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Modeling of Interphases in
Fiber-Reinforced Composites
Under Transverse Loading Using
the Boundary Element Method
In this paper, interphases in unidirectional fiber-reinforced composites under transv
loading are modeled by an advanced boundary element method based on the ela
theory. The interphases are regarded as elastic layers between the fiber and matr
opposed to the spring-like models in the boundary element method literature. Both
der and square unit cell models of the fiber-interphase-matrix systems are consid
The effects of varying the modulus and thickness (including nonuniform thickness)
interphases with different fiber volume fractions are investigated. Numerical results
onstrate that the developed boundary element method is very accurate and effici
determining interface stresses and effective elastic moduli of fiber-reinforced comp
with the presence of interphases of arbitrarily small thickness. Results also show th
interphase properties have significant effect on the micromechanical behaviors o
fiber-reinforced composites when the fiber volume fractions are large.
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1 Introduction
Interphases, or interfacial zones, in fiber-reinforced compo

materials are the thin layers between the fiber and matrix~Fig. 1!.
These interphases are formed due to, for example, chemical
tions between the fiber and matrix materials, or the use of pro
tive coatings on the fiber during manufacturing. The fiber, wh
is employed to reinforce the matrix material in the fiber directio
is usually much stiffer than the matrix material. Different levels
stresses and deformations can develop in the fiber and m
materials, because of this mismatch in the material properties.
the interphases that bond the fiber and matrix together to en
the desired functionality of the composite material under exte
loads. Although small in thickness, interphases can significa
affect the overall mechanical properties of the fiber-reinforc
composites, as observed in many studies~@1–9#!. It is the weakest
link in the load path, and consequently most failures in fib
reinforced composites, such as debonding, fiber pullout, and
trix cracking, occur in or near this region. Thus, it is crucial
fully understand the mechanism and effects of the interphase
fiber-reinforced composites. Numerical techniques such as th
nite element method and the boundary element method are in
pensable tools in serving this purpose.

Numerical modeling of fiber-reinforced composite materi
presents great challenges to both the finite element method
boundary element method especially for the analysis at the mi
structural level. The main issue in the micromechanics analysi
fiber-reinforced composites is to predict the interface stresses
durability assessment, and to determine the engineering pro
ties, such as the effective Young’s moduli, Poisson’s ratios,
thermal expansion coefficients needed for structural analysis.
alized models using the unit cell~or representative volume ele
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ment! concept are usually employed in micromechanics analy
in which the fibers are assumed to be infinitely long and packe
a square or hexagonal pattern~see, e.g.,@10,11,12#!. Although
only one fiber and the surrounding matrix are modeled in the u
cell approach, the presence of the interphase between the fibe
matrix still makes the finite element method and boundary e
ment method modeling difficult, simply because of the thinness
the interphases which are at the micrometer level or below.

Many finite element models based on the two-dimensional e
ticity theory have been developed to study the micromechan
properties of fiber-reinforced composites under transverse loa
and with the presence of an interphase, for example, in@13,6,14#,
and @8#, and most recently in@9#. In all these finite element
method models, a layer of very fine finite elements was u
between the fiber and matrix to model the interphase. Becaus
the thinness of the interphase, a large number of small finite
ments are needed in these models, in order to avoid elements
large aspect ratios which can deteriorate the finite element me
solutions. This, in turn, causes a large number of elements in
fiber and matrix regions because of the connectivity requirem
in the finite element method. For instance, in@9#, more than 3500
finite elements were used to model onlyone quarterof the chosen
unit cell. With further smaller thickness of the interphase as co
pared with the diameter of the fiber, or nonuniform thickne
even more elements will be needed in the finite element met
model. Thus, using finite elements based on the elasticity the
for the modeling of interphases can be costly and inefficient.

The boundary element method has been demonstrated to
viable alternative to the finite element method due to its featu
of boundary-only discretization and high accuracy in stress an
sis, especially in fracture analysis~see, e.g.,@15–18#!. For the
analysis of micromechanical behaviors of fiber-reinforced co
posites using the boundary element method, there are very
publications in the literature, and all of the boundary elem
method models developed so far are two-dimensional ones b
on perfect-bonding or spring-like interface conditions. No boun
ary element method models have been attempted earlier to m
the interphases directly as an elastic region between the fiber
matrix.

