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A weakly singular form of the hypersingular boundary integral equation (BIE) (traction equation) 
for 3-D elastic wave problems is developed in this paper. All integrals involved are at most weakly 
singular and except for a stronger smoothness requirement on boundary elements, regular quadrature 
and collocation procedures used for conventional BIEs are sufficient for the discretization of the 
original hypersingular BIE. This weakly singular form of the hypersingular BIE is applied to the 
composite BIE formulation which uses a linear combination of the conventional BIE and the 
hypersingular BIE to remove the fictitious eigenfrequencies existing in the conventional BIE formula- 
tion for elastic wave problems. Numerical examples employing different types of boundary elements 
clearly demonstrate the effectiveness and efficiency of the developed formulation. 

1. Introduction 

In a recent paper [1], a weakly singular form of the hypersingular BIE for 3-D acoustic 
problems was developed and applied successfully in Burton and Miller's composite BIE 
formulation [2] using a linear combination of the conventional BIE and the hypersingular BIE 
to furnish unique solutions at all frequencies. This work is extended to the case of 3-D elastic 
wave problems in the present paper. 

First, a weakly singular form of the hypersingular BIE (associated with the traction) for 3-D 
elastic wave problems is derived. The procedure in deriving and the final result of this weakly 
singular form are almost parallel to those for the acoustic case. One difference is that the 
tangential derivatives of the density function, instead of the total gradients, are used in the 
two term subtraction of the density function associated with the hypersingular kernel. This 
'tangential form' of the hypersingular BIE was first presented in [3] for elastostatic problems. 
The integral identities for the static Kelvin solution (fundamental solution) [4] are employed in 
the derivation of this weakly singular form. 
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This weakly singular form of the hypersingular BIE for radiation and scattering problems in 
an elastic medium has the same advantages as those mentioned in [1] for the acoustic case. 
Since all integrals involved are at most weakly singular, no special integration quadratures are 
needed. With due attention to increased smoothness requirements, quadratures used for the 
conventional BIE can be applied directly. Hence .the discretization of this weakly singular 
form of the hypersingular BIE is quite straightforward. 

Second, the weakly singular form of the hypersingular B IE developed is applied in the 
composite BIE formulation which is a generalization of Burton and Miller's formulation 
originated for acoustic problems to elastic wave problems. In the literature, contrary to the 
acoustic case, only a few references can be found for the work of overcoming the fictitious 
eigenfrequency difficulty (FED) in the conventional BIE formulation of elastic wave prob- 
lems. The modified kernel method was given in [5] without numerical implementation. The 
BIFILM method [6, 7], which is a variation of the CHIEF method [8] for acoustic problems, 
was developed and used successfully to some extent in [7, 9]. Most significantly, the composite 
BIE formulation for elastic wave problems was developed and the uniqueness of s¢~iution at all 
wave numbers, regardless of the type of boundary conditions or type of input waves, was 
proved by Jones [10]. A transformation was used in [10] to reduce the order of singularity of 
the hypersingular BIE but that transformation is limited to the use of fiat patches (constant 
elements); also, no numerical results were reported. 

In the present paper, numerical examples are provided using the composite BIE formula- 
tion, with the weakly singular form of the hypersingular BIE as key ingredient. No limitation 
to the use of fiat elements is present here. Two types of boundary elements are implemented 
and tested for this composite BIE formulation, namely, non-conforming quadratic elements 
and the Overhauser C l continuous elements which were developed in [11, 12] and im- 
plemented for acoustic problems in [1, 13]. The numerical results clearly show the effective- 
ness and efficiency of the developed composite BIE formulation in overcoming the fictitious 
eigenfrequency difficulty for elastic wave problems. 

