk (t) , qj (t) =

n

∑
k=0

qk
j θk (t) ṗ (x, t) =

p (x, t)−p (x, t−∆t)
∆t

final, recursion formula

C0dm = D0d̄m +
m

∑
k=1

(
Pk qm−k −Qk pm−k)

Convolution Quadrature Method (CQM)
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CQM: Basic equations

Equal time steps ∆t
tn = n ·∆t, n = 0, . . . ,N−1
Only the Laplace transform of the fundamental solution is needed〈

(V ∗q)(x; tn),w(x)
〉

Γ

=
E

∑
i,j

∫
supp(ϕi )

ϕi (x)
∫ tn

0

∫
supp(ϕj )

G(x,y; tn− τ) qj (τ) ϕj (y) dsy dτdsx

≈
E

∑
i,j

n

∑
k=0

ω
n−k
ij (Ĝ,∆t) qj (k∆t) =

E

∑
i,j

n

∑
k=0

Vn−k [i, j] qj (k∆t)

with (s` =
γ(ζ`R)

∆t , ζ = e
2πi
L )

ω
n−k
ij (Ĝ,∆t) =

R−(n−k)

L

∫
supp(ϕi )

ϕi (x)
∫

supp(ϕj )

L−1

∑
`=0

Ĝ (x,y;s`)ζ
−(n−k)`

ϕj (y)dsy dsx

and with R = 10
− 5

2(N−1) , L = N−1,
γ(z): characteristic function of a multistep method, e.g., a BDF2.
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Rearrangement of CQM (Banjai and Sauter)

Equation system with CQM time discretisation
n

∑
k=0

R−(n−k)

L

L−1

∑
`=0

[
V̂(s`) −K̂(s`)
K̂T (s`) D̂(s`)

][
q(k∆t)
p(k∆t)

]
ζ
−(n−k)` =

[
fD (n∆t)
fN (n∆t)

]
Rearrangement of the sums

R−n

L

L−1

∑
`=0

[
V̂(s`) −K̂(s`)
K̂T (s`) D̂(s`)

]
ζ
−n`

L−1

∑
k=0

Rk
[

q(k∆t)
p(k∆t)

]
ζ

k` =

[
fD (n∆t)
fN (n∆t)

]
with the condition

ω−1 = ω−2 = . . . = 0 and n < L−1

Introduction of ’weighted’ transformed variables (’weighted’ FFT)

p∗` =
L−1

∑
k=0

Rk p(k∆t)ζ
k` q∗` =

L−1

∑
k=0

Rk q(k∆t)ζ
k`

where the respective inverse operation is

p(n∆t) =
R−n

L

L−1

∑
`=0

p∗`ζ
−n` q(n∆t) =

R−n

L

L−1

∑
`=0

q∗`ζ
−n`
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Decoupled problems in Laplace domain

Calculation at ’complex frequencies’ s`, ` = 0,1, . . . ,L−1[
V̂(s`) −K̂(s`)
K̂T (s`) D̂(s`)

][
q∗ (s`)
p∗ (s`)

]
=

[̂
fD (s`)
f̂N (s`)

]
with now V̂ ∈ CF×F , K̂ ∈ CF×E , and D̂ ∈ CE×E

Singular integration with integration by parts⇒ only weak singular integrals
(formula by Erichsen and Sauter)
Solution strategy in each frequency step

LDL-factorization of V̂
Computation of the Schur-Complement

Ŝ = K̂TV̂−1K̂ + D̂

Determination of the displacements and tractions

Ŝp∗ = f̂N − K̂TV̂−1̂fD

q∗ = V̂−1 (̂fD + K̂p∗
)

Only L/2 calculations are necessary due to conjugate complex frequencies s`
Computing the time domain results
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Acoustic column: Problem description

x1

x2

q(t) =−1 N
m3 H(t)

Mesh with 3044 elements on 1524 nodes
Shape functions: p linear and q constant
c = 1 m

s

Time step size according to β = c∆t
r = 0.3

Code used: HyENA-Library http://www.mech.tugraz.at/HyENA
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Different time discretisations

0 5 10 15 20 25 30
time t [s]
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Different time discretisations
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Collocations versus SGBEM
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Collocations versus SGBEM
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Illustrative example

0
Arausio, The Roman Theater at Orange, France http://www.theculturedtraveler.com/Heritage/Archives/Arausio.htm
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Sound propagation in a roman theater

100 43,2

7

20 16,4
50
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Sound propagation in a roman theater
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Fast BE formulations

Every fast BEM needs a proper kernel decomposition

k (x−y, t− τ)≈ k∗ (x,y, t,τ)

This decomposition can be done

analytically by infinite series ; Fast Multipole Methods

by interpolation ; Panel clustering (black box technique)

algebraically ; ACA

Most algorithms are developed for the elliptic case, i.e., for the frequency domain.

An hierarchical clustering of the matrix is
necessary.

← Y →

←
X
→
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Algebraic – Low Rank Approximation

Analytic and/or algebraic approximation techniques
prescribed approximation error ε

Singular Value Decomposition – O(n3)

Adaptive Cross Approximation

rank k approximation of A

Sk =
k

∑
ν=1

γ
−1
ν uν vT

ν

γ = A[i,j]
v = A[i,:]
u = A[:,j]

i

j

initialize S0 = 0, R0 = A−S0

repeat
find γν+1 = max(Rν)
compute uν+1, vν+1

update Rν+1 = Rν− γ
−1
ν+1uν+1vT

ν+1
store only γν+1,uν+1,vν+1

until ‖Rν‖F ≤ ε‖A‖F

black box method
Kn itself is not touched,
Kn must belong to a class of
asymptotically smooth functions!

reduces storage requirement and
computational time
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Examples for fast BE formulations

In time domain
Plane wave expansion [6]
Panel clustering in combination with CQM [7]
The kernel expansion is performed with Čebyšev interpolation

ω
∗
n (x−y) = ∑

µ,ν
L(µ)

c (x)L(ν)
s (y)ωn

(
xµ−yν

)
FMM in combination with CQM [9]
ACA in combination with CQM in its decoupled version [8]

In frequency domain
FMM with different kernel expansions for high and low frequencies [4]
ACA [2]
Panel clustering [5]
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Results for the column: Pressure
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Results for the column: Flux
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Results for the column: Compression
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Challenges and funding in Austria

Challenges

Effective kernel expansions for higher frequencies

Clustering for oscillatory kernels [3]

Robust and fast solving of the equation system – construction of preconditioner
without having the matrix

Effective and robust time domain formulation [1]

Funding in Austria
FWF (Austrian science fund)

100% funding of personnel costs, 5% overhead for conferences and consumables,
project specific costs
Only for basic research (no application)
≈ 30% of all proposals get funded
Reapplication is possible

FFG (Austrian Research Promotion Agency)
Funding for research in and with industry
Percentage of funding is dependent on size of the company
Support for applicants for EU-projects

EU-Projects
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Perspective of BEM

http://www.iabem2011.it
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