Achenbach and Zhu@2# developed a two-dimensional model o
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a square unit cell using the boundary element method. To s
the effect of the interphase, the continuity of the tractions acr
the interface of fiber and matrix is maintained, while a line
relation between the displacement differences and the tract
across the interface is introduced. This simple relation represe
spring-like model of the interphase. The proportionality consta
used in this model characterize the stiffness of the interph
Based on this model, it was shown that the variations of the
terphase parameters can cause pronounced changes in the
distributions in the fiber and matrix. The initiation, propagati
and arrest of the interface cracks were also analyzed. The s
approach to the interphase modeling was extended in@3# to study
hexagonal-array fiber composites, and in@4# to study the micro-
mechanical behaviors of a cluster of fibers. Oshima and Wa
@19# calculated the transverse effective Young’s modulus usin
two-dimensional boundary element method for a square unit
model. No interphase was modeled and perfect bonding betw
the fiber and the matrix was assumed. Nevertheless, the boun
element method results using constant elements were shown
in very good agreement with the experimental data. Gulrajani
Mukherjee @20# studied the sensitivities and optimal design
composites with a hexagonal array of fibers. A two-dimensio
boundary element method model with the same spring-like in
phase model as in@2# was used. The sensitivities of stresses at
interphase were calculated and employed to optimize the valu
the stiffness of an interphase in order to minimize the possib
of failure of a composite. Most recently, Pan, Adams, and Ri
@21# developed a similar two-dimensional boundary elem
method model using the same interphase relation as in@2# to study
the perfectly bonded as well as imperfectly bonded fib
reinforced composites. A main component in this research was
development of a library of Green’s functions~or matrices of
boundary element method equations! for analyzing fiber-
reinforced composite materials, which can be used by enginee
the design of such composites. Although successful to some
tent, all the above boundary element method models of the
cells for fiber-reinforced composites with the spring-like inte
phase relations are incapable of providing other important in
mation about the properties of composites, such as effect
changes of the thickness and nonuniform distribution of the in
phases. Furthermore, in order to avoid overlapping of the fiber
matrix in the spring-like model, an iteration approach is needed
trial calculation needs to be done first to check the sign of
normal traction at the interface. If the spring is in compressi
continuity of the normal displacement is resumed and the bou
ary element method is applied again. This procedure is ineffic
and can be costly. An improved boundary element method mo
of the interphases based on elasticity theory is desirable.

Fig. 1 The interphase in a fiber-reinforced composite
42 Õ Vol. 67, MARCH 2000
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Interphases, as in fiber-reinforced composites, are thin sh
like structures. For this class of structures, there have been
major concerns in applying the boundary element method.
first concern is whether or not the conventional boundary integ
equation for elasticity can be applied successfully to thin str
tures. It is well known in the boundary integral equation/bound
element method literature that the conventional boundary inte
equation will degenerate when it is applied to cracks or thin vo
in structures because of the closeness of the two crack surf
~see, e.g.,@16# and@22#!. One of the remedies to such degenera
in the conventional boundary integral equation for crack-li
problems~exterior-likeproblems!, is to employ the hypersingula
boundary integral equation~see, e.g.,@18,23–25#!. Does this de-
generacy occur when the conventional boundary integral equa
is applied to thin structures~interior-like problems!, such as thin
shells? It was not clear in the boundary element method litera
and the boundary element method based on elasticity had
avoided in analyzing thin shell-like structures for a long time d
to this concern. Recently, it was shown in@26# and @27#, both
analytically and numerically, that the conventional boundary in
gral equation will not degenerate, contrary to the case of cra
like problems, when it is applied to thin shell-like structures if t
displacement boundary conditions are not imposed at all
boundaries. Further discussions on this nondegeneracy issu
the boundary element method applied to shell-like structures
be found in@26# and@28#. Based on these new results, the dege
eracy issue should no longer be a concern when the convent
boundary integral equation is applied to thin structures, once
second concern, that is, the numerical difficulty is addressed.

The numerical difficulty in the boundary integral equation is t
nearly singular integrals which arise in thin structures when t
parts of the boundary become close to each other. Detailed stu
on the behaviors of the nearly singular integrals and compreh
sive reviews of the earlier work in this regard can be found in@29#
and @30#. One of the most efficient and accurate approaches
deal with the nearly singular integrals in the boundary elem
method for three-dimensional problems is to transform these~sur-
face! integrals to line integrals analytically before the numeric
integration~@22,26,31#!. A similar approach can be established f
two-dimensional elasticity problems~@27#!. It has been demon-
strated in@27# that very accurate numerical solutions can be o
tained for thin structures with the thickness-to-length ratio in
micro and even nanoscales, using the newly developed boun
element method approach, without seeking refinement of
meshes as the thickness decreases.

