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In this paper, the composite boundary integral equation~BIE! formulation is applied to scattering of
elastic waves from thin shapes with small butfinite thickness~open cracks or thin voids, thin
inclusions, thin-layer interfaces, etc.!, which are modeled withtwo surfaces. This composite BIE
formulation, which is an extension of the Burton and Miller’s formulation for acoustic waves, uses
a linear combination of the conventional BIE and the hypersingular BIE. For thin shapes, the
conventional BIE, as well as the hypersingular BIE, will degenerate~or nearly degenerate! if they
are appliedindividually on the two surfaces. The composite BIE formulation, however, will not
degenerate for such problems, as demonstrated in this paper. Nearly singular and hypersingular
integrals, which arise in problems involving thin shapes modeled with two surfaces, are transformed
into sums of weakly singular integrals and nonsingular line integrals. Thus, no finer mesh is needed
to compute these nearly singular integrals. Numerical examples of elastic waves scattered from
penny-shaped cracks with varying openings are presented to demonstrate the effectiveness of the
composite BIE formulation. ©1997 Acoustical Society of America.@S0001-4966~97!05008-X#

PACS numbers: 43.35.Zc@HEB#

INTRODUCTION

The modeling of thin shapes or thin bodies~including
shell-like structures, thin inclusions, thin voids or open
cracks in solids, thin-layer interfaces in composites, etc.! is
of increasing importance and interest in the fields of acous-
tics, elastodynamics, and fluid-structure interactions. It is
well known that the conventional boundary integral equation
~CBIE! formulations, as well as the hypersingular BIE
~HBIE! formulations for acoustic and elastic wave problems,
will degenerate or break down when they are applied to thin
bodies.1–3 This degeneracy or breakdown is due to the fact
that the equation on one side of the thin shape is almost the
same as the equation on the other side, see Fig. 1. Eventually
the two equations from the two sides become identical when
the thickness of the thin shape approaches zero. In the litera-
ture, the BIE formulations developed for dealing with the
thin shape breakdown can be divided into two groups: one
applied to theone surface modeland one to thetwo surface
modelof the thin shape. One exception to this classification
is the multidomain method4,5 which can be used for both one
surface and two surface models.

The one surface model of a thin shape is an idealized
model in which the middle surface of the thin shape is cho-
sen and usually the hypersingular BIE is applied in terms of
the pressure jump~for acoustic problems! or the displace-
ment jump ~for elastodynamic problems! across the thin
shape. This approach has been applied successfully to the
problems of scattering and radiation ofacousticwaves from
thin rigid bodies, see, e.g., Refs. 6–11. The scattering of
elasticwaves from planar cracks in three-dimensional elastic

medium is also studied using this one surface approach.7,12,13

This single surface model for thin shapes is efficient in mod-
eling and computation, as long as the hypersingular integrals
in the BIE formulations are dealt with properly. However,
there are some drawbacks and limitations with this approach.
For example, effects of the varying thickness of a thin body
or the opening of a crack cannot be studied using this simple
model. The use of the jump terms~e.g., pressure jump!, in-
stead of the usual boundary variables~pressure!, in the hy-
persingular BIE may also present some inconveniences in
the study of a regular body with thin shapes, where the regu-
lar BIE and the hypersingular BIE for thin shapes need to be
used together.10

The two surface model of a thin shape is a more realistic
model in that the geometry of the thin shape is not altered.
The effects of the thinness and other details of the thin shape
can be addressed easily using the two surface model. Early
studies of scattering ofacoustic waves from thin shapes
~rigid disks and fluid inclusions with varying thickness in
acoustic media! can be found in Refs. 2, 3, and 14. In these
studies, the conventional BIE is used on one surface of the
thin shape and the hypersingular BIE on the other surface to
obtain a nondegenerate system of equations, see Fig. 2. The
use of the two surface model is more computation intensive
than the one surface model, but it does provide more infor-
mation about the physics of the problem than the one surface
model, as demonstrated in these studies. For example, in the
case of acoustic scattering from a rigid disk, the scattered
fields from the disk of a finite thickness 2h will depart from
those fields from the disk of zero thickness, whenh is greater
than 5% of the radius of the disk. This difference is more
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pronounced in the near field or when the incident wave is in
the direction parallel to the surfaces of the disk, especially if
the disk is a ‘‘rippled’’ one.2,3 All these studies on acoustic
waves from thin shapes show that the two surface model
using the combination of CBIE and HBIE can provide a
general BIE formulation and useful information in the analy-
sis of thin shapes. The same BIE formulation can be applied
to thin shapes with zero thickness or small thickness, as well
as to bulky bodies.