2. Weakly singular form of the hypersingular BIE 

Consider elastic waves in linear, homogeneous and isotropic media. The starting point is the 
following representation integral involving boundary values of time-harmonic elastodynamic 
variables [6] (index notation is used in this paper) 

C~j(Po)u~(Po) ffi fs [U~j(P, Po)t~(P) - T~j(P, Po)uj(P)] dS(P) + u~(Po), (1) 

is the where u i and ti are the total displacement and traction components, respectively, u~ 
incident displacement field (for a scattering problem), U~j(P, Po) and T~j(P, Po) are the 
dist, lacement and traction tensors, respectively, of the time-harmonic Kelvin solution which is 
frequency dependent, the coefficient tensor C~i(Po) = 8~j, ½8~ or 0 when the source point Po is 
in the exterior domain E, on the boundary S (assume it is smooth) or in the interior domain B, 
respectively (Fig. 1). Equation (1) with Po E S is the conventional BIE for elastic wave 
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Fig. 1. Notation. 

problems. This BIE contains strongly singular integrals of the CPV type and can be 
reformulated in a weakly singular form if an integral expression for Co(Po) is employed [4, 6]. 

To derive the weakly singular form of the hypersingular BIE, we take the derivatives of (1) 
when Po E E and multiply both sides with the elastic modulus tensor Eok t and no,, which is the 
direction cosine of a vector n o associated with Po, to obtain the following integral expression: 

fS 1 ¢r~k(Po)nok = [Kq(P, Po)tj(P) - Hij(P, Po)uj(P)] dS(P)+ ¢r,k(Po)nok 

where O'~k is the stress field and 

O Tpj( e, eo ) 
Hij(P, Po ) -~ Eikpq OXoq 

OU~j(P, Po) 
n ok, Kq(P, Po ) = Eik,,q OX oq n ok' 

V P o ~ . E  , 

(2) 

The second integral in (2) is hypersingular when Po is placed on the boundary S. To regularize 
this hypersingular integral, we write identically for 1"o ~ E, 

f H,j(e, Po)Uj(e)dS(e) 

= fs [Hq(P, Po) -  flq(P, Po)]Ui(P)dS(P) 

Ou i 
+ 

+uj(eo) fs fto(e' ,Do)dS(e) 

Ouj fs + ~ (Co) (~. - ~o.)fi,,(e, Co) dS(e) Veo ~ e ,  (3) 
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in which 

lq, j(P, to)= E,~ 
o~(e, Po) 

OXoq 
nok , 

where 7"p~(P, Po) is the traction tensor of the static Kelvin solution, ~:a and ~:oa (summation 
over a implied in (3), a = 1, 2) are the (first two) coordinates of the field point P and the 
source point Po, respectively, in a local curvilinear coordinate system O~:~:2~:3 defined on S 
with ~ ,  ~:2 in the tangential directions and ~:3 in the normal direction (Fig. 2). 

From the transformation relations, we have 

o~ o4, 
O~:a (6a - ~:oa)= ~ ea,(Xt- Xo,) 

for a function 4~, where eat =O~,,/Oxt (a = 1, 2; l = 1, 2, 3) are the first two column vectors of 
the inverse of the Jacobian. Using this fact and the following three integral identities 
developed in [4]: 

fsTpi(P, Po)dS(P)=O VP o E E, (4) 

fs 0 OXoq Tpj(P, Po) dS(P) = 0 VP o E E,  

0 ?t,j(p ' Po)dS(e)= Ejt,,fs f., (x, - Xo,) T~o " # Op,(P, Po)dS(P) n"(P) ~-~o,, 

(5) 

VPo6E, 
(6) 

where 0~(P, Po) is the displacement tensor of the static Kelvin solution, we can evaluate the 
last two terms in (3) as follows: 

u~(P°) fs filo(P' Po) dS(P) = O, (7) 

and 

3 

XI 

Fig. 2. Coordinate transformations. 

~t 



Y.J. Liu, F.J. Rizzo, Hypersingular boundary integral equations 135 

Ou i 
0~ (Po) 

= Ouj 

- -  O U ]  

fs ( ~,, - ~o,,)H#( P, Po) dS(P) 

a f~,(p, Po) dS(P) (P°)e='E'*nqn°k fs (xt- Xol ) 

O Op,(P, Po) dS(P) (P°)e~aE'kmn°kEim fs n,(P) 

8uj 
= 0¢~ (P°)e=tEim fs #'"(P' P°)n'(P)dS(P) 

8up 
= 0~,, (P°)e~'qEikPq fs Ko(P' P°)n*(P)dS(P) 

