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Some integral identities for the fttndamental solutions of potential and elastostatic problems are 
established in this paper. With these identities it is shown that the conventional boundary integral 
equation (BIE), which is generally expressed in terms of singularintegrals in the sense of the 
Cauchy principal value (CPV), and the derivative BIE, which is similarly expressed in terms of 
hypersingular integrals in the sense of the Hadamard finite-part (HFP), can both be written as 
weakly-singular integral equations in a systematic approach. Discretization of the weakly-singular 
BIE leads to the weakly-singular boundary element formulation equivalent to the method of 
using the rigid body displacement to determine the diagonal submatrices, which involve the 
CPV terms and the geometric matrix C, in the conventional BEM. The discretization o f  the 
weakly-singular derivative BIE possesses a similar feature, i.e. no CPV and HFP are involved. 
All these suggest that the practice of calculating CPV or HFP (for boundary integrals) and the 
geometric matrix C, either analytically or numerically, is unnecessary in the BEM= The approach 
developed in this paper is applicable to other problems such as plate bending, acoustics and 
elastodynamics. 
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INTRODUCTION 
A universal practice in the BIE literature is to express 
the equations in terms of CPV integrals. The CPV terms 
are a consequence of analytically extracting the principle 
part, or free term coefficient, from the total integral. There 
are several ways to deal with these singular integrals. One 
choice is to evaluate the CPV analytically. This can be 
done for two-dimensional Problems with primitive el- 
ements (e.g. constant or linear elements) but is limited to 
simple elements due to the complexity of performing the 
integrations in closed form. A second choice is to evaluate 
the CPV numerically. A number of quadrature formulas 
have been developed, but due to the singular integrands, 
numerical computation of the CPV's is often inaccurate 
or requires great computation effort, which inevitably 
reduces both the accuracy and efficiency. Research con- 
tinues in this regard 1. A third choice is to avoid the direct 
computation of the CPV. A simple way to do so is through 
the use of rigid body displacement method 2,3 in which 
the diagonal submatrices containing the CPV and the  
principal part, or geometric (coefficient) matrix C (which 
is ½1 for a smooth boundary), are determined by the 
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off-diagonal submatrices. 
A question concerning this method has been: Is this 

an ad hoc approach or a general procedure? Although 
numerical examples of potential and elastostatic prob- 
lems have shown that the relationship underlying the 
rigid body displacement method exists even when the 
diagonal submatrices (containing CPV and the C matrix) 
are determined analytically, there is apparently no firm 
mathematical basis to answer the above question. This 
may be why the first two techniques (evaluate the CPV 
analytically or numerically) remain active research topics 
and are commonly used. 

As early as in 1977, it was shown by Rizzo and Shippy 4 
that the well-known BIE for elastostatic problems can 
be written in a weakly-singular form by using an integral 
expression for the geometric matrix C obtained by the 
rigid body translation solutions onto the BIE. This result 
reveals that the BIE is, in fact, weakly-singular, contrary 
to the widely held conception that the BIE is singular in 
the sense of CPV. Weakly-singular forms of the BIE for 
elastodynamic problems are also possible 5, even though 
the rigid body motion solution is not directly applicable. 
Unfortunately, it seems that the significance of the 
weakly-singular BIE's has not been fully appreciated in 
the BEM community. The singular integrals in the 
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conventional BIE’s have been considered the central issue 
in BEM work for the last decade, while the rigid body 
displacement idea has been considered ad hoc and often 
only used as a way of checking the accuracy of the 
diagonal submatrices when they are calculated by direct 
approaches. 

Similarly to the conventional BIE, the derivative BIE 
has generally been written in terms of Hadamard finite- 
part integrals (HFP), which have stronger singularities 
and are divergent in the sense of CPV. The derivative 
BIE is obtained by taking the spatial derivative (usually 
normal derivative) of the BIE at the source point and is 
extremely useful for some problems, e.g. the crack prob- 
lems and plate bending problem in which the BIE alone 
cannot provide enough algebraic equations. Numerical 
treatment of the HFP integrals is more troublesome than 
the CPV integrals. A common practice is to regularize 
the derivative BIE through integration by parts to reduce 
the stronger singularity. Alternatively, Rudolphi, et al.‘j 
have shown that the derivative BIE for 2D potential 
problems can be written in a weakly-singular (or regular) 
form if certain analytical manipulations are performed 
in its derivation. Similar weakly-singular derivative BIE’s 
for the scattering problems by a crack (an open surface) 
in 3D acoustic and elastic media are presented in Ref. 7. 

In this paper, weakly-singular BIE’s and weakly- 
singular derivative BIE’s for both potential and elastos- 
tatic problems (2D and 3D with closed and infinite 
domains) are derived in a straightforward and systematic 
way by applying three readily established identities for 
the fundamental solution of each problem. It is shown 
that the boundary element discretization of the weakly- 
singular BIE’s (independent of the types of boundary 
elements) gives rise to a weakly-singular boundary el- 
ement formulation, in which no calculations (either 
analytical or numerical) of the CPV’s and the C matrices 
are needed. This result is exactly the same as that by the 
rigid displacement method when applied to the dis- 
cretized equations of the conventional singular BIE. Thus 
it is shown that there is an explicitly mathematical 
justification for the rigid body displacement method. 
Furthermore, the discretized weakly-singular derivative 
BIE’s, not shown in this paper, will not require the 
evaluation of either the HFP’s or CPV’s. 

The mathematical approach developed in this paper 
to establish the weakly-singular BIE and the weakly- 
singular derivative BIE is readily applicable to other 
problems such as plate bending, acoustics and elasto- 
dynamics. 