Once the degeneracy issue for the conventional boundary
gral equation in thin structure problems has been clarified and
nearly singular integrals can be dealt with accurately and e
ciently, it is believed that the boundary element method can n
be applied to a wide range of engineering problems, includ
simulations of thin shell-like structures~@26#! thin-film, and coat-
ings in the micro or nanoscales~@27#! and in particular, the inter-
phases in fiber-reinforced composite materials.

In this paper, detailed two-dimensional models for the int
phases in fiber-reinforced composite materials have been de
oped based on the elasticity theory to study their micromechan
behaviors under transverse loading. All the regions—the fib
matrix, and interfacial zone contained in a unit cell, are mode
using the advanced two-dimensional boundary element me
with thin-body capabilities~@27#! and extended to multidomain
cases. The interphases can have uniform thickness of any
trarily small values or nonuniform thickness. Interface stresse
the interphases and effective elastic moduli in the transverse
rections are computed using this approach. This two-dimensio
model of the interphases can provide more accurate inter
stresses and therefore a more accurate account on the micr
chanical behaviors of fiber-reinforced composites than the cur
spring-like models in the boundary element method literature.
Transactions of the ASME
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2 The Boundary Element Method Formulation
For the unit cell models under transverse loading~Fig. 2!, the

following boundary integral equation for two-dimensional elast
ity problems can be applied in each material domain~index nota-
tion is used in this section, where repeated subscripts imply s
mation!:

Ci j ~P0!uj
~b!~P0!5E

S
@Ui j

~b!~P,P0!t j
~b!~P!2Ti j

~b!~P,P0!

3uj
~b!~P!#dS~P!, (1)

in which ui
(b) and t i

(b) are the displacement and traction field
respectively;Ui j

(b)(P,P0) and Ti j
(b)(P,P0) the displacement and

traction kernels~Kelvin’s solution or the fundamental solution!,
respectively;P the field point andP0 the source point; andS the
boundary of the single material domain,~Fig. 2!. Ci j (P0) is a
constant coefficient matrix depending on the smoothness of
curve S at the source pointP0 ~e.g., Ci j (P0)51/2d i j if S is
smooth at pointP0 , whered i j is the Kronecker delta!. The super-
script b on the variables in Eq.~1! signifies the dependence o
these variables on the material domains, as specified below:

b5 f : fiber domain ~S5S1!;

b5 i : interphase domain~S5S1øS2!;

b5m: matrix domain ~S5S2øS3!.

The two kernel functionsUi j
(b)(P,P0) and Ti j

(b)(P,P0) in
boundary integral equation~1! are given as follows for plane
strain problems:

Ui j
~b!~P,P0!5

1

8pm~b!~12n~b!!
F ~324n!d i j lnS 1

r D1r ,i r , j G ,
Ti j

~b!~P,P0!52
1

4p~12n~b!!

1

r
$r ,n@~122n~b!!d i j 12r ,i r , j #

1~122n~b!!~r , jni2r ,inj !%, (2)

wherem (b) is the shear modulus andn (b) the Poisson’s ratio for
the three different domains, respectively;r the distance from the
source pointP0 to the field pointP; ni the directional cosines o
the outward normaln; and (),i5]()/]xi with xi being the coor-
dinates of the field pointP.

In Eq. ~1! the integral containing theUi j
(b)(P,P0) kernel is

weakly singular, while the one containingTi j
(b)(P,P0) is strongly

singular and must be interpreted in the Cauchy principal va
sense. There is a vast body of literature on how to deal with
Cauchy principle value integrals in the boundary element met
formulations for bulky-shaped structures, either analytically
some special cases or numerically for other cases. An alterna
approach is to transform the boundary integral equation in
form of Eq.~1! into a weakly singular form by using some simp
solutions or integral identities for the fundamental soluti

Fig. 2 Two unit cell models of the fiber-interphase-matrix sys-
tem
Journal of Applied Mechanics
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~@32,33#!, before doing any numerical work. However, when t
structure becomes thin in shape, such as the interphase show
Fig. 2, both integrals in Eq.~1! are difficult to deal with when the
source point is on one side and the integration is carried out on
other side of the thin structure. These types of integrals are ca
nearly singular integrals since the distancer is very small in this
case but is still not zero. Most techniques for dealing with t
singular integrals do not work for nearly singular integrals a
special attention is needed. Recently, several techniques, inc
ing singularity subtractions, analytical integration, and nonlin
coordinate transformations have been developed for the t
dimensional elasticity boundary integral equation to calculate
nearly singular integrals arising in thin structures~@27#!. The com-
bination of these techniques is found to be extremely effective
efficient in computing the nearly singular integrals in the tw
dimensional boundary integral equation, no matter how close
source point is to the element of integration. Very accurate bou
ary element method results have been obtained using this
proach for thin structures, such as coatings on macroscale s
tures, with the coating thickness-to-length ratios in the micro
nanoscales and with a small number of boundary elements.
same approach in@27# is applied in this paper to compute th
nearly singular integrals arising in the modeling of the inte
phases.