8up 
= O~= (P°)e"qEikm fs [Ko(P' P°)n*(P) + ~ii(P' P°)n°*] dS(P), (8) 

in which 

Ko(e, Po) = E,,,,,~ ao ,(P, Po) 
8Xoq l l o k  • 

The integral fs I"i,( P, Po)nok dS(P) (=0 VP o e. E) is added to the expression (8) so that the 
whole integrand will be weakly singular when Po is placed on S since 

fs [Ko(p, Po)n,(P) + T/i(P, Po)nok] dS(P) 

O Op,(P, Po)[no,n,(P) - n,(P)nok] dS(P) - f E.,,~ ~-~ 

where To = Ea, pqtaO, n./aXq]n*' Uo = O# and #O0/OXok = -O0o/Ox, have been applied. Sub- 
stitutions of (7) and (8) into (3) give 

fs Ho(P, Po)uj(P) dS(P) 

= fs [Ho(P' Po)- fflo(P, Po)]U,(P)dS(P) 
[ ou, ] 

+ fs fflo(e' eo) u , (e) -  u,(eo)- " ~  (eo)(~,, - ~o=) dS(e) 

aup 
+ Eiknqeaq 0!~ (Po) fs [/(0(P' P°)nk(P) + f''(P' P°)n°*] dS(P) VeoeE. 

(9) 

Similarly, the strongly singular integral in (2) can be regularized as 
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K,,w, fs tK,,(e, eo) 6<p, + eo)]tAP) dS(P) 

f~ TIM', eo)[tAe) - tAPo)] OS(P) we o ~ E ,  (10) 

by the use of the first identity (4). 
Substituting (9) and (10) into the integral representation (2), letting Po --> S and choosing n o 

to be n(Po) (i.e. nok = nk(Po)), we obtain the weakly singular form of the hypersingular BIE, 
or traction BIE, as follows: 

[ o., ] 
t,(Po) + fs flo(P' P°) uj(P) - uj(Po) - -~. (Po)(~. - ~o.) as(e)  

+ fs [no(e' eo)- flo(e, eo)luAe)dS(e) 
OUp 

fs [Ro(P' eo)nk(P) + ?j,(e, Po)nk(Po)] dS(P) + (IL) 

= fs [Ko(e' Po) + i"j,(P, Po)ltj(P) dS(P) 

fs '(P, E S ,  (11) - fj,(~', eo)[tj(p)- t~(eo)] dS(e)  + t, eo) '¢ Po 

where every integral is at most weakly singular. For an isotropic elastic medium, we have 

E,,,, = ~808,, + z(8,~8,, + 8,,8j~), 

where A and/~ are the Lam6 constants. Thus, the weakly singular form of the hypersingular 
BIE can be written finally in the following matrix form: 

[u(P) u(Po) -~Ou ~o ] + fss ~(e,  eo) - - (eo)( - ~o~) dS(e) t(eo) 

+ f~ [n(~', e o ) -  ~(~', J'o)lu(e)dS(e) 

fs 0. + [~(e, eo)Q.(e)+ f'(e, eo)Q.(eo)l dS(e) ~ (eo) 

= fs [K(P, eo) + ft(e, po)]t(e) dS(e) 

- f~ f'(e,  eo)[t(e)- t(eo)] OS(~') + t'(e, eo) Veo ~ s,  (12) 

in which summations over a are implied for the first and third integrals (~ = 1, 2), u and t are 
the displacement and traction vectors, respectively, t * is the traction vector corresponding to 
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the incident wave, and the matrices 

Q,,(P) = A[e,,n'(P)] t + i~[e,,nt(p)] + tz[et,,n(P)]l , a = 1,2,  

with e~ = [e~l, e~2, e~3] t and n(P) = [nl(P ), n2(P ), n3(P)] t. The matrices H(P, Po), H(P, Po), 
V'(P, Po), K(P, Po) and T(P, Po) in (12), containing the kernel functions, are provided in 
Appendix A. The traction equation for 3-D exterior elastostatic problems can be extracted 
from (12) by letting H(P, Po)= H(P, Po) and K(P, Po)= V'(P, Po). 