SOME IDENTITIES FOR THE FUNDAMENTAL 
SOLUTIONS 

Some properties of the fundamental solutions for poten- 
tial and elastostatic problems are established in this 
section. Three integral identities satisfied by each funda- 
mental solution are presented and physical interpreta- 
tions are provided. These identities are subsequently 
applied in derivations of weakly-singular BIE’s and 
derivative BIE’s in the next two sections. 

Let Vc Rm be an arbitrary closed (interior) domain 
(m = 2 or 3 for 2D or 3D problems, respectively), S = 8Y 
andE=W’“- (V u S) as shown in Fig. 1. The following 
sifting properties of the Dirac-delta function’ 6(P, PO) 
will be applied in the establishment of the various 

identities: 

s f(P) W’s J’o) dW’) = 
V 

‘y ;y;. (1) 
, 0 9 

s m-g- W J’o) W’) 
V oi 

- & f(Po), 
01 VP,E v, 

= 
0, VP, E E; 
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(2) 

wheref(P) is an arbitrary continuous function in BP”, x0 
and x1 are the coordinates of the source point PO an d 
the field point P, respectively. 

(A) Potential problems 

The fundamental solution u*(P, PO) of the potential 
problem is defined by the following (operational) equa- 
tion, 

vZu*(P, PO) + 6(P, PO) = 0, VP, POE W”, (3) 

where V2( ) = a’( )/8x$x, = ( ),U (index notation is used 
in this paper). We can show that the following three 
identities are satisfied by u*(P, PO): 

f 
a u*(P, PO) IS(P) = 

-1, VP,EV 

s an 0, VP,oE; (4) 

The first identity 

The second identity 

s a2 
- u*(P, PO) dS(P) = 0, 

s &t&t, 
VP, E I’ u E ; (5) 

The third identity 

s 
u*(P, P,,) dS(P) 

s 
n,(P) $- 

0 

- c%-x0&& 
s 

u*(P, PO) W') 
S 0 

nok(Po), VP,EV 
= 

0, VP,EE; 
(6) 

where n = n(P) is the outward normal at P ES with 
direction cosines nk(P) and no = n,(P,) indicates an 
arbitrary direction with direction cosines n,,(P,) as 
depicted in Fig. 1. It is emphasized that the surface S in 
the above identities is an arbitrary closed surface in II?“. 
There are several ways to establish the identities (4-6) 
and we present two approaches in this section. 

An operational approach: 

The delta function 6(P,P,) is a generalized function in 
the sense that it must be understood by its actions (or 
operations) on other functions as shown in expressions 
(l-2). To satisfy equation (3), we recognize that the 
fundamental solution u*(P, PO) must also be considered 
a generalized function. For such generalized functions, 
however, the operation of integration by parts, which is 
the essence of the Gauss’ theorem (or the Green’s theorem 
for 2D problems), is still valid*. Thus, we can apply these 
theorems to the fundamental solution u*(P, PO) regardless 
of its singularity at the source point PO in the sense of 
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Fig. 1. An arbitrary closed domain V in R" 

ordinary functions. We refer to this an operational 
approach. It has been loosely employed in the BEM 
literature (e.g. Refs 2 and 9) for some time, but the above 
arguments have not been mentioned and the generalized 
nature of the treatment of the functions has not been 
recognized. 

To establish the first identity, we start with equation 
(3) and integrate both sides over the domain Vto obtain 

fv V2u*(P, PoktV(P) + fv 6(P' P°)dV(P) -- 0. (7) 

integral (wheref(P) = 1 and/9( )/On o = nolo ()/OXoi), one 
obtains the second identity (5). 

Now multiplying both sides of equation (8) by 
(xh - xok) and then integrating over V, one has 

~v (x.-Xo.)V2[~no u* (P, Po)~V(P) 

L o + (x~ - X o , ) ~  ~(P, Po~V(P) = o. (9) 

Again, by Gauss' theorem, the first integral is 

fv (x~- xot) V2[O~o U*(P, Po)dV(P) 

fv ,{Ou*~ = (x~-xo~lFn~)  dV 
\ O/,ii 

f~ , {Ou*~ 
- (x~ - Xo~MTnJ dV 

\ O/,i 

fS 02U" f$ OU" = (x~ - Xo~) ~ a s -  ~ ndS. (lO) 

Then applying expression (2) to the second integral in 
equation (9), where f(P)= (x t -  XoA one obtains the 
third identity (6) with the result (10). This completes the 
operational approach where the three basic identities 
involving the fundamentals of the potential problem have 
been established. Note that these are purely mathematical 
properties of the fundamental solution. 

Then by Gauss' theorem (in a generalized sense), the first 
integral is 

fvV2U*(P, Po)dV(P)=f¢ u*dV.~ = fsU~ntdS 

fs  
= ~n u*(P, Po) dS(P) 

and by substituting this result into equation (7) and using 
expression (1) for the second integral (where f(P)= 1), 
one immediately obtains the first identity (4). 