Employing the boundary elements~line elements in two-
dimensional! on the boundary and interfacesS1 , S2 , andS3 , the
discretized equations of the three boundary integral equation
given in ~1! for the fiber, interphase, and matrix can be written
follows ~cf., e.g.,@17#!:

T1
~ f !u1

~ f !5U1
~ f !t1

~ f ! , ~in fiber domain! (3)

T1
~ i !u1

~ i !1T2
~ i !u2

~ i !5U1
~ i !t1

~ i !1U2
~ i !t2

~ i ! , ~in interphase domain!
(4)

T2
~m!u2

~m!1T3
~m!u3

~m!5U2
~m!t2

~m!1U3
~m!t3

~m! , ~in matrix domain!
(5)

in which U and T are matrices generated from theUi j
(b)(P,P0)

and Ti j
(b)(P,P0) kernels, respectively;u and t the displacement

and traction vectors, respectively. The superscripts indicate
material domain, while the subscripts indicate the interface
boundary (S1 , S2 , or S3) on which the integration is performed

Assuming perfect bonding at the fiber/interphase (S1) and
interphase/matrix (S2) interfaces, one can write the following in
terface conditions:

On S1 : u1
~ f !5u1

~ i ![u1 , ~continuity! (6)

t1
~ f !52t1

~ i ![t1 , ~equilibrium! (7)

On S2 : u2
~ i !5u2

~m![u2 , ~continuity! (8)

t2
~ i !52t2

~m![t2 , ~equilibrium! (9)

whereu1 , t1 , u2 , andt2 are defined as the interface displaceme
or traction vectors.

Applying the interface conditions~6!–~9! in Eqs. ~3!–~5!, one
obtains the following system:

F T1
~ f ! 0 0

T1
~ i ! T2

~ i ! 0

0 T2
~m! T3

~m!
G H u1

u2

u3

J 5F U1
~ f ! 0 0

2U1
~ i ! U2

~ i ! 0

0 2U2
~m! U3

~m!
G H t1

t2

t3

J ,

whereu3[u3
(m) and t3[t3

(m) have been used for simplicity. Rea
ranging the columns and moving all the~unknown! interface vari-
ables to the left-hand side, one finally arrives at
MARCH 2000, Vol. 67 Õ 43
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F T1
~ f ! 2U1

~ f ! 0 0 0

T1
~ i ! U1

~ i ! T2
~ i ! 2U2

~ i ! 0

0 0 T2
~m! U2

~m! T3
~m!
G 5

u1

t1

u2

t2

u3

6 5F 0
0

U3
~m!

G $t3%.

(10)

The last column in the matrix on the left-hand side and the ma
on the right-hand side may need to be rearranged again acco
to the boundary conditions specified onS3 .

Equation~10! is the global system of equations for the fibe
interphase-matrix model. The system has a banded matrix du
the multidomain nature of the problem. This system of equati
satisfies both the continuity and equilibrium conditions at the
terfaces explicitly, which is an advantage of the boundary elem
method approach over the finite element method in which only
continuity of displacement fields can be satisfied explicitly.
solving Eq.~10!, one can obtain the displacements and traction
the two interfaces and the boundary, and then calculate the i
face stresses based on the traction and displacement fields.

3 Two Unit Cell Models With the Interphase
Two unit cell models are used in this paper, namely, the c

centric cylinder model and the square model~see, e.g.,@12#! both
of which include the interphase~Fig. 2!. For the cylinder model,
analytical solutions are obtained for the displacement and st
fields, which can be employed to validate the boundary elem
method results. For the square model, many finite element
boundary element solutions are available in the literature for
effective elastic moduli which will be compared with the da
from the present boundary element method approach.