A C ~ continuous requirement on the density function (the displacement vector u) is 
imposed on (12), at least in the neighborhood of the source point Po, as for the acoustic case, 
see [1, 14, 15]. This smoothness requirement for the existence of the hypersingular integral as 
the source point tends to the boundary [15], is also demanded for the validity of the weakly 

• • • ! 

singular form of the hyperslngular BIE. Thus, theoretically speaking, only C continuous 
boundary elements (or elements of less smoothness across the edges of elements but smooth 
enough in the neighborhood of the nodes, such as the non-conforming quadratic elements 
[1, 14]), can be employed in the discretization of (12). References [1, 15] contain considerable 
details which are directly relevant to the present class of problems. 

The discretization of (12), although a vector equation, is quite straightforward because of 
the use of tangential derivatives of displacement vector, instead of the total gradient. The 
discretization procedure described in [1] for the acoustic wave problem can be readily 
generalized to the elastic wave problem here. Two types of boundary elements (Overhauser 
C ~ elements and non-conforming quadratic elements) are implemented and tested for (12) as 
well as (1). Both of them satisfy the smoothness requirement. 

The composite BIE formulation is formed by a linear combination of the conventional BIE 
(CBIE) (1) and the hypersingular BIE (HBIE) (12), which can be expressed symbolically as 
CBIE +/3HBIE = 0 where/3 is a coupling constant. In acoustic wave problems, this composite 
BIE formulation was proved by Burton and Miller [2] to have unique solutions at all wave 
numbers, provided the coupling constant/3 is a complex number. This conclusion was shown 
by Jones [10] to be true also for elastic wave problems. Results of numerical studies on this 
composite BIE formulation, which are believed to be the first reported data in the literature 
for elastic wave problems, are presented in the next section. 

3. Numerical examples 

The numerical examples presented here are for time-harmonic scattering from a traction- 
free spherical void of radius a, which is impinged upon by a plane longitudinal incident wave 
(P-wave) of unit magnitude (Fig. 3). The Overhauser C ~ continuous elements and the 
non-conforming quadratic elements [1, 13] are applied. The magnitudes of the scattered radial 
displacements at R = 5a are plotted versus the angle 0 for several fictitious eigenfrequencies 
and compared with the analytical solutions [16, 17]. In all cases, Poisson's ratio v = 1/3, M is 
the number of boundary elements used and N is the number of corresponding nodes. 

Figure 4 shows the results at the wave number kLa = ~ (P-wave) by the conventional BIE, 
hypersingular B IE, and composite B IE (with coupling coefficient /3 = 0.3i) using 80 Over- 
hauser elements. The result by the conventional BIE deteriorates at this fictitious eigen- 



138 Y.J. Liu, F.J. Rizzo, Hypersingular boundary integral equations 

X 

Elastic Medium 

/ 

:~ incident wave Y 

Fig. 3. The spherical void. 

% 

frequency with a large condition number of 1.5 × 104 for the system of equations, while the 
hypersingular and composite BIE formulations provide fairly good results with condition 
numbers of 86 and 27, respectively. 

The results of a test on the coupling coefficient/3 used in the composite BIE formulation are 
shown in Fig. 5 for kLa- 4.4934 which is also a fictitious eigenfrequency. It appears that the 
result is not very sensitive to the choice of the values of/3, as long as/3 remains an imaginary 
number and its magnitude is not too small (we see that the results f o r / 3 -  1.0 and 0.01i 
deteriorate). Although it is difficult to tell that the result is the best, the condition number is 

0,4 

" 0,3 

t0.2 

t 
~0.1 

g ~ v 

I> 

0 
0 20 40 60 80 100 120 

O (de,roe) 

"'An~;s~uuon 
Conven#onal BIE 

b 

Hypemlngular BIE 
o 

Composite BIE 

tP 

140 160 180 

Fig. 4. The three BIE formulations, kLa = 7, Overhauser elements (M = 80, N = 78). 
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Fig. 5. Test  on the coefficient fl, kLa = 4.4934, Overhauser elements (M = 152, N = 150). 

indeed the lowest when/3 = 0.2i, which is in agreement with the rule of thumb, proposed for 
acoustic problems (see e.g. [1] for references), that/3 should be related to the wave number k 
by /3 = i /k to obtain the best result. This rule of thumb has also been shown analytically 
[18, 19] to be the 'almost optimal' choice of the coupling parameter for a circle in 2-D and a 
sphere in 3-D in cases of acoustic and electromagnetic scattering problems. For elastic wave 
problems there are two wave numbers, namely, kL for P-wave and kr for S-wave. Wave 
number k L is used here and it works well. We suspect that studies of the type [18, 19] for 
elastic waves would produce similar results for a near optimal parameter based on k t.. 