The derivative of u*(P, Po) with respect to no(Po) must 
also satisfy the differential equation 

v2r~-~u*(P, Po)l+~n-~o(P, Po)=O, VP, PoeR ". (8) 
L 0 J 

Integrating both sides of this equation over the domain 
V, as we did for equation (3), applying Gauss' theorem 
to the first integral and expression (2) to the second 

A classical limit approach: 
In contrast to the above, one can establish the same 

identities (4-6) by the usual limit approach. Consider now 
the 2D case (i.e. m = 2) for illustration. The fundamental 
solution for the 2D potential problem is 

l l n l  u*(P, Po) = 2n T (11) 
) 

where r = ]Po P ] and various directional derivatives of 
u*(P, Po) are 

0 1 
~--~ u*(P, Po) = 2nr (9. d) (12) 

u.(P,po) = 1 
c3n---o ~ r  (9" d°) (13) 

1[ j 
OnOnoU*( P, Po) = ~ (do" d) - 2(9- doX~- d) (14) 

and 9, d and d o are unit vectors along the r, n and n o 
directions (Fig. 1), respectively. In the sense of ordinary 
functions, u*(P, Po) and its derivatives are singular at 
P = Po (r = 0). According to the classical limit approach, 
a circular region Ve(Po) , centered at Po with radius e 
(which is small enough so that Ve c V for any Po ~ V), is 
removed. Then both sides of equation (3) are integrated 
over the punctured domain V- V8 to obtain 

ft" V2u*( P, Po) dV(P) = 0, VPo ~ V (15) 
4 

- g~(po) 
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V 

Fig. 2. Definitions of Ve(Po) and Se(Po) 

where expression (1) (with V being replaced by V -  Ve) has 
been applied. Since u*(P, Po) is well behaved for any 
P ~ V -  Ve, one can apply Green's theorem in the classical 
fashion. Thus equation (15) becomes 

fs ~ u*(P, Po)dS(P)+ fs~tPo ~ ~n u*(P, Po)dS(P) = O (16) 

where Se(Po) is the new boundary of V when V~(Po) is 
removed, Fig. 2. Then using (12) and noticing that on 
Se fl = - ~  and r = e, one has 

~tPo) -~n u*(P, Po) aS(P) = ~ - ~ ( -  1) dS = 1. (17) 

Substitution of this into equation (16) provides the first 
identity (4) with Po ~ V. 

Similarly, the integration of equation (8) over the 
domain V -  Ve(Po) yields 

fs c~2 u*(P, Po)dS(P) 

fs  ~2 + - -  u*(P, Po) dS(P) = O. (18) 
~teo) c~ncgno 

Using (14) and referring to Fig. 2 (note that the positive 
direction of $8 is clockwise), one has 

fs ~2 ,~eo ~ OnOn--'-~o u*(P, Po) dS(P) 

fs 1 dS (~ ,~o) = ~ 27t~ ---~ 

1 f2~ = ~ c o s / ~ ( - ~ r / ~ )  = o. (19) 

Thus, equation (18) becomes the second identity (5) with 
Po e V. 

Multiplying equation (8) by (Xk -- Xok) and integrating 
over V -  V~(Po), the following is obtained after application 
of Green's theorem (cf. equations (9) and (10)): 

s (Xk -- Xok ) O~On ° u*(P, Po) dS(P) 

-fsnk(P) S--~ooU*(P, Po) dS(P) 

fs 02 + ,ti, o~!(xt - Xot ) ~ u*(P, Po) dS(P) 

- fs nk(P) ~--~o U*(P' P°) dS(P) = O" (20) 
e(P O) 

By expression (14) and Fig. 2, the third integral in (20) 

(x k - Xok ) u*(P, Po) dS(P) 
e(P O) 

f ~  e.~o)]as = fs~ (Xk - Ok L2ZCe2 

-- ~ (.~ ~)¢" ~o) a s  

= 21re cos 0 cos(O - ~)(-edO) 

1 1 
= ~cos • = ~ nok(Po). (21) 

Similarly, by expression (13) the last integral in (20) 

"leol nh(P) ~ u*(P, Po) dS(P) 

f; 1 = ( -  cos 0) cos(0 - 0¢) ( - ed0) 

1 
= - ~ nok(Po). (22) 

Substitution of (21) and (22) into equation (20) yields the 
third identity (6) with Po ~ V. The derivations of the 
identities (4-6) with Po ~ E are trivial. This completes the 
derivations by the limit approach for the potential 
problem. 

( B) Elastostatic problems 
* denotes the fundamental solution (Kelvin) for If uki 

elastostatic problems and if P~i and a'i, are tractions and 
stresses resulting from u~i, respectiveIy, then the stress 
tensor a*ij must satisfy the equilibrium equation 

a*~.~(P, P0) + 6ki~(P, Po) = O, VP, eoeR m (23) 

where 6k~ is the Kronecker delta andfuc~(P, PoJ represents 
the volume density of the i-th component  of a unit 
concentrated force acting at the source point Po(e R m) in 
the x k direction. The index k in ak* j, P*i and u~i indicates 
the direction of the unit force. 

The following three identities can be ~ readily established 
for this fundamental solution: 

The first identity 

fs ~- ~k,, v I,o~ v, 
P~i(P;Po) dS(p)=[  O, ~ VPoeE; (24) 
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The second identity 

fsd_~o p*(p, po) dS(P)=O , VPo~VuE; (25) 

The third identity 

fs O u~,(P, eo) dS(e) P.,,.n.(P) a- oj 

- (x ,  - Xo~) ~ p~(e, eo) dS(e) 

= f6~6jz, VPo • V, (26) 
[ 0, VPoeE; 

where Euu is the elastic modulus tensor which relates 
stress ~ with displacement u* by 

o-* 0 = * (27) E i j s t  u k s .  t 

with Elm = E;m- Eijt~yEu~. 
The above identities (z4--zvl are readily derived by the 

operational approach which we have applied to the 
potential problem. The first is immediately obtained by 
integrating equation (23) over the closed domain V and 
the second identity (25) is derived by integrating the 
derivative equation 

[ ~  ] d a a~t~(P, Po) + kl~x.. ' 3(P, Po) = O, 
,s Oj 

V P, Po• R" (28) 

over the domain V. The derivation of the third identity 
(26) is now carried out in some detail. Multiplying 
equation (28) by (x I -Xot) and then integrating the 
resulting equation over V, one has 

fv (xz-x°t) I~-~oJ¢*~(P'P°)l.s dV(P) 

o 
+ 3u (xz - Xol) ~ 6(P, Po) dV(P) = 0. (29) 