The multidomain method4,5 is simple and straightfor-
ward. It can be applied to thin shapes with zero thickness or
nonzero thickness. In this method, the difficulty of dealing
with the degeneracy of the conventional BIE for thin shapes
is avoided by introducing an imaginary interface to divide
the domain into an interior subdomain and an exterior sub-
domain. The conventional BIE is applied in the two subdo-
mains with meshes on the thin body and interface surfaces,
and the continuity conditions are imposed on the interface.
This results in a larger system of equations and hence in-
creases the burden of computation, because of the introduc-
tion of the imaginary interface. The multidomain method has
been used effectively for problems of radiation and scattering
of acousticwaves from thin rigid bodies.4,5 Although this
approach may be applied to thin body problems posed in a
more general setting~e.g., with varying thickness!, ‘‘it may
not be an ideal tool for the thin-body radiation and scattering
problem in which a relatively large imaginary interface sur-
face is usually required.’’9

In this paper, the idea of using a combination of the
conventional BIE and the hypersingular BIE for thin
shapes2,3,14 is extended to the problems of scattering and ra-
diation ofelastic wavesfrom thin shapes in elastic media. An
alternative form of the CBIE and HBIE combination is used
here for the thin shapes, that is, a linear combination of the
CBIE and HBIE applied on both surfaces of the thin shapes,
see Fig. 2. This composite BIE formulation for elastic wave
problems is an extension of the well-known Burton and Mill-

er’s BIE formulation15 for acoustic wave problems, which
can remove the fictitious eigenfrequency difficulties in exte-
rior problems. It has also been shown analytically,3 and will
be demonstrated numerically in this paper, that this compos-
ite BIE formulation will not degenerate when applied to thin
shapes modeled with two distinct surfaces. Thus Burton and
Miller’s type of BIE formulation can overcome the fictitious
eigenfrequency difficulty and the thin body break down dif-
ficulty at the same time, being likely the most sound and
robust BIE formulations for the acoustic and elastic wave
problems.

For elastic wave problems, the conventional BIE formu-
lation, which contains strongly singular kernels, has been
applied successfully tobulky-shapedvoids or inclusions for
almost a decade~see, e.g., Refs. 16–19!. On the other hand,
the hypersingular BIE, which contains hypersingular kernels
and usually written on one surface of a crack and in terms of
the crack opening displacement~COD!, has been employed
almost exclusively to the problem of scattering fromclosed
or tight cracks~see, e.g., Refs. 7, 12, and 13!. To the authors’
best knowledge, no BIE solutions have been reported in the
literature for the problem ofelastic wave scattering from
opencracks orthin voids, or thin inclusions. On the other
hand, many real problems and experimental calibrations deal
with open cracks, notches, and rough cracks with asperities,
for which the ideal,one surface modelis insufficient. Fur-
ther, many situations of interest involve scattering from thin
inclusions and thin-layer interfaces where a shell-like one
surface model or lumped-parameter model of the thin region
is inadequate. The present study aims to fill this gap and
provide a BIE modeling tool for thin shapes with more real-
istic geometry, by using the composite BIE formulation.

This composite BIE formulation applied in this study
was originally developed in Ref. 20 to overcome the ficti-
tious eigenfrequency difficulty existing in the conventional
BIE formulation of theexterior elastic waveproblems. To
avoid the hypersingular integrals, the hypersingular BIE is
recast in a form in which all integrals are at most weakly
singular and thus no special numerical schemes are needed.
Nearly singular and nearly hypersingular integrals in this
composite BIE formulation, which arise when parts of the
boundary surface become close to one another, as is the case
for thin shapes, are transformed into sums of weakly singular
integrals and nonsingular line integrals. Thus, no finer mesh
is needed to deal with these nearly singular integrals. In or-
der to demonstrate the effectiveness of the composite BIE
formulation for problems with thin shapes, numerical ex-
amples of scattering from penny-shaped cracks with varying
openings are given for both longitudinal and transverse inci-
dent waves. Results from these numerical example show that
the composite BIE formulation is very stable for all ranges of
the thinness of a thin shape, even when the two surfaces
touch each other. It is also shown, as already demonstrated in
acoustics,2,3,14 that scattered fields for an open crack with an
opening of 2h will depart noticeably from those fields for a
tight crack whenh is larger than 5% of the radius of the
crack, especially for plane shear waves with an oblique inci-
dent angle. All these suggest that the composite BIE formu-
lation, as proposed in this paper for analyzing thin shapes, is

FIG. 1. Degeneracy of the CBIE and HBIE for thin shapes.

