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Aim to find efficient, power computational method to general boundary
value problems.

Many problems are described by complicated governing equations and
constitutive equations.

Coupled problems



Difference between the standard BEM and Local integral equations (LIE)

Elasticity
Governing equations

7 (1) = P, (%,1) ==X, (x,1) €

Constitutive equation
o; (x,1) = Cyyy (x) &4 (x,1) = Cy (XU (x,1) (2)

The traction vector t=o;n,

t(x,t) = Cyy (X)uy, (x, )n; (x) (3)

The weak-form of the governing equations (1)
Conventional BEM



[[o;(x,7) = p(¥)ii (x,7) + X (x,7) | U7 (x) dQ =0, (4)

Q
where u; (x) is a test function. Q is global domain.

Substituting constitutive eqg. (2) into the weak form

[ Lt (x,7) = p(x) (x,7) + X, (x,7)] U] (x) dQ =0, (5)
Q 82
where operator L, =C.,,——.
" 0,0,

Lets X. =0 and 2x Gauss divergence to (5) — Somigliana identity

U, (¥,7) = [ [t (UG (% Y) = U (%, DT (%, ) JdT = [ pti (x, 2)U, (%, Y)d

where
LijU jk (X,y) =-8,6(x-y).



One can write

T, =CiuNU,, since  t=oun, =¢,u,n,

Regularization
Applying Guass divergence to

_[Ti:(x, y)dI = J‘CijplnjU;k,I (x,y)dI = jciijU;k,lj (x,y)dQ
r I Q

where

CiijUkaJ_ —6,0(X=Y)
Then,
[To(cyydr=] % foryesr
L 0 for yeQ

From Somigliana identity u. (y) = &,u, (y)



_j U (Y, 7) Ty (x, y)dT =
= [t (U (6 ¥) = U, (%, 2T (%, y) |47 = [ i (X, 2)U (%, Y)dQ  (6)

Rearranging

[T 06 W)U (%, 2) = U (¥, 2) AT = 1, (x,2)U 5 (x, y)dQ =

=—[ pli, (X, 7)U; (x, y)dQ. (7)

Holder continuity [u(y)—u(x)|< Aly —x["

Local integral equations

Zhu, T., Zhang, J.D., Atluri, S.N. (1998): A local boundary integral equation (LBIE) method in
computational mechanics, and a meshless discretization approaches. Computational Mechanics, 21,
pp. 223-235.



Weak form on local subdomains

[[ o (x.7) = p(x) (x,7) + X (x,7) | u (x) dQ =0.

Q

S

applying the Gauss divergence theorem, 1x

[ oy (x,7)n; (XU (AT - [ oy (x,7)uy, ; (x)dQ+

00 s

— J | p(x)U; (x,7) Juy (x)dQ2 = 0.

If a Heaviside or unit step function is chosen as the test function

(%) 0, at xell
U, (X) =
« 0 at xgQ,

the local weak-form (9) is converted into the LIE

(8)

9)



j t(x,7)dl - j ol (x,7)dQ = — jfi(x,r)dr— j X.(x,7)dQ.  (10)
LS+FSU QS FSI QS

:|_is
subdomain Q.=Q,

local boundary 60, =aQ),

support of node x' i
Fig. 1 Local boundaries for weak-form formulation and support domain of
weight function at node x'

Local integral equation is related to one node
Therefore, approximation has to be global



Numerical solution

Belytschko T, Krogauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods; an
overview and recent developments. Comp. Meth. Appl. Mech. Engn. 139: 3-47.

The trial function is chosen to be the moving least-squares (MLS)
approximation over anumber of nodes randomly spread within the
domain of influence.

The MLS approximant u"(x,7) of u is defined by
u"(x,7)=p' (X)a(x,7) . (11)

The complete monomial basis of order m; for example, in 2-D problems
p'(x)={1x,x,} for m=3

and

p'(x)={1,x,x, X, xX,X | for m=6 (12)

17721 7%

are linear and quadratic basis functions, respectively.