Figure 6 is a comparison of results using the Overhauser C' continuous elements and the 
non-conforming quadratic elements, at kLa =4.4934 using the composite BIE formulation. 
The two meshes used here have been shown in [13] to be able to provide comparably accurate 
results for acoustic scattering at ka = 2"tr with a ratio of about 3/4 for the total CPU time used 
by the Overhauser elements and the non-conforming elements. The same conclusion can be 
drawn here for the elastic wave scattering, but at a lower frequency, i.e. kL a =4.4934. 

The frequency is increased to kL a = 2~r in Fig. 7 and the same two meshes for Overhauser 
and non.conforming elements as those in Fig. 6 are used first. The results start to deteriorate 
for these two meshes. A finer mesh is therefore used with 80 non-conforming elements (624 
nodes). However, no marked improvement in the results is observed. This certainly suggests 
that the composite B IE formulation for elastic wave problems, which is the vector counterpart 
of the acoustic problems, is much more demanding. Due to the demands on computer 
resources and some difficulty in generating fine meshes for Overhauser elements, no further 
attempt at using finer meshes is made (see [1] for a similar acoustic example for ka up to 5~r). 
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4. Discussion 

The effectiveness of the composite BIE formulation, proposed by Burton and Miller [2] in 
the context of acoustic wave problems, and extended by Jones [10] to elastic wave problems, 
to overcome the fictitious eigenfrequencies, is demonstrated numerically for elastic wave 
problems for the first time in this paper, with the weakly singular form of the hypersingular 
BIE as a key ingredient. 

The weakly singular form of the hypersingular BIE, presented as (12), for elastic wave 
problems should be used with caution with objects without smooth surfaces and continuous 
boundary data (e.g. traction). One safe approach is to apply (12) in these situations anyway 
but with non-conforming elements where all the quantities are smooth or continuous at the 
nodes. 

The composite B IE formulations, developed in [1] for exterior acoustic wave problems and 
in this paper for exterior elastic wave problems, can be easily generalized to transmission 
problems such as fluid-fluid, fluid-solid and solid-solid problems where the fictitious eigen- 
frequency difficulties associated with the exterior problems also exist. 

In closing, note that the hypersingular BIE, or traction BIE, is written analytically in a 
weakly singular form in this paper before any discretization procedure and computation are 
attempted. This greatly reduces the level of difficulties in applying the hypersingular BIEs and 
at the same time greatly increases their appeal to BIE/BEM analyses of many other 
engineering problems. However, it must be admitted that while difficulties with the hyper- 
singular BIEs are reduced to manageable levels, even for vector problems, the implementa- 
tion of the weakly singular form demands extra effort. Nevertheless, computing time for the 
formation of that part of the matrix which involves the hypersingular B IE for the present class 
of problems is only about 120% of that part which involves the conventional BIE. While the 
hypersingular BIE in the weakly singular form as described in this paper is our preference 
because of our experience with it to a large extent, other methods of regularization of the 
hypersingular BIEs are available (see the survey in [20]). Especially noteworthy among these 
methods, we believe, is the procedure by Guiggiani et al. [21]. 

Finally, we remark that the application of the hypersingular BIE to crack-like or thin-body 
problems and thin-inclusion problems is a very interesting and ongoing research topic [22-24]. 
Certainly, new areas of application of the hypersingular BIE will continue to arise as the 
desirable features of the hypersingular BIEs and effective ways of computing with them 
become more and more realized in the BIE/BEM community. 
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Appendix A 

The expressions for components of the kernel matrices H(P, Po), H(P, Po), K(P, Po), 
/~(P, Po) and T(P, Po) in (12) are provided in this appendix. 