FIG. 2. Nondegeneracy of the combinations of the CBIE and HBIE for thin
shapes.
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not only robust but also useful in providing information
about the physics of such problems.

I. THE COMPOSITE BIE FORMULATION

Consider a region~a body or a void! with the boundary
S and immersed in a 3-D infinite, linear elastic medium. The
conventional BIE~CBIE! for problems of scattering of time-
harmonic waves in theexteriordomain can be written in the
following weakly singular form18 ~index notation is used in
this paper!:

ui~P0!1E
S
@Ti j ~P,P0!2T̄i j ~P,P0!#uj~P!dS~P!

1E
S
T̄i j ~P,P0!@uj~P!2uj~P0!#dS~P!

5E
S
Ui j ~P,P0!t j~P!dS~P!1ui

I~P0!, ;P0PS, ~1!

whereui and t i are the total displacement and traction vec-
tors, respectively,Ui j andTi j the two dynamic kernels~de-
pendence on the frequency is implied!, T̄i j the static kernel,
ui

I the displacement vector of the incident wave,P and P0

the field and source points, respectively. For interior prob-
lems, the free termsui(P0) andui

I(P0) in Eq. ~1! will not be
present.

The hypersingular BIE~HBIE!, or traction BIE, can be
written in the following weakly singular form,20

t i~P0!1E
S
H̄i j ~P,P0!

3Fuj~P!2uj~P0!2
]uj

]ja
~P0!~ja2j0a!GdS~P!

1E
S
@Hi j ~P,P0!2H̄ i j ~P,P0!#uj~P!dS~P!

1Ejkpqeaq

]up

]ja
~P0!E

S
@K̄ i j ~P,P0!nk~P!

1T̄j i ~P,P0!nk~P0!#dS~P!

5E
S
@Ki j ~P,P0!1T̄j i ~P,P0!#t j~P!dS~P!

2E
S
T̄ji ~P,P0!@ t j~P!2t j~P0!#dS~P!1t i

I~P0!,

;P0PS, ~2!

in which Hi j andH̄ i j are the dynamic and static hypersingu-
lar kernels, respectively,Ki j andK̄ i j another pair of singular
kernels,nk the components of the normal,Ei jkl the elastic
modulus tensor,ja and j0a (a51,2) the two~tangential!
coordinates of the pointsP and P0 , respectively, in a local
curvilinear coordinate system defined on the surfaceS and
eak5]ja /]xk evaluated atja5j0a (k51,2,3). Details of
the derivation, notation and expressions of all the kernel
functions in Eq.~2! can be found in Ref. 20. This HBIE was

originally proposed to deal with problems of scattering and
radiation frombulky-shapedobjects.

Both the CBIE and HBIE will degenerate, i.e., become
unsolvable or ill conditioned, when they are appliedindi-
vidually to thin shapes, e.g., to crack-like problems~imagine
that a bulky void becomes a thin void or open crack! as well
as true-crack problems,2,3 see Fig. 1. This degeneracy is
manifested by the fact that algebraic equations generated
from the BIE on one surface of the crack are~almost! the
same as the equations generated on the other surface of the
crack. The condition number of the system of equations will
increase sharply as the two surfaces of the crack become
close. As discussed in Refs. 2 and 3, one remedy to this
degeneracy associated with the crack-like~or thin-body!
problem is to apply CBIE on one surface of the crack and
HBIE on the other surface. This approach, using two sur-
faces in the model, has been demonstrated to be very effec-
tive for acousticwave scattering from thin rigid screens2 and
thin inclusions.3 Alternatively, and perhaps more advanta-
geous due to the symmetry, it was found that Burton and
Miller’s composite BIE formulation,15 using a linear combi-
nation of the CBIE and the HBIE as shown symbolically by

CBIE1bHBIE50 ~3!

~b is the coupling parameter! will not degenerate when it is
applied on both surfaces of a thin void or thin body,3 see Fig.
2. This composite formulation was originally proposed in
Ref. 15 to overcome the fictitious eigenfrequency difficulty
~FED! existing in the BIE formulations for exterioracoustic
wave problems. Recent implementations of this composite
BIE formulation to deal with the FED, with weakly singular
forms of the HBIEs as key ingredients, can be found in Ref.
20 for elastic wave problems and in Ref. 21 foracoustic
wave problems.