In 3-D problems, the linear basis is defined as
p' (x)=[1 X, X, %],
and the quadratic basis is defined as

T _ 2 L2 L2
p (X)—[l’ Xy KXoy Xgy Xy X2’X3’X1X2’X1X3’X3X2] '

The coefficient vector a(x) Is determined by minimizing a weighted
discrete L, -norm defined as

I =Y wE[p (xalx)-i ()| (13)
Final approximation formula
u"(x,7) =@ (x)-u(r) = Zcﬁa(X)ﬁa(r) , (14)

A 4™-order spline-type weight function is applied in the present work



a E a 3 a 4
i 16 9] 18l 9| —3l 9] p<dr<r
W (X) =+ re ré ré ,

The traction vector

€ (x, ) :N(X)CiBa(x)ﬁa(f) | (15)

where the matrix N(x) Is related to the normal vector n(x)
n, 0 0 0O n, n,|
N(x)={0 n, 0 n, 0 n for 3-D
0O 0 nn, n O

N N
and N(x) = {01 2} for 2-D problems.

n, n



The matrix B is represented by the gradients of the shape functions for
3-D as

S0 o
0 ° 0 - -
B® = 0 4 > | and B*(x)=| 0 ¢} | for 2-D problems.
3 2 a a
50 4
#> 4 O

Substituting the MLS approximations into LIEs (10) for each of the
internal nodes x', the following set of discretized LIEs is obtained

Z (J‘N(X)CBa(X)dF}ﬁa(T)p(j¢a(x)dQ}ﬁa(f) B

= j X(x,7)dQ. (16)



The system of ODE can be rearranged in such a way that all known
quantities are on the r.h.s. Thus, in matrix form the system becomes

AX+Cx=Y . (17)

The Houbolt finite- difference scheme
_ 2XT+AT _SXT + 4X2’—AT B XT—ZAT
T+AT ATZ

where Az is the time step.

%

The system of algebraic equations for the unknowns x

T+AT

[ 22A+C}XHM: 125Axr+
At At
FA—T {—4x,_,, +X,_,., }+Y. (18)

AT?



Numerical example

material properties for a homogeneous orthotropic strip: E, =2-10",
E,=10%, G, =0.416-10%, v, =0.2 and p=1.

FGM orthotropic strip, only E =E_exp(yx), while other material

parameters are considered to be uniform.
X2
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Fig. 2 An orthotropic FGM strip under a uniaxial tension
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Fig. 3 Influence of the gradient parameter on the time variation of the displacement
component in an orthotropic FGM strip



Modern technologies require new sophisticated materials.

In advanced materials new phenomena are observed, like coupling of
physical fields.

In thermoelasticity thermal effects can include heat production due to the
strain rate, i.e. the thermoelastic dissipation.

Modern smart structures made of piezoelectric and piezomagnetic
materials offer certain potential performance advantages over
conventional ones due to their capability of converting the energy from
one type to other (among magnetic, electric, and mechanical).



The local integral equation method in transient coupled
thermoelasticity

The equilibrium and the thermal balance equations in transient coupled
thermoelasticity [Nowacki (1986)] can be written as

oy, (x,7) - pli; (x,7) + X;(x,7) =0, (1)

ki (0)0;(x,7) | = peh(x,7) - 3,600, ;(x,7) +Q(x,7) =0 2)

Duhamel-Neumann constitutive equation for the stress tensor

Ojj (x,7) = Cijni €u (x,7) - 7/ij9(x’ 7), (3)

Instead of writing the global weak-form for the above governing
equations, the MLPG method constructs a weak-form over the local
fictitious subdomains such as Q, [Atluri (2004)]



[ [0 (x,7) = pli(x,7) + X, (x,7) ] U (x) dQ =0, (4)

Q
By choosing a Heaviside step function as the test function

(%) 0, at xell
U, (X) = .
« 0 at xgQ,

S

the local weak-form (4) is converted into the LIE
| t(x0)dr- | pli(x,7)dQ=- [f(x,0)dT - [ X(x,7)dQ.  (5)
L+Ig, Qq | Qg

Non-homogeneous material properties are included in eg. (5) through the
elastic and thermo-elastic coefficients

(x,7) = ¢ (WU, (x,7) = 4, (X)6(x,7) | n; (x).