3.1 Concentric Cylinder Model. For the concentric cylin-
der model, Fig. 3, the response of the composite in thex-y plane
is axisymmetric if the applied load or displacement on the bou
ary S3 is also axisymmetric. Here it is assumed that a radial d
placementd is given onS3 ~at r 5c, Fig. 3!. Applying the theory
of elasticity for plane strain case in the polar coordinate sys
(r ,u), one can derive the following expressions for the rad
displacement and stress fields in the fiber, interphase, and ma
respectively~see the Appendix for details!:

u~ f !~r !5A~ f !r , ~0<r<a!

u~ i !~r !5A~ i !r 1
B~ i !

r
, ~a<r<b!

u~m!~r !5A~m!r 1
B~m!

r
, ~b<r<c! (11)

and

Fig. 3 Concentric cylindrical model
44 Õ Vol. 67, MARCH 2000
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s r
~ f !5su

~ f !5k~ f !A~ f !, ~0<r<a!

s r
~ i !5k~ i !FA~ i !2~122n~ i !!

B~ i !

r 2 G ,
su

~ i !5k~ i !FA~ i !1~122n~ i !!
B~ i !

r 2 G , ~a<r<b! (12)

s r
~m!5k~m!FA~m!2~122n~m!!

B~m!

r 2 G ,
su

~m!5k~m!FA~m!1~122n~m!!
B~m!

r 2 G , ~b<r<c!

where the constantsA(b), B(b), andk(b) (b5 f , i andm! are given
in the Appendix.

From the above expressions, one can compute the radial
placement and stress components at any point in the three
mains within the cylinder model for any small values of the inte
phase thickness.

3.2 Square Model. As shown in Fig. 4, the boundary con
ditions for the square model undertensionare

along AB: ux5d, ty50;

along BC: uy52C0 , tx50;

along CD: ux50, ty50, (13)

except at y50 where ux5uy50;

along DA: uy5C0 , tx50;

whereux , uy , tx , andty are the displacement and traction com
ponents, respectively;d the given displacement~Fig. 4!; and C0
an unknown constant. This unknown constant is meant to keep
edges BC and DA straight after the deformation. This represe
the constraint of the neighboring cells to the one under study
the literature, there are several ways in dealing with these su
boundary conditions along the top and bottom edges. For
ample, in @9# C0 is chosen as zero in one case and nonzero
another case. This is equivalent to another given displacem
condition besides the one imposed along the two vertical edge
@2# and recently in@21#, C0 is regarded as an unknown and th
condition *2L

L sydx50 along the top or bottom edges is used
provide the additional equation needed for solving this unkno
together with other unknown boundary variables. Discretization
this simple equation using shape functions is needed. In@19#,
however, this straight-line constraint is totally ignored, andtx
5ty50 ~traction-free conditions! are assumed. It is found tha
results for the unit cell model is not very sensitive to all t
different techniques mentioned above. In this paper,C0 is as-

Fig. 4 Square model under tension
Transactions of the ASME
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sumed to be unknown, but a different approach is employed
enforce the straight-line condition, instead of solving for this u
known constant with additional equations. Here the pena
method used in the finite element method for multipoint co
straints ~see, e.g.,@34#! is introduced in the boundary eleme
method equations to enforce that all the nodes along edges
and DA remain along straight lines after deformation. To imp
ment this penalty method in the boundary element method e
tions a very large number~penalty! with a proper sign is placed in
the locations in the matrix corresponding to the related displa
ment components. Then these displacement components will
the same value after the system of equations is solved. It is
easy to implement this penalty method in the boundary elem
method equations and no additional equation is needed.

Once stresses on the boundary are determined, the averag
sile stress along the edge AB is evaluated by

sx5
1

2L E2L

L

sx~L,y!dy. (14)

The effective Young’s modulus in the transverse direction a
under theplane-straincondition is thus determined by

Ex85
sx

«x

5
*2L

L sx~L,y!dy

d
, (15)

whereex5d/2L is the average tensile strain. The effective Po
son’s ratio under theplane-straincondition can be determined b

vxy8 52
«y

«x
, (16)

in which «y is the average strain in they-direction.
For the square model undershear deformation, Fig. 5, the

boundary conditions are

Fig. 5 Square model under shear deformation
Journal of Applied Mechanics
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along AB: ux50, uy5h;

along BC: ux50, ty50;

along CD: ux50, uy50;

along DA: ux50, ty50. (17)

The average shear stress along edge AB can be evaluated b

txy5
1

2L E2L

L

txy~L,y!dy, (18)

and the effective shear modulus in the transverse plane and u
the plane-straincondition is