Bl~Gauss' theorem (in the generalized sense) and express- 
ion (2"/), the first integral in equation (29) is converted to 

= (xt  - Xo~) ~ k ~ , .  dV 
°Xoj d,, 

fv O a* - -  ( x l  - Xot ) ,~  : - -  aa, dV 
OXoj 

f, f o = ( x , -  dS - 4 ,  dV 

f ,  x ) Iv o ,¢,sdV = (xz -  ol aXoj p ' ~ a s -  E , . , ~  . 

fs O, Is a = (x,-xo,)~Xofk, d S -  En,tns~xojU;,dS" 

(30) 

By expression (2), the second integral in equation (29) is 

fv a (xz - Xot) ~ iS(P, Po) dV(P) 

- ~ (xt - Xo~) = 6jr (31) 
OXoj 

Substituting (30) and (31) into equation (29), one obtains 
the third identity (26) with Po • V and this concludes the 
derivation of the three identities for the elastostatic 
fundamental solution. 

It is emphasized that the manner of derivation of the 
identities (24-26) is not crucial. They can also be derived 
in a more classical way (the limit approach), as we have 
done for the potential problem, and other ways that will 
be pointed out in the following sections. What is import- 
ant is the fact that these identities are properties of the 
fundamental solutions and can play a significant role in 
weakly-singular BEM formulations. 

(C) Physical interpretations 
Physical interpretations of the identities (24-26) for 

elastostatic problems are as follows, and the identities 
(4-6) for potential problems have similar interpretations. 
Identity (24) corresponds to the unit concentrated force 
(acting at Po) which is balanced by the tractions on surface 
S, where the domain V is cut from the infinite space R", 
if Po • V. The resultant of the tractions on S is zero if the 
source point Po is outside the domain V (Po e E). 

The term containing the derivative of the delta function 
with respect to xoj in equation (28) represents a unit 
concentrated moment acting at Po. Thus the derivatives 
of it*. n* and u*, with resrmct to x~, are the stress, traction g l j '  r ~l ~1 x- - Ud 

and displacement tensors, respectively, corresponding to 
this unit concentrated moment. The physical meaning of 
the second identity (25) is that the resultant force of the 
traction due to this unit concentrated moment on S is a 
zero force regardless of where the moment is located. The 
third identity (26) suggests that the resultant moment of 
the traction on S with respect to the source point Po is 
balanced with the unit concentrated moment if Poe V or 
is zero if Po E E, although the physical meaning of the 
every term in identity (26) is not readily identified. 

W E A K L Y - S I N G U L A R  BIE'S A N D  DERIVATIVE 
BIE'S F O R  P O T E N T I A L  P R O B L E M S  

To derive weakly-singular forms of a BIE, Laplace's 
equation for the potential problem, i.e., 

V2u(p) ----- 0, V P ~ t) (32) 

is first considered, where t) c R" is the physical domain 
in which a solution is desired. The boundary of f~ is 
denoted by F (f~ can be closed or infinite) as shown in 
Fig. 3. 

By means of the fundamental solution defined by 
equation (3) and Green's second identity (the reciprocal 
theorem for the Laplacian operator), the solution of 
equation (32) can be expressed by the representation 

V P o ~ .  (33) 
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(a) C!--~-- dom-ln 

Fig.& 
(b) Infinlte domain Q 

Two kinds of domains 

The directional derivative of the representation at Po in 
direction no(Po) is 

On--~o u(Po) = u*(P, Po) ~n u(P) 

- u(P) ~ u*(P, Po) dr(P), W'oSr~. (34) 

It is interesting to note that the identities (4-6) devel- 
oped in the previous section can be derived from the 
above two representations/ff~ is a closed domain. First, 
if one chooses u(P) = 1, YP e f~ u F (a particular solution 
of equation (32)) in (33) and (34), one then obtains the 
first identity (4) and the second identity (5), respectively. 
Further, if u(P)= (x~- xo~), V P~f l  u F (another par- 
ticular solution of equation (32)) in (34), the third identity 
(6) results. 

To derive the weakly-singular BIE from the represen- 
tation (33), let Po tend to the boundary F. This can be 
done by putting Po on F first and then shrinking the 
small surface Fe(Po) which is the part outside the domain 
f~ of a sphere (or a circle if m = 2) with radius e and 
center Po, Fig. 4. Before the limit is evaluated, one has 2.3 
from (33) 

u(Po) =lira fr [u*(P, Po) ~9 . o ~ Fn u(e)  

-- u(P) -~n u*(P, Po) dF(P) 

+ l im u*(P, Po) ~n u(P) 
r-.O ~(Po) 

-u (P )  ~ u*(P, Po)] dr(P), v P o ~ r  (35) 

where F, is the remaining part of F outside the sphere 
centered at Po. It is easily verified that the limit of the 
first integral on F8 vanishes, i.e., 

fr lira u*(P, Po) -~n u(P) dF(P) = 0. (36) 
e-.*O B(pO ) 

Instead of evaluating the limit of the second integral on 
Ft of equation (35), one can convert it into the limit of 
an integral on F,. 