Similarly, the local weak-form of the governing equation (2)



j{[kij (X)QJ(X’T)]J _pCQ(X’T)_7/ij‘90ui,j(X17)+Q(X,T)}U*(X) dQ =0.

QS

Applying the Gauss divergence theorem to the local weak-form and
considering the Heaviside step function for the test function

j q(x,r)dF—ijé(X,r)dQ—J‘y/ijﬁol]i’j(x,z-)dg):

L +Fsp

:_j q(x,f)dr—jQ(x,r)dQ. (6)

Numerical solution

" (x,0) = @' (x)-i(2) = 24 (i (0) (7
0"(x,)= 24 (0 (2)



The traction vector

€(5,5) = NOCY B (i (1) - Ny 24 (90 () ©
Similarly the heat flux q(x,z) can be approximated by
' (5,7) =Ky 43096 0) ©

Substituting the MLS approximations into LIEs (5)and (6) for each of the
internal nodes x', the following set of discretized LIEs is obtained

n

2 (I N<X>CBa(x)dF}ﬁa(r)—p( | ¢a<x>dgz]ﬁa(f) -

a=1

—Zn:( I N(X)Wa(x)dFJéa(f) =—[X(x,r)dQ. (10)

a:l LS +FSU



>6'(2) [ 0 (KPP (Ar-36*(7) [ peg (x)d02-

—i{j@oyTBa(x)dF]ﬁa(r)z— j q(x,r)dF—IQ(x,r)dQ, (11)
where for 3-D problems
_k11 k12 k13_ ¢i
Kx)=|k, k, kyg|, P'X)=|¢,], n =(n,n,n)
L k13 k23 k33 i _¢§ ]

and for 2-D problems

K(X):{kﬂ k12:|, Pa(X)=|:

2
k12 k22 a

ﬁj, n =(n,n ).



The system of ODE can be rearranged in such a way that all known
quantities are on the r.h.s. Thus, in matrix form the system becomes

AX+Bx+Cx=Y . (12)
The Houbolt finite- difference scheme

_ 2X2'+Ar B 5X2' + 4X7—Ar —X
T+AT ATZ
The backward difference method is applied for the approximation of
“velocities”

— X2'+Ar B Xz-
Xr+Ar - AT

The system of algebraic equations for the unknowns x

T—2AT

%

T+AT

{ 22 A+LB+C}XHM = 12 (A +BA7)x_+
At At At

+X, ,,, 1 +Y. (13)

T—2AT



Numerical examples

3-D analysis of a clamped L-shaped console

The following parameters for a monoclinic material are used:

(430.1 1304 182 O 0
130.4 1167 21 O 0
- 18.2 21 736 O 0
0 0 0 198 -8
0 0 0 -8 291
12013 701 24 O 0
the stress-temperature coefficients
(101 2 0 |
y=| 2 148 0 [*10°N/degm?.
0 0 752

201.3 |
70.1
2.4

0
0

147.3 |

GPa;
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Fig. 2 Clamped L-shaped console under a thermal load



The total number of nodes is thus 6*341=2046.
Stationary boundary conditions in uncoupled thermoelasticity
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Fig. 3 Variation of the temperature along x,.-axis at x, =50mm under stationary
conditions
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Fig. 4 Variation of the displacement u, along x,-axis at x, =50mm under stationary
conditions

Next, transient thermal conditions with Heaviside time variation of a
prescribed temperature on the right lateral clamped side are considered.
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Fig. 5 Time variation of the temperature at nodes A and B
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Fig. 6 Time variation of the displacements at node A