Gxy8 5
txy

gxy
5

*2L
L txy~L,y!dy

h
, (19)

wheregxy5h/2L is the average shear strain.
Finally, one recognizes that the material constantsEx8 , nxy8 , and

Gxy8 given in Eqs.~15!, ~16!, and ~19!, respectively, are deter
mined under theplane-straincondition which accounts for the
constraint in thez-direction («z50). These constants are relate
to the intrinsic material properties by the following relations~cf.,
e.g.,@35# and @21#!:

Ex5
112nxy8

~11nxy8 !2 Ex8 , nxy5
nxy8

11nxy8
, Gxy5Gxy8 , (20)

which are the effective Young’s modulus, Poisson’s ratio, a
shear modulus, respectively, in the transverse direction for
composite.

4 Numerical Examples

4.1 Cylinder Model. The cylinder model~Fig. 3! is studied
first to validate the developed boundary element method form
tion and the solution strategy, since for this idealized geometry
analytical solutions are available~see Eqs.~11!–~12! and the Ap-
pendix!. The specified radial displacement on the boundary~at r
5c) is d. The following material constants for a glass/epoxy co
posite are used:

for fiber: E~ f !572.4 GPa~10.53106 psi), n~ f !50.22;

for interphase: E~ i !536.2 GPa~5.253106 psi), n~ i !50.30;

for matrix: E~m!53.45 GPa~0.53106 psi), n~m!50.35;

where the Young’s modulus of the interphase has been take
half of that of the fiber; and the dimensions used are

a5c/2, b5a1h,

with h being the thickness of the interphase, which is varying
Quadratic line elements are employed in the discretization

two meshes are tested, one with 24 elements~eight on each circle!
and another one with 48 elements~16 on each circle!. Differences
Table 1 Results of the radial displacement u „Ã10À2d… for the cylinder
model
MARCH 2000, Vol. 67 Õ 45
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Table 2 Results of the radial stress s r„ÃE „m …dÕc … for the cylinder model
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in the results from the two meshes are less than five percent
the results from the refined mesh~48 elements! are reported. The
radial displacements and stresses at selected points~Fig. 3! are
given in Table 1 and Table 2, respectively. It is observed that
maximum errors of the displacement and stress using the de
oped boundary element method are less than 0.05 percent i
the cases with different thickness of the interphase. These re
demonstrate that the developed boundary element method
proach is extremely accurate and effective in modeling the in
phases with any small thickness, as has been confirmed in
context of single material problems~@27#!.

4.2 Square Model

(a) Calculation of Effective Young’s Modulus With Varyin
Interphase Property. First, the square model under a stretch
the x-direction is considered~Fig. 4!. The properties of the con
stituent materials considered are

for fiber: E~ f !584.0 GPa, n~ f !50.22;

for interphase: E~ i !54.0;12.0 GPa, n~ i !50.34;

for matrix: E~m!54.0 GPa, n~m!50.34;

and,a58.5mm, b5a1h, 2L521.31mm ~fiber volume fraction
Vf550 percent). Young’s modulus for the interphase is chang
in the range between 4.0 and 12.0 GPa. The effect of the va
tions in the interphase material on the effective Young’s modu
of the composite is of the primary interest here. A total of
quadratic boundary elements are used, with 16 elements on
of the two circular interfaces and 32 elements on the outer bou
ary. Table 3 shows the effective Young’s moduli obtained fro
the boundary element method stress data using Eq.~15! and then
Eq. ~20!, and compared with those from the finite element meth
quarter model with 3518 linear triangular elements in@9# for the
thicknessh51.0mm. The boundary element method results a
slightly lower than those from the finite element method da
This may be caused by the use of linear triangular element in
finite element method which tends to overestimate the stiffnes
the structure. It is noticed that the different boundary conditio
along the top and bottom edges of the square model~free-traction
or straight-line conditions! have very little influences on the fina
CH 2000
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effective Young’s modulus. It should also be pointed out that
the finite element results in@9#, the only thickness considered i
h51.0mm which is relatively large compared with the fiber r
dius (a58.5mm). If a smaller thickness were used in the fini
element model, a much larger number of elements would h
been needed in order to avoid large aspect ratios in the fi
element mesh, as demonstrated in a similar study~see@27#!. How-
ever, for the boundary element method employed here, the s
number of elements can be used no matter how small the th
ness of the interphase is.