If l) is a closed domain, then by applying the first 
identity (4) with V being the domain enclosed by the 
surface S = F~ u Fe(Po), one has 

f r  0 C{Po} ~n u*(P, Po) dF(P) 

f o -- - 1 - , ~ u*(P, Po) dr(e).  (37) 

Thus by the mean value theorem and then the use of (37), 
the second integral on F8 of equation (35) is converted to 

0 
lira u(P) ~ u*(P, Po) dF(P) 
e--.O 8(pO ) 

= lira ~ u*(P, Po) dF(P)U(Po) 
e-*O e(po ) 

= - u(Po) - lira f r  0 ,-.o ~ ~n u*(P, Po) dr(P)U(eo). (38) 

By virtue of expressions (36) and (38), one obtains the 
following weakly-singular form of the BIE for the closed 
domain from (35) 

= u*(P, Po) -~n u(P) dF(P), ¥Po s F (39) 

where J'r [ ]dF -- lira fro C ]dF and the integral on the left 
e-bO - .  

hand side does not exhbit the O(1/r) (for m = 2) or O(1/r 2) 
(for m = 3) singularity/f u(P) is continuous at Po ~ F. 

If fl is an infinite domain, one can apply the second 
part of the first identity (4), i.e. with E being the domain 
outside the surface S = Fc • Fs(Po), to obtain 

f 0  ,~po~ ~ u*(p, Po) dr(P) = - c ~n u*(P, Po) driP). 

(4O) 

This can also be obtained by applying the first part of 
the identity (4) with V being the domain enclosed by 
S = F~uF~uFe(Po) , where F~ is the surface of a suffi- 
ciently large sphere (or a circle if m = 2) with radius R, 
see Fig. 3(b). Thus by the use of (40), the second integral 
on Fe of equation (35) becomes 

/'-\ ) / 
/ "-~C_........~ ~ 

f~ 

Fig. 4. Definitions of Fs(Po) and Fc 
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f r  0 lim u(P) On u*(P, Po) dF(P) 
8-.0 ZlpO ) 

= _ l i m  ~ r 0 ,~o ~ ~n u*(P, Po) dr(P)u(Po). (41) 

Substitutions of (36) and (41) into (35) yield the following 
weakly-singular BIE for the infinite domain 

f u(P°) + Jr -~n u*(P, 

fr 
= u*(P, eo) ~n u(P) dF(P), ¥ Poe  F. (42) 

To derive the weakly-singular derivative BIE from the 
representation (34), let Po tend to F following the same 
procedure as for the above ordinary BIE and with no 
taken as the outward normal at Poe F (Fig. 4). Before 
the limit is evaluated, one has, from (34), 

0% u(J'o) = .1~o ~ u*te, Po) u(P) 

- u(P) ~ u*(P, Po) dr(P) 

+ lim ~ u*(P, Po) ~n u(P) 
g"~O 

£~2 Po)] dF(P), - ,4J') ~ u*(P, YPoEF. 

(43) 

Iff~ is a closed domain, then by the mean value theorem 
and the use of the third identity (6), with V being the 
domain enclosed by S = F c u Fs, the first integral on Fe is 

,~o , ~no u*(P, Po) u(P)dF(P) 

=lira f r  O ~-.o , ~ u*(P, Po)n~(P) dr(e)u.~(Po) 

= lim ok(Po) + (Xk -- Xok) 7-7--~ u*(P, Po)dF(P) 
e'-*O c u r e  

c3 dF(P) ]u,k(po ) 
- frc nk(P) ~no u*(P,  Po) 

= On ° u(Po) + lim - -  u*(P,  Po) 
e-*o ,ur~ anOno 

x [u,h(eo)(X~ -XoD] dF(/') 

lim f • --o .Jr~ ~ u*(P, Po)[u,k(Po)n~(P)] dF(P). (44) 

For the second integral on Fe of equation (43), the density 
function u(P) is expanded about Po using Taylor's 
theorem, and the second identity (5) is invoked to provide 

fr c~Z lim u(P) u*(P, Po) dF(P) 
g"~O ~ 

-- lira u*(P, Po)[u(Po) + u,h(Po) (x~ - Xok) 
g"*O II ~ 

+ 0(~2)] dF(P) 

fr Oz 
= -- lim u*(P, Po)[u(Po)] dF(P) 

~"*0 c 

+ lira u*(P, Po) 
g"*O II ~ 

× [ U , k ( P o ) ( X k  - -  Xok)] dF(P) (45) 
where it is noted that 

lira u*(P, Po) O(~2) dF(P) = 0. 

This latter observation is easily verified by considering 
the orders of (02/OnOno) u*(P, Po) and the area (or length) 
of Fe for 3D (or 2D) problems. 

Substituting (44) and (45) into equation (43), one finds 
that the integrals on Fe cancel to leave the following 
weakly-singular derivative BIE for the closed domain 

~ u*(P, Po)[u(P) - u(Po) 

-- U,k(Po)(X k -- Xok)] dF(P) 

=fr~9-~ou*(P, Po)[U,~(P)-u,~(P)]n~(P)dF(P), 

YPo~F (46) 

in which the integral Sr[ ]dF = lira ~rc[ ]dF. 
e"*O 

Again, as for the ordinary BIE of equation (39), the 
limit interpretation of this integral equation as an im- 
proper one is not required, since both integrals are 
regular, with at most weakly singular integrands, as 
P --* Po. This weakly-singular derivative BIE for potential 
problems in a closed domain was first presented for the 
2D ease in Ref. 6 without using the identities developed 
in this paper and was derived by Rudolphil o by imposing 
simple solutions onto the limit form of the representation. 
From the derivation and the final form of equation (46), 
it is noticed that the derivative of the function u(P) is 
required to be continuous at Poe F, which is a stronger 
condition on equation (46) than that on equation (39). 