A unit square panel under a sudden heating on the top side is analyzed

111

1 u,=t,=0.,9=0 1
Fig. 7 A suddenly heated unit square panel

The dimensionless thermoelastic coupling parameter
_ (+v)a’Eg,
(1-v)(L-2v)pC




One can observe that the influence of the mechanical-thermal coupling
on both quantities is weaker for small and large time instants.
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Fig. 8 Coupling effect on the temporal variation of the temperature at x, =0
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Fig. 9 Coupling effect on the temporal variation of the displacement u, at x, =1



The LIE method in magneto-electro-thermoelasticity

The magneto-electro-mechanical coupling in some composites can be
hundred times higher than in single-phase materials [Nan, (1994); Feng
and Su, (2006); Tong et al. (2008)]. Therefore, the multi-field coupling
has to be considered in mathematical modeling.

Temperature sensitive, i1.e. an electric charge or voltage iIs generated
when temperature variations are exposed - pyroelectric effect.

For typical material coefficients - characteristic frequencies are
f =10"Hz, f, =10"'Hz and f,_=10"Hz.

Then, the Maxwell equations are reduced to two scalar equations
D, (x,7)=0, (1)
B, (x,7)=0.
(2)



The rest of the vectorial Maxwell’s equations In quasi-static
approximation, VxE =0 and VxH =0, are satisfied identically by

Ej (X’ Z') — _w,j (X1 Z') 1 (3)
M, (x,7) =~ (x,7). (@)

The equations of motion and the heat conduction
o; i (x,7)+ X (x,7) = pli;(x,7), (5)

k(06 (x.7) ], - p(x)e(x)6(x,7) =0, (6)

Constitutive equations
o (x,7) = Ciii (x)e, (x,7) — € (x)E, (x,7) - dkij (x)H, (x,7)— A (x)0(x,7),
D, (x,7) =€,y (x)g, (x,7) +h; (X)E, (x,7) + & (x)H, (x,7) + p; (x)0(x,7),
B,(x,7)=d,(x)g, (x,7) + o, (X)E, (x,7) + 7, (xX)H, (x,7) + M, (x)O(x,7),
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The following essential and natural boundary conditions are assumed for
the mechanical fields

u.(x,7)=0/(x,7), on T,

u

t(x,r)=oyn; =t(x,z), on T, I'=T UT.
For the electrical fields, we assume

v(x,7)=w(x,7), on I,
Q(x,7)=D,(x,7)n,(x)=Q(x,z), on T, I'=T UT,,

q
for the magnetic fields

u(x,7)=j(x,7),  on T,

S(x,7)=B.(x,7)n(x)=S(x,7) , on T, I'=I url,
and for the thermal fields

0(x,7) = 0(x,7) on T,

q(x,7) =k;0,(x,7)n(x)=q(x,z) on Iy, I'=I LT,



The local weak form of the governing equations (5)
[[ o (x.7) = Ui (x,7) + X (x,7) | U (x) Q. =0 . (15)

QS

Applying the Gauss divergence theorem and choosing a Heaviside step
function as the test function-the local integral equation

| t(xo)dr- | pli(x,7)dQ= - [ (x,7)dl - [ X,(x,7)dQ.  (17)

L+,

The traction components

t(x,7) =] Gy (U, (X,7) + & (D, (x,7) +dyyy (X 1, (x,7) = 2, (0)O(x,7) |, ().

Similarly, the local weak-form of the governing equation (1)
ij,j(x,f)v*(x) dQ =0. (18)
QS



Local integral equation

| Qx,7)dr=-[ Q(x,7)dr, (19)

Ls sp
where

Q(x,7) =D, (x,7)n;(x) = |:ejkluk,l (x,7)—hyw, (x,7) —ayu, (x,7)+ pje(xif)} n;.

The LIE corresponding to the governing equation (2)
| s(x.o)dTr=— S(x,7)dr, (20)

Ls+rsa Fsb
where the magnetic flux is given by

S(x,7) =B;(x,7)n;(x) = |:djkluk,l (x,7) =¥ (X, 7) = 7t (X,7) + mje(x,f)} n;.