(b) Effect of the Interphase Thickness.Figure 6 shows the
effect of different interphase thicknesses to the effective Youn
modulus. In order to compare with the data in@21# and @19#, the
same material constants as listed in Section 4.1~for the cylinder
model! are used. It is found that the effect of the thickness is
significant on the effective Young’s moduli when the fiber volum
fraction Vf is small ~50 percent and less!, while significant effect
is observed whenVf is large~70 percent!. This may be due to the
fact that the effective elastic moduli are obtained by evaluating
average stress on the outer boundary of the matrix~edge AB, Fig.
4!. When the fiber volume fraction is small, the interphase is aw
from the matrix outer boundary and thus changing the interph
thickness does not considerably affect the stresses on the
AB. This will change if the fiber volume fraction is large~e.g., 70
percent! when the interphase becomes closer to the outer bou
ary of the matrix. It should also be pointed out that when the fi
volume fraction is large, it will present additional difficulty in th
modeling using the finite element method and earlier bound
element method formulation, because of the thinness of the ma
region. However, for the current boundary element method
mulation, this additional thinness of the matrix domain does
present any problem.

(c) Effect of Nonuniform Thickness.Next, the effect of non-
uniform thickness of the interphase on the interface stresses
effective elastic moduli is investigated. The starting model~Fig.
4! is the same as the one used for Table 3 with the mate
constants listed at the beginning of this subsection~with E( i )

542.0 GPa). To form the nonuniform distribution of the inte
phase, the outer boundary of the interphase is shifted to the
Table 3 Effective transverse elastic modulus „GPa… using the square unit cell
model
Transactions of the ASME



Fig. 6 Influence of the thickness on the effective Young’s modulus
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slightly ~see Fig. 7!. When the offsetD is close toh ~the initial,
uniform thickness!, the change of the interphase thickness in
x-direction is the largest (D50 corresponds to the uniform inter
phase!. The interface normal stresses at points 1 and 2~Fig. 7!,
normalized by those in the uniform case, are plotted in Fig. 8. D
to the misalignment of the fiber and interphase centers, the in

Fig. 7 The interphase with nonuniform thickness
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he
-
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ter-

face stress at point 1~which is the maximum interface norma
stress! increases for about 50 percent while the stress at poin
~the second largest interface stress! increases for about 30 percen
However, the effect of the nonuniform thickness of the interph
on the effective Young’s modulus is found to be less than th
percent. This, again, is largely due to the averaging process on
edge AB which is away from the interphase.

(d) Calculation of Shear Modulus With Varying Interpha
Thickness. Finally, the effective shear modulus in the transver
direction is calculated using the square unit cell model shown
Fig. 5. The boundary conditions applied are listed in~17! and Eqs.
~19!–~20! are used to compute the shear modulus. In order
compare the results with those in the literature, the following m
terials properties for a Kevlar/epoxy composite are used in
current boundary element method calculation:

for fiber: E~ f !57.0 GPa, n~ f !50.30;

for interphase: E~ i !55.0 GPa, n~ i !50.35;

for matrix: E~m!53.0 GPa, n~m!50.35.

Table 4 shows the results of the effective shear modulus by
current boundary element method with and without the prese
of the interphase. The data without the interphase (h50) agrees
very well with the results from the finite element method~@6#! and
Fig. 8 Effect of nonuniform thickness on the interface stress
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the other boundary element method~@21#! both of which used the
perfect bonding condition and did not model the interphase. W
the increase of the thickness of the interphase, the shear mod
deviates from the perfect bonding case slightly, with the larg
change~about eight percent! occurring at the fiber volume fraction
Vf50.6, for the interphase property considered. WhenVf50.7
and h50.1a, the interphase will be outside the boundary of t
unit cell. This is not permissible and thus no boundary elem
method data are generated.

5 Conclusion
The advanced boundary element method formulation with th

body capabilities for elastostatic problems has been extende
multidomain problems and applied to model the interphase
fiber-reinforced composites under transverse loading. Comp
with the current spring-like models for the interphases in
boundary element method literature, this new interphase mod
based on the elasticity theory and thus provides a more accu
account of the interphases in fiber-reinforced composites wi
the linear theory. The developed boundary element code using
object-oriented programming language~C11! can be utilized in
analyzing the micromechanical properties of fiber-reinforced co
posites with the presence of interphases of any arbitrarily sm
thickness~uniform or nonuniform!. The approach is very accurat
as is validated using the concentric cylinder model for which
analytical solution has been derived. It is also very efficient
only a small number~less than one hundred! of boundary ele-
ments are needed to model awhole unit cell for the boundary
element analysis, compared with the large number~more than a
few thousands! of finite elements often needed for aquarter
model in the finite element method analysis. The approach
vides a greater flexibility in parametric study of the interphases
well, since the geometry, size, or material property of the int
phases can be changed very easily to investigate their effect o
micromechanical behaviors of the fiber-reinforced composites

Numerical studies in this paper show that the thickness, n
uniform distribution, and material property of the interphase c
have significant influences on the micromechanical behavior
the composites, such as effective elastic moduli and interf
stresses, especially when the fiber volume fractions are la
These observations are consistent with the findings in both
finite element method and boundary element method literature
this subject.