Iffl is an infinite domain, the applications of the second 
identity (5) and the third identity (6) will provide the 
following weakly-singular derivative BIE from equation 
(43) for the infinite domain, 

a fr O2 an---~ u(Po) + ~ u*(P, eo)[u(e) - u(eo) 

- u,~(eo)(X~ - XoD] dr(P)  

0 
=fr~noU*(P, Po)[u, dP)--u,k(Po)]n,(P)dF(P), 

¥ Po ~ F. (47) 

To the authors' knowledge, the weakly-singular BIE (42) 
and the weakly-singular derivative BIE (47) for the infinite 
domain have not been reported in the literature. 
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In the BEM literature, the ordinary BIE is conven- 
tionally written in the following sin#ular form 

C(Po)u(Po) = *(P, Po) -~n u(P) 

-- u(P) ~n u*(P, Po)'] dF(P), VP o ~ F (48) 

where the integral of the second term on the right hand 
side is a CPV and the coefficient C(Po) is given by (cf. 
equations (35) and (36)) 

C(Po) = 1 + lim ~n u*(P, Po) dF(P), VP o ~ F. (49) 
~-*0 ~(PO) 

If F is smooth at Po, then the evaluation of expression 
(49) provides C(Po)= 1/2. The singular BIE (48) with 
C(Po) defined by (49) is valid for both closed and infinite 
domains. With the applications of the first identity, or 
equations (37) and (40), the expression (49) for C(Po) can 
be converted to 

C(P°) = - ~nn u*(P, Po) dF(P), ¥Po ~ F (50) 

for a closed domain and 

C(Po) = 1 - ~ u*(P, Co) dr(P), Veosr  (51) 

for an infinite domain, respectively, where the integral is 
a CPV. Substitutions of (50) and (51) into the singluar 
BIE (48) will, again, yield the weakly-singular forms (39) 
and (42) of the BIE for the closed and infinite domains, 
respectively. This equivalence, or transformation from a 
singular form to a weakly-singular one, clearly shows 
that the BIE, in nature, is regular as demonstrated more 
than a decade ago in Ref. 4 in the context of elastostatics. 

WEAKLY-SINGULAR BIE'S A N D  DERIVATIVE 
BIE'S FOR ELASTOSTATIC PROBLEMS 
The development of weakly-singular forms for the BIE's 
and the derivative BIE'S for elastostatic problems par- 
allels the previous development for potential problems. 
In the absence of body forces, the equilibrium equations, 
in terms of stress tensor a o, are 

aij, j (P  ) -~- 0, VPEfl (52) 

where ~ c R m as in Fig. 3. By means of the fundamental 
solution defined by equation (23) and Betti's identity in 
elasticity, the solution of equation (52) can be expressed 
by the following integral representation T M  

Uk(P°) = .It u~P, Po)Pi(P) dr(P) 
l 

.It P*i(P' P°)ui(P) dr(P), V Poe t~ (53) 

where u i and Pi are displacement and traction components 
respectively. The gradient of the displacement field is 
given by 

a 

uk(P°) = _It 
d 

aXoj . -  ~ u~l(e, Vo)pi (V) dr(P) 

f o - ~ p~le, Po) ui(P)dr(e), 

V Po ~ [~" (54) 

I fD is a closed domain, then expressions (53) and (54) 
can be used to derive the three identities (24-26). First 
with the choice ui(P ) = 1 (VP6~ u F) and substitutions 
into (53) and (54), one obtains (24) and (25) with Po ~ V 
(= fl), respectively. Then with u,~P) = xi - Xoi (VP ~ D u F) 
in (54), one obtains (26) with P0 ~ V. 

Now by letting Po tend to F in representation (53) as 
was done for the potential problem (Fig. 4), one has 

uk(Po) = ~1~o fr ~ u*t(P, eo)pi(P) dr(P) 

lim f p*i(P, Po)u~(P) dF(P) 
e"*O J r c  

+ lim f u*j(e, Po)Pi (P) dF(P) 
e'-*O Jr 'e 

- lim ~ p~i(e, Po)ui(e) dF(P), ¥Po ~ F. (55) 
e-~O JFe 

Similarly to the derivation for the potential problem, the 
limit of the first integral on F~ vanishes. With the 
applications of the first identity (24) and the mean value 
theorem, the limit of the second integral on Fe is 
converted to 

P[(P, Po) ui (P) lim dF(P) 
g~O J rg  

= - uk(Po)- lim f p[(P, eo) dF(P) ui(Po) (56) 
g"*O JrC 

for a closed domain and 

lim f p*i(P, Po)ui(P) dF(P) 
e"*O JFg 

P 

= - lim / P'~i( P, Po) dF(P)u~Po) (57) 
~:--*O JF¢ 

for an infinite domain, respectively. Substitutions of (56) 
and (57) into equation (55) yield the following weakly- 
singular BIE's, i.e. 

fr  P~i(P, Po)[Ut(P) - ui(Po) ] dF(P) 

= ~r u~,(P, Po)pt(P) dF(P), VP o F (58) 

for the closed domain, and 

uk(P°) + Yr P*~P' P°)Eui(P) - ui(P°)] dF(P) 

= fr  u~,~P, Po)PI(P) dF(P), vPo F (59) 

for the infinite domain, respectively. The integral on the 
left hand side of equation (58) or equation (59) is not a 
strongly singular (Cauchy-type) integral since the dis- 
placement u t is continuous by the assumption in elasticity. 