The local weak-form of the diffusion equation (6)

J { L (X)H,j(x,f)],i —p(X)C(X)é(x,r)}w*(x) dQ =0. (21)

Q

S



Local integral equation
j q(x,7)dT" - j o(x)c(x)8(x,7)dQ =— j G(x,7)dT. (22)

Ls +Fse st

The trial functions in the LIEs are approximated by the Moving Least-
Squares (MLS) method

u'(x,7)=®" (x)-u= i¢a (x)u’ (7).
v (x,5)= 28 (09" (7)
1(%7) = Y4 ()7 (0).

0"(x,1)= >4 (0" (2). 3)

The traction vectors



t"(x,7) = N(X)C(x)iBa(x)ﬁa(r) + N(X)L(X)Zri: P (x)y % (7) +
ANEKEY P (A7) - N 4 ()0 (2)

Electrical charge

Q"(x,7) =N, (G (Y B* ()" (7) - N, (YH(X) D P (1) (1) -

N(ARY P07 (0) + NI 4 (00 ()

Magnetic flux

S"(x,1) = Ny (OR() Y B (1) (1) -N, (A G D. P ()57 () -

NP0 () + N, (MM Y 4" (06" ()



The heat flux
0" (x,7) = kN 245 (0" (2) =N, (O ()X P* (x)0° (7).

The essential boundary conditions

> F Qi ()= for e,
> Q7 () =9 ) for LeT,
> # Qi) =AGr) for GeT,,

> PP =0G7) for ger,



Disc[etized forms of LIE

n

z j N(X)C(X)Ba(x)dl“]ﬁa(r)—(jp(x)¢adQJﬁa(f) +

a=1 L+T

+i j N(X)L(X)Pa(x)dr]‘f’a(f) + Zn:( j N(X)K(X)Pa(x)dl“}ﬁa(r)—

a 1 LS+FSt a:l LS+FSt

n

> N(x)ux)w(x)dr]éa(r) - — [ Ex,)dr - [ X(x, )02,

a=1 L +T g

Z[ | NAx)G(x)Ba(x)erﬁa(r) Z{ [ N,@HEP* ()AL [§°(2) -

=\ L+ a=l\ L+,

_Zn:[ _[ Nl(X)A(X)Pa(X)dFjﬁa(T)+Zn:[ I Nl(x)H(x)¢a(x)dF}9Aa(z—):

a:]. LS +qu a:l LS +rsq

=— [ Q(x,7)dr,



a=1

>

a=1

|

|

L+ g

=—j§(x,r)dr,

_E

=— [ d(x,7)dr .
st

[ N,(xe)P*(x)dr

L+ g

n

a=1 Ls sh

a=1\ L+T,

Jéa (7) —{ [ pos (x)drjéa (%)

j Nl(x)R(x)Ba(x)dFjﬁa(r) - j N, (x)A(x)P?(x)dT"

L+,

J NAx)F(x)P%x)dr]aa(rni | N.OM) (xdr

J
J

v (1) -

6°(r) =



Collecting the discretized LIEs together with the discretized boundary

conditions - matrix form the system becomes
AX+Bx+Cx=Y

The Houbolt method is applied
— 2X1+Ar _5Xr + 4XZ’—AT B XT—ZAT

T+AT 2
AT
The backward difference method for “velocities
X2'+A2' o Xr
X =
T+AT A’Z'

System of algebraic equations for the unknowns

%

2 +AT 2
AT AT i T

1

{ 2 A+iB+C}x _ 1 (BA+BA7)x, + A—;
A At

{—4x

T—AT

+X, g, bt



Numerical examples
3.1 A central crack in a finite homogeneous strip
On the outer boundary of the strip a thermal load T, =6, =1deg

X,
T,

2a

2W

i

Fig.1 Central crack in a finite strip with prescribed temperatures on outer boundary and
crack surfaces

930 (31x30) nodes
The material coefficients for the BaTiO,-CoFe,O, composite
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Fig. 2 Node distribution and boundary conditions