Considerations of interface cracks in the present boundary
ment model and extension of the boundary element code to t
dimensions to study the fiber-pullout failure modes will be int
esting and challenging next steps, both of which will further de
onstrate the robustness of the developed boundary elem
method approach as compared with the finite element metho
previous boundary element method approaches to the micro
chanical analysis of fiber-reinforced composites.

Table 4 Effective transverse shear modulus „GPA…
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Appendix

Analytical Solution for the Concentric Cylinder Model.
Here the analytical solution for the concentric cylinder mod
used to validate the boundary element method results is deri
For the concentric cylinders, the response of the composit
axisymmetric. Thus the equilibrium equation for two-dimension
elasticity in the polar coordinate system reduces to

ds r

dr
1

1

r
~s r2su!50, (A1)

where the stress components (s r ,su) are functions ofr only, and
the shearing stresst ru is zero. The stress-strain relations for th
plane-strain case are

s r5
E

~11n!~122n!
@~12n!« r1n«u#,

su5
E

~11n!~122n!
@~12n!«u1n« r #. (A2)

The strain-displacement relations are

«u5
u

r
, « r5

du

dr
. (A3)

Equations~A1!, ~A2!, and~A3! lead to the following equation for
the radial displacement:

d2u

dr2 1
1

r

du

dr
2

u

r 2 50, (A4)

whereu is the displacement in the radial direction.
The solution of the above equation has the following form:

u~r !5Ar1
B

r
, (A5)

in which A andB are determined by the applied boundary con
tions. The above form of the solution is the general form wh
valid for the fiber, interphase, and matrix. Thus for the three
mains, one has

u~ f !~r !5A~ f !r , ~assumeB~ f !50! ~0<r<a!

u~ i !~r !5A~ i !r 1
B~ i !

r
, ~a<r<b!

u~m!~r !5A~m!r 1
B~m!

r
, ~b<r<c!. (A6)

If B( f )Þ0, then atr 50, the displacementu( f )(0) will approach
infinity, which is not warranted.

Boundary and interface conditions are

at r 5c, u~m!~c!5d,

at r 5b, u~ i !~b!5u~m!~b!, (A7)

s r
~ i !~b!5s r

~m!~b!,

at r 5a, u~ i !~a!5u~ f !~a!,

s r
~ i !~a!5s r

~ f !~a!,

whered is the displacement applied on the outer boundary of
matrix.
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Applying the relations~A2!, ~A3!, and ~A6! in the above five
equations in~A7! from the boundary and interface conditions, o
can find the five constants to be

A~m!5

cdF ~122n~m!!2
k~ i !

k~m! M G
b21~122n~m!!c21

k~ i !

k~m! ~b22c2!M

,

B~m!5cd2A~m!c2,

and k~ f !5
E~ f !

~11n~ f !!~122n~ f !!
, k~ i !5

E~ i !

~11n~ i !!~122n~ i !!
,

k~m!5
E~m!

~11n~m!!~122n~m!!
,

M5
a2~122n~ i !!~k~ f !2k~ i !!1b2@k~ f !1~122n~ i !!k~ i !#

a2~k~ f !2k~ i !!2b2@k~ f !1~122n~ i !!k~ i !#
,

B~ i !5
~b22c2!A~m!1cd

12
b2

a2

k~ f !1k~ i !~122n~ i !!

k~ f !2k~ i !

,

A~ i !52
B~ i !

a2

k~ f !1~122n~ i !!k~ i !

k~ f !2k~ i ! ,

A~ f !5A~ i !1
B~ i !

a2 . (A8)

These results, together with Eqs.~11!–~12!, provide the analytical
solutions of the displacement and stress for the cylinder mo
Note that the solution is valid for any arbitrarily small thickness
the interphase and thus is very useful in validating the bound
element solutions. This solution can also be applied to other
ered structures of cylindrical shapes, such as cables.
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