To obtain the weakly-singular derivative BIE's based 
on expression (54), let Po tend to F in equation (54) (see 
Fig. 4), i.e. 
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li~ma fr  ~ u*~(P, Po)pi(P) dF(P) Oxoj Uk(Po) = ~ o c 

lim I r  e-.o ~. ~ ~ p~(P, Po)ui(P) dF(P) 

lim I~ + ~-.o ~. ~ ~ u~,(P, Po)p~(P) dF(P) 

lira I,- e-.o . .  ~ ~ p*,(P, Po)ui(P) dF(P), 

VP o ~ F. (60) 

With the applications of the second identity (25) and the 
third identity (26), while using Taylor's theorem to 
expand ui(P ), the last two integrals (on Fe) in (60) are 
found to be 

lim I.- 0 a ~-.o , .  ~ ~ u~,(P, Po)p,(P)dF(P) = ~ Uk(Po) 

+ lim .It _~0 p.~p, po)EU,3(foXx t _ Xot)] dF(P) 
e-,O __cuFe ~XOj 

- lira j r  a u~P, Po)[ai~Po)nt(P)] dF(P) (61) 

and 

lira f r  0 .-.o . ~ p~,~P, Po) utP) dr(P) 

= --lim t -  O p.~p, Po)Eui(eo) ] dr(e) 
~-.o Jrc UX,oj 

lim I~ g + ~-.o ,~ ~ ~ P~"(P' P°)Eui3(P°) (xl - x°ffl dr(P) 

(62) 

respectively, for a closed domain. Substitution of these 
results into equation (60) yields the following weakly- 
singular derivative BIE for the closed domain 

P~(P' Po)[ui(V) -- u~Po) 

- u~.l(Po)(x I -- Xot)] dF(P) 

= fr d-~ff *(P' P°)Eau(P)--~u(P°)]n'(P)dr(P), 

V Po ~ F. (63) 

Similarly, the weakly-singular derivative BIE for an 
infinite domain is found to be 

uk(P°) + fr _ P o )  

I'u~(P) -- ui(P o) - ui3(Po)(X ~ - Xo~) ] dr(P) 

= fr  O-~oj U~(P, Po)[°u(P) - a~:(Po)]nAP) dF(P), 

YP o ~ F. (64) 

Equations (63) and (64) are the weakly-singular forms of 
the derivative BIE for elastostatic problems similar to 
equations (46) and (47) for potential problems. It is noted 
that, for the integrals to be regular, the stress field tro(P ) 
must be continuous at Po ~ F. 

The weakly-singular equations (59), (63) and (64) have 
not been reported in the literature. 

The ordinary BIE for the elastostatic problem is 
conventionally written in to following singular form 

Cki(P°)ui(P°) = t~ u*i(P' P°)P'(P) dF(P) 
d l  

-- .tr P*i(P' P°)ui(P) dr(P), VPo F (65) 

where the second integral on the right hand side is a CPV 
and the coefficient Cki(Po) is given by 

Ck~Po) = 6k~ + lim [" P*(P, Po)dF(P), ¥Po ~ F (66) 
~ 0  JFe(P O) 

in which Fe(Po) is defined as before (Fig. 4). If F is smooth 
~i~i. The singular BIE (65) with at point Po, C~i(Po)= 1 

Cki(Po) defined by (66) is valid for both closed and infinite 
domains and is the most popular form in the BEM 
literature for dastostatic problems. By applying the first 
identity (24) one can write Cu(Po) in (66) as 

Cki(P°) = - f r  P~i(P' Po) dF(P), VP o E F (67) 

for the dosed domain, and 

Cki(P°) = 6ki - f r  P~i(P' Po) dF(P), YP o e F (68) 

for the infinite domain, respectively, where the integral 
is a CPV. Notice that expression (67) can also be obtained 
from equation (65) directly by introducing a rigid body 
translation, e.g. setting u,~P)= 1(¥P~fluF). The result 
obtained in this way was first reported in Ref. 11. 
However, it is pointed out that, for an infinite domain, 
rigid body translations cannot be imposed directly onto 
the original BIE (65). In deriving equation (65) for an 
infinite domain, it is assumed that the two boundary 
integrals over F R (as mentioned in the previous section, 
see Fig. 3 (b)) tend to zeros as the radius R tends to 
infinity. This condition would be violated if a rigid body 
translation were imposed. Thus modifications must be 
made to include the two integrals over F x in (65) before 
introducing the rigid body translation for the infinite 
domain. 

Substitutions of expressions (67) and (68) into equation 
(65) will provide the weakly-singular BIE's (58) and (59), 
respectively. Expressing the BIE for elastostatic problems 
in the form of equation (58) in this way was first 
introduced in Ref. 4 where the equation is arranged in a 
slightly different way. 

The weakly-singular BIE and the weakly-singular 
derivative BIE will result in weakly-singular boundary 
element formulations as developed in the following 
section. 

WEAKLY-SINGULAR BOUNDARY ELEMENT 
FORMULATIONS 
The boundary element formulation based on the weakly- 
singular BIE's (58) and (59) for elastostatic problems is 
demonstrated in this section. The equivalence of this 
formulation to that obtained by applying the rigid 
displacement method in the traditional boundary element 
formulation is emphasized and discussed. Results pres- 
ented in this section are independent of the boundary 
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elements employed (constant, linear, quadratic, or higher ~I~ 
order), since the weakly-singular features of the formu- 
lations are identical. 21 

Let the boundary F of the domain [2 be discretized 
into a total of M surface elements (for m = 3) or line I¢'N1 
elements (for m = 2) and let N be the total number of 
the boundary nodes. Matrix notation is employed in this 
section in which the subscripts i, j .... no longer refer to 
the coordinate directions, but to global node numbers. 
Now suppose that the source point Po is placed at the 
i-th node on the boundary (i = 1,2 ... . .  N). Then following 
the standard procedure (see, e.g. Ref. 2-4), one can write 

or 
the discretized form of equation (58) as 

{ u l }  _ l l  l 

[ ~ i l  "-" ~/ /  - ' '  ~iN~ U/ -- Ui 
UN : Ui (,,) 

where uz and pi are the displacement and traction vectors 
at the i-th node (i = 1, 2 . . . . .  N), respectively (each has 
3 components for m = 3, or 2 for m = 2), and the 3 x 3 
matrices 101 u and Gij (or 2 x 2 matrices if m = 2) are 
summations of the integrals with traction kernel and 
displacement kernel over the elements of which the j-th 
node is a local node. The matrix 1°1~ is a CPV since j = i 
means that the source point i is on the elements where 
the integrals are calculated. This matrix, Ill,, is eliminated 
from the boundary element formulation. 