The composite BIE formulation~3!, in the context of
elastic wave problems, using the linear combination of Eq.
~1! ~CBIE! and Eq.~2! ~HBIE!, is employed in this study to
investigate the problem of elastic wave scattering from thin
shapes~e.g., open cracks! in 3 D. This composite BIE for-
mulation is quite general and can be applied to many other
thin body problems, such as thin inclusions, thin-layer inter-
faces in composites and so on. The main objective here is to
demonstrate the advantages of this composite formulation
which can overcome both the fictitious eigenfrequency diffi-
culty and the thin body difficulty in the conventional BIE
formulation. The acoustic wave counterpart of this formula-
tion ~Burton and Miller’s BIE formulation! has the same
feature. Thus this composite BIE formulation can provide
unique solutions for scattering from bodies with any shapes
~including thin shapes! and at any frequencies. This means
that one does not need to switch BIE formulations when
dealing with fictitious eigenfrequency and thin body prob-
lems.

II. NEARLY SINGULAR AND HYPERSINGULAR
INTEGRALS

To apply the composite BIE formulation to thin-body
problems, one has to overcome another difficulty, i.e., the
nearly singular and nearly hypersingular integralswhich
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arise when collocation point is on one surface of the thin
body and integration need to be performed on the other
nearby surface. Many numerical schemes for computing the
nearly singular integrals can be found in the literature of the
boundary element method~BEM!. Among all the available
methods, the line integral approach, i.e., transforming the
nearly singular integral into a sum of weakly singular inte-
grals and nonsingular line integrals, is believed to be the
most effective and efficient one.22 It is the method adopted
and implemented in this study.

A typical nearly singular integral in Eq.~1! ~CBIE! is
the one with the stress kernel functionTi j and integrated on
a surfaceDS with source pointP0 nearby, Fig. 3. HereDS
can be one element or several elements on the surfaceS.
This nearly singular integral can be dealt with by adding and
subtracting terms in the following manner:

E
DS

Ti j ~P,P0!uj~P!dS~P!

5E
DS

@Ti j ~P,P0!2T̄i j ~P,P0!#uj~P!dS~P!

1E
DS

T̄i j ~P,P0!uj~P!dS~P!

5E
DS

@Ti j ~P,P0!2T̄i j ~P,P0!#uj~P!dS~P!

1E
DS

T̄i j ~P,P0!@uj~P!2uj~P08!#dS~P!

1uj~P08!E
DS

T̄i j ~P,P0!dS~P!, ~4!

in which P08 is the closest point onDS to P0 ~an image point
of P0 on DS!, see Fig. 3. The first two integrals in~4! are
now at most nearly weakly singular and can be computed
using the normal quadrature. The last integral in~4! can be
transformed into line integrals as follows.22

E
DS

T̄i j ~P,P0!dS~P!5I V~P0!d i j 1
1

4p
e i jk R

C

1

r
dxk

1
1

8p~12n!
e jkl R

C
r , ik dxl ,

~5!

where r 5u P0PW u, n is Poisson’s ratio,C is the boundary
curve ofDS, e i jk is the permutation tensor, and

I V~P0!52
1

4p E
DS

1

r 2

]r

]n
dS

is a solid angle integral which can also be evaluated using a
line integral. All these line integrals are nonsingular at all
since the source pointP0 is always off the contourC. The
nearly hypersingularintegrals presented in Eq.~2! ~HBIE!
can be dealt with in a similar way. The expressions of the
line integrals for integrals involving thestatic hypersingular
kernels can be found in Ref. 22.

Using this line integral approach to deal with the nearly
singular integrals is very efficient in computation. One does
not need to use more elements in the model in order to
handle these nearly singular integrals. It was found that the
CPU time used to compute these nearly singular integrals
using the line integral approach is only a fraction of that
when using many subdivisions on the original surface ele-
ments, in achieving the same accuracy.22

III. NUMERICAL EXAMPLES

To demonstrate the effectiveness of the proposed com-
posite BIE formulation for problems involving thin shapes,
the problem of elastic wave scattering fromopen cracksis
studied, for which an analytical solution23 is available when
the opening is zero.

In the first case, a penny-shaped open crack with radius
a and thickness 2h in a 3-D elastic medium is impinged
upon by a planelongitudinal wavein the normal direction,
see Fig. 4. The scattering cross section for various openings
at the nondimensional ~shear! wave numbers KTa
51,2,...,6 arecomputed using the composite BIE and com-
pared with the analytical solution23 ~only a limited number of
data points are available! which is valid for true tight cracks
~with zero opening!.