The considered finite values of the pyroelectric and pyromagnetic

parameters reduce the crack-opening-displacements.
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Fig. 3 Variations of the crack-opening-displacement with the normalized coordinate
X, /2a

Oppositely, the electrical potential is significantly increased if finite
values of pyroelectric and pyromagnetic parameters are considered
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Fig. 4 Variations of the electrical potential along the crack face

The magnetic potential is slightly reduced for finite values of the
pyroelectric and pyromagnetic parameters (Fig. 5).
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Fig. 5 Variations of the magnetic potential along the crack face

In the crack tip vicinity, the displacements and potentials show the
classical \/r asymptotic behavior. Generalized intensity factors



|’<II ul
K / u
I _ i[Re(B)—].] 3 ,
Ke 2r W
K H

where the matrix B is determined by the material properties and
K, :Iing\/27zr033(r,0),

K, =Iirr3\/27zr013(r,0),
Ke = Iirrolx/27zrD3(r,O),
Ky :Iingx/ZﬂrB3(r,O).
The finite values of pyroelectric and pyromagnetic parameters have

vanishing influence on the stress intensity factor and its value is
K, =4.48-10°Pa-m"?,



The electrical and magnetic potentials , x on crack surfaces do not
result in a finite value of the EDIF,K_ and the MIIF, K .

It means that the crack-opening-displacement u, and the potentials y ,
u are coupled, but the SIF , and the EDIF and MIIF in this case are
uncoupled.

3.2 Edge crack in a finite strip under a thermal shock

On the left lateral side of the strip a cooling shock with Heaviside time
variation is applied. The right lateral side is kept at wvanishing
temperature. The material properties BaTiO,-CoFe,O, .



Fig. 6 Edge crack in a finite strip under a thermal shock on the lateral side

The electromagnetic and piezomagnetic parameters have only small
Influence on the displacement and electrical potential.
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Fig. 7 Time evolution of the crack displacement at the crack-tip vicinity
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Fig. 8 Time evolution of the electrical potential at the crack-tip vicinity

Variations of the displacement, electrical and magnetic potentials along
the crack face at the time instant z~ = 0.909 are presented in Fig. 9.
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Fig. 9 Variations of the displacement, electrical and magnetic potentials along the crack
face at 7 =0.909

One can observe that the gradient of the crack-opening- displacement
along x, is significantly larger than in the previous central crack problem.



Numerical results for the normalized SIF f, =K, /(\/na S..C.06, )
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Fig. 10 Time evolution of the normalized SIF in the cracked strip under a thermal shock



The normalized EDIF is defined as f, =AKE/(\/7za,811c1190 ) where
A=e,lhy, .
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Fig. 11 Comparison of the normalized SIF and EDIF in the cracked strip under a thermal
shock



An exponential variation
i (x) = T0exp(y¢%).

y=1 except the heat conduction and linear thermal expansion

coefficients where » =-1. Pyroelectric and pyromagnetic coefficients
are assumed to be zero.
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Fig. 12 An edge crack in a finite strip with graded material properties in x,



From the numerical analyses it follows that COD and potential values are
similar in the real homogeneous and FGM
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Fig. 13 Time evolution of the SIF in the cracked FGM strip under a thermal shock

thermal conductivity in FGM is smaller than in the homog. case



Conclusions

e A meshless local integral equation method is proposed for solution of
boundary value problems for coupled thermoelasticity, and magneto-
electro-thermoelasticity. Transient dynamic governing equations are
considered here.

e 2-D and 3-D problems

e |nertial and diffusive terms are approximated by Houbolt finite-
difference scheme and backward finite difference, respectively

e Material properties can be considered as continuously
nonhomogeneous.

e The analyzed domain is divided into small overlapping circular or
spherical subdomains. The Moving Least-Squares (MLS) scheme is
adopted for the approximation of the physical field quantities.

e The main advantage of the present method Is its simplicity and
generality.