The vectors % - u~ 6i = 1,2 ..... N) in the above equation 
can be regarded as new displacement vectors (the relative 
displacement of the j-th node to the i-th node for fixed 
i). Rearranging this equation, one has 

(') o,,/.,.1 c.,1....,,....,.1 :i 

i =Eo,1 o,, 

Combining the two terms on the left hand side, one 
obtains 

.. Ii i [.,, .,.] 

(',) = [G~ .. .  Gi~...  GiN] P:t (69) 
P 

where i = 1, 2 , . . . ,  N. Notice that I:t, has been eliminated. 
If one writes all these equations together, one obtains the 
following system of equations 

a,, ... 8,2: air a ,1{: 1 ) "2 N 

O1" {i 1 
G 2 , 1  P2 (70) 

= G21 G22 

Ha = Gp 

where H and G are 3N x 3N (or 2N x 2N if m = 2) 
matrices, u and p are vectors of 3N (or 2N) components, 
and the submatrices of H are given by 

H i i =  -- ~.~ Hij 
j~i  

H~j = 10io, for j ¢ i 

(71) 

(72) 

with i, j = 1, 2, . . . ,  N. Expression (71) shows that the 
diagonal submatrices of the H matrix in equation (70) 
are determined by the off-diagonal submatrices in the 
same row and therefore the calculation of the CPV in 
f l ,  is eliminated. The above result is valid for the closed 
domain. 

Comparing the weakly-singular BIE's (58) and (59) for 
closed and infinite domains, respectively, we notice that 
the only difference is the additional free displacement 
term in (59). Thus, for an infinite domain the discretization 
scheme employed above, with a slight modification, will 
yield the following counterpart of equation (69) 

II~il"''(l--J~*~lgliJ)'''lOliNl : i  

{,) (73) = [Gi'  "'" G" "'" G'N] : i  

w h e r e i = l ,  2 ..... N a n d l i s t h e 3  x 3 ( o r 2 x 2 i f m = 2 )  
idenitity matrix. And the final system of equations for an 
infinite domain will be of the same form as that of 
equation (70) in which only the diagonal submatrices of 
the H matrix are modified as follows 

N 
H ,  = I -  ~ Hij (74) 

]#i  

for i =  1,2 . . . . .  N. 
Thus the weakly-singular boundary element forulation, 

represented by equation (70) with submatrices H# given 
by (71) for a closed domain or (74) for an infinite domain, 
is established based on the weakly-singular boundary 
integral equation (58) or (59), respectively. The procedure 
to obtain this result is mathematically strict and no new 
assumptions or approximations are introduced. The 
advantages of this formulation are obvious. First, there 
is no computation if the CPV's in this formulation which 
will eliminate the error that exists if the CPV's are 
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obtained by numerical integrations. Secondly, the coef- 
ficient Ck,~Po) need not to be calculated in any sense 
(analytically or numerically), which can save a great deal 
of effort for a non-smooth surface in 3D problems. All 
the benefits from this formulation will make BEM 
computer programs simpler and more efficient. 

The weakly-singular boundary element formulation in 
equation (70) with expressions (71) and (74) is identical to 
that of the rigid body displacement method 2'a (the third 
choice to deal with the CPV's  mentioned in the intro- 
duction section). Thus, it is believed that this paper has 
provided a mathematical verification for this method 
which is based on the discretized BEM formulation. It 
is also suggested that the implementation of the physical 
concept (the rigid body translation) is in agreement with 
the mathematical interpretation (the weakly-singular 
BIE) in the BEM formulation. This agreement is embed- 
ded in the boundary integral equation and the boundary 
element formulation. In fact, the first author has shown 
directly 12, without applying the weakly-singular BIE, that 
the diagonal submatrices Hi~ obtained by using the rigid 
body displacement method is exactly equal to those 
obtained by calculating the CPV's  and the C matrices 
analytically on the same kind of elements. All these show 
that the calculations of the CPV's (for boundary integrals) 
and the C matrices are unnecessary in the BEM. 

A similar weakly-singular boundary element formula- 
tion of the weakly-singular derivative BIE's in which no 
CPV's or HFP ' s  are involved, can be developed through 
a discretization procedure similar to that demonstrated 
in this section, although more manipulations are required. 

CONCLUSIONS 

Three integral identities for each of the fundamental 
solutions of potential and elastostatic problems are 
established in this paper. These identities can be employed 
in the derivation of the weakly-singular BIE's and 
weakly-singular derivative BIE's in a systematic way. The 
boundary element formulation, based on the weakly- 
singular BIE's, is shown to lead to the same expressions 
for the diagonal submatrices Hii as that of the rigid body 
displacement method when applied to the discretized 

equations of the conventional singular BIE. Thus the 
rigid body displacement method is shown to be an exact 
approach to determine the diagonal submatrices. The 
practice of calculating the CPV's in conventional BIE's 
or the HFP ' s  in conventional derivative BIE's and the 
geometric matrices C, either analytically or numerically, 
cannot be expected to give better numerical solutions 
than the weakly-singular boundary element formulation 
shown herein. 
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