Figure 5 shows the results for a very small opening
(h50.000001a) using an increasing number (M ) of noncon-
forming quadratic boundary elements7,20,21 on the two sur-
faces of the crack. As expected, the BIE solutions are con-
verging to the analytical solution for the tight crack. The
small difference is probably due to the fact that the singular-
ity feature of the field near the crack tip is not built in the
boundary elements in that region. The singularity feature
near the tip of anopencrack, which depends on the ‘‘open-

FIG. 3. Nearly singular integrals on surfaceDS enclosed by lineC.

FIG. 4. A penny-shaped open crack with normal incident longitudinal wave.
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ing angle’’ at the crack tip, is difficult to implement and
hence is not attempted in this study for elements near the
crack tips.

Figure 6 is a similar plot, but for a larger opening (h
50.02a). The BIE results are still converging to the tight
crack solution. This shows that the small opening does not
have a noticeable effect on the far-field data, at least for a
plane longitudinal wave in the normal direction of the crack.

Figure 7 shows the results for the crack with four differ-
ent openings using 56 boundary elements. Noticeable depar-
ture of the BIE solution from the analytical solution for tight
cracks is observed at the openingh50.05a. This is the de-
parture point for the longitudinal wave in the normal direc-
tion. Whenh.0.1a, further departures from the tight crack
solution can be observed~not shown here!, and one can
choose either CBIEaloneor HBIE alone to solve the prob-
lem since the degeneracy associated with them is not so se-
vere.

In the next case, the open penny-shaped crack is im-
pinged upon by plane shear waves at different angles of in-
cidence, see Fig. 8. The scattering cross sections are com-
puted, using the composite BIE, at each angle~ranging from
0° to 90° with a 15° increment! of incidence and compared

with the analytical solution given in Ref. 23 for a tight crack.
Figure 9 shows the convergence of the composite BIE

solutions for the openingh50.000001a and at the wave
numberKTa54. The small gap between the BIE solutions
and the analytical solution maybe once again due to the sin-
gularity near the crack tip which is not implemented in the
boundary elements.

Figure 10 is a plot of the BIE solutions using 56 bound-
ary elements for different openings and atKTa54. Unlike
the case of normal incidence of longitudinal wave~Fig. 7!,
significant departure of the BIE solution ath50.05a from
the analytical solution for tight cracks is observed. Similar
phenomenon is present at a lower wave number (KTa53),
as shown in Fig. 11.

In all the computations, the systems of equations using
the composite BIE formulation are well behaved~condition
numbers are low!. The choice of the coupling parameterb
used in Eq.~3! is not so restrictive and values between21 to
11 are found to be adequate.

IV. CONCLUSION

The composite boundary integral equation formulation,
using a linear combination of CBIE and HBIE, is proposed
for elastic wave problems involving thin shapes~open cracks
or thin voids, thin inclusions, thin layer interfaces, etc.! mod-
eled with two surfaces. The BIE formulation is very stable
no matter how close the two surfaces are, and no undue

FIG. 5. Convergence of BIE solutions forh50.000001a, longitudinal
wave.

FIG. 6. Convergence of BIE solutions forh50.02a, longitudinal wave.

FIG. 7. BIE solutions using 56 elements at different openings, longitudinal
wave.

FIG. 8. A penny-shaped open crack with oblique incident shear waves.
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numerical burden is associated with the nearly singular inte-
grals in this approach. This composite BIE is demonstrated
to be very effective in the study of scattering from open
cracks. Preliminary numerical results show that scattered
fields for an open crack with an opening of 2h will depart
significantly from those fields for a tight crack whenh is
larger than 5% of the radius of the crack, especially for plane
shear waves. All these suggest that the composite BIE for-
mulation is not only robust but also useful in providing in-
formation about the physics of thin shape problems. It can
fill the gap between the current available one surface models
for thin shapes and the real situations or experimental cali-
brations dealing with open cracks, notches, and rough cracks.
The composite BIE formulation is especially valuable for
problems in which both the fictitious eigenfrequency diffi-
culty and the thin body breakdown difficulty have to be dealt
with.

The composite BIE formulation developed in this paper
can be applied to studies of scattering from thin inclusions in
materials, thin layer interfaces or interface open~as well as

closed! cracks, fluid-thin shell like structure interactions, all
of which are demanding problems. More complicated nu-
-merical example problems are being studied along these
lines and the results will be reported in future papers.
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