Let t, be Poisson's ratio, tt and A the Lam6 constants, k L the wave number for P-waves, k r 
the wave number for S-waves, and K = kr/k L. Using x = k,r and y = krr, where r = IP----~, 
we define the following functions: 

C, = ( 3 -  3ix - x 2 ) e  ix , D, = (ix - 1)e i+ , 

F~ = ( 1 5 -  1 5 i x -  6 x  2 + ix3)e u , G I = ( 1 0 5 -  105 ix -  4 5 x  2 + 1Oix 3 + x 4 ) e  ix 

and C 2, D 2 ,  F 2 and G 2 with y replacing x; 

where 

o r  

C = C 2 - C I , D = D 2 - D n , F = F 2 - F n , G = G 2 - G n ; 

C7= ~ = 31(x, y ) +  - e  is , /)  = ~ = -l(x, y) ,  

F [ 1 ( _ 6  + ix)eiX F =  ~ = 151(x, y ) +  ( - 6  + iy)e ' y -  "3K 

G [ 1 (_45+ lOix+x2)e iX  ] ¢7 = ~ ffi 1051(x, y) + ( - 4 5  + 10iy + y2)eiY - "-2K 

1 l(x, y) = ~ [(1 - i y ) e  'y - (1 - ix)e 'X] ,  for y >~ Y,:r, 

l(x, y ) =  1 1 ( 1 -  iy) ~ ( iy)  "-2 + ( I -  ix) ( ix)  "-2 
7. ,  ' n - 2  el=2 

for y ~ Yet , 

where y=, is a small number (e.g. 0.01). 
Thus, we have the following expressions for the components Hq(P, Po), flq(P, Po), 

Kq(P, Po), Kq(P, Po) and 7"q(P, Po) of H(P, Po), /t(P, Po), K(P, Po), V'(P, Po) and T(P, Po), 
respectively, 

Or ]aq 
/~ {(1 - v) [ (4F- C2)(r knok) ~n - 2(2C + D2)(nkno~,) Hq(P, eo)ffi 4~r(1- v)r 3 

- 2 ( 1 -  v)(2C" + D2)n,noj 

1'2 ~2 2 ik L, - 4 ( 1 -  v)C_.]no~n j + 1-'2v KLr e -4vD n 

+ 212(1 - =,)F- vCt](r,kno,)r,,n j + (1 - =,)(4F- C2)(r,kno,)nir,j 

Or Or 
+ (1 - v)(4P- C2) ~ r,noj + 212(1 - v )P-  vC,] ~n n°'r'J 

Or 
+ ( 1 - u ) [ ( 4 F -  C2) (nknok  ) -- 4C,(r,,no, ) -~n ]r,,r4} , 
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Ko(t', Po)= 

Iz {[3v(r  knok) Or ] 4~(1 - v)r 3 ~nn + (1 - 2v)(nknok) 8 o + (1 - 2v)n,no~ 

- (1 - 4V)noin j + 3(1 - 2v)(rknok)r in  j 

¢3r 
+ 3v(rknok)n~rj + 3v -~n r'in°j 

or [ } 
+ 3(1 - 2v)  ~ no,rj + 3 v(nknok) -- 5(rknok) "~  r ir.j , 

1 - 
8.,.,.(1.- ,,)r 2 { - 2 ( 1 -  ,,)(2,2 + D2)(r ~no~)8,j- 2 ( 1 -  ,,)(2c + D2)r,no~ 

m 

- 2 1 2 ( 1 -  v ) ~  + vD,lno, r.j + 4 ( 1 -  v)F(r knok)r.,r.j} , 

and 

, o ) =  - 

1 
811"(1 -- v ) r  2 [(1 - 2v)(rknok)60 + (1 -- 2v)r,noj 

+ 3(r,knok)r,ir O] 

_1 [ ~nOr v)r2 (1 - 2v)  $o - (1 - 2v)r~nj 
8,n'(1 

] + 3 ~ r~rj . 

- (1 - 2 V)noir,j 

+ (1 - 2v)nir,] 

I t  is no t iced  t ha t  as wave  n u m b e r s  t end  to zero ,  i .e.  as x and y - , 0 ,  

C t = C 2 = 3 ,  D 1 -- D 2 - - 1 ,  

C -  1 p_  3 
4 ( 1 - , )  ' 4 ( l - v )  ' 

¢ ~ _  15 

4(1 - u) " 

A p p l y i n g  the  a b o v e  resul ts ,  we can  check  tha t  

as x and  y--> 0, as should  be the  case.  
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