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Abstract In this paper, the boundary element method
(BEM) based on elasticity theory is developed for two-
dimensional (2-D) thin structures with the thickness to
length ratio in the micro (10ÿ6) or nano (10ÿ9) scales. An
ef®cient analytical method is developed to deal with the
nearly-singular integrals in the boundary integral equation
(BIE) for 2-D thin structures. The nearly-singular inte-
grals, which are line integrals for 2-D problems and arise
when two boundary curves are close to each other, are
transformed into function evaluations at the two end
points of the element of integration. In addition, a new
nonlinear coordinate transformation is developed for
nearly weakly-singular integrals to further increase the
numerical accuracy. For the test problems studied, very
promising results are obtained when the thickness to
length ratio is in the orders of 10ÿ6 to 10ÿ9, which is
suf®cient for modeling most thin structures in the micro-
or nano-scales. The developed method can be applied
readily to model layered coatings, thin ®lms or other
layered structures to analyze contact stresses, interfacial
cracks, thermal effects and nonlinear deformations.

1
Introduction
With the advances in materials science and manufactur-
ing, more and more thin structures, such as various thin
®lms in electronic devices, sensors and actuators in smart
materials, and coatings on machine components, are being
designed and utilized in many industries. For example, in
recent years the use of coatings on machine elements for

wear resistance, corrosion inhibition, or friction reduction
has become widespread. Coatings can provide a durable
and low cost solution to many machine element perfor-
mance problems, as described in (Subramanian and Str-
afford 1993). However, the widespread experimental
research in thin ®lms and coatings (Bhushan and Gupta
1991) ± everything from thin ®lm/coating and substrate
interface strength and adhesion, to deposition rate and
resultant hardness ± underlies a general lack of modeling
efforts which can accurately and ef®ciently predict thin
®lm and coating performance, including subsurface
stresses and fatigue life. Robust models for thin ®lm and
coating performance are crucial for accurate design and
analysis of systems containing such thin structures. Yet the
development of modeling and analysis tools for these very
relevant problems has lagged the state-of-the-art experi-
mental and technological advances. The primary obstacles
to the development of robust and accurate thin ®lm and
coating analysis tools have been dif®cult computational
issues associated with the general class of thin structures.

For computational models of thin structures or thin
shapes in structures, two numerical methods can be
employed, namely, the ®nite element method (FEM) and
the boundary element method (BEM). In the last three
decades, the FEM based on plate and shell theories has
been a successful tool for the analysis of 3-D thin
structures such as plates, shells and layered composite
structures to study their deformation and stress in the
macro-scale. However, most plate and shell theories are
based on various assumptions about the geometry, loading
and deformation of the structure, and therefore the accu-
racy and reliability of the FEM for thin structures in the
micro- or nano-scales are in doubt. This is especially true
for the stress analysis of thin structures since plate and
shell models can not predict the normal stresses (contact
stresses) accurately. The BEM based on the elasticity the-
ory and boundary integral equation formulation (see, for
example (Banerjee 1994)), is in general more accurate in
stress analysis of structures. This accuracy will be main-
tained in the analysis of thin structures as well, if the BEM
is implemented correctly to deal with the dif®culties as-
sociated with thin structures.

There have been two major concerns in applying the
BEM to thin structures. The ®rst concern is whether or not
the conventional boundary integral equation (CBIE) for
elasticity problems can be applied to thin structures. It is
well known in the BIE/BEM literature that the CBIE will
degenerate when it is applied to cracks or thin voids in
structures because of the closeness of the two crack sur-
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faces, see, e.g. References (Cruse 1988; Krishnasamy, Rizzo
and Liu 1994). One of the remedies to such degeneracy in
the CBIE for crack-like problems (exterior-like problems),
is to employ the hypersingular boundary integral equation
(HBIE), or the traction BIE, see, e.g. (Gray, Martha and
Ingraffea 1990; Krishnasamy, Rizzo and Rudolphi 1991;
Cruse 1996; Liu and Rizzo 1997). Does this degeneracy
occur when the CBIE is applied to thin structures (interior-
like problems), such as thin shells? It was not clear in the
BEM literature and the BEM based on elasticity had been
avoided in analyzing thin shell-like structures for a long
time due to this concern. Recently, it was shown in (Liu
1998), both analytically and numerically, that the CBIE will
not degenerate when it is applied to thin shell-like struc-
tures, contrary to the case of crack-like problems. Thus the
degeneracy issue should no longer be a concern when the
CBIE is applied to thin structures, once the second con-
cern, i.e., the numerical dif®culty, is addressed.

The numerical dif®culty in the BIE is the nearly-sin-
gular integrals which arise in both crack-like and thin-
structure problems. The integrals in BIE, which deter-
mine the in¯uence matrices, contain singular kernels of
the order O(1/r) and O(ln r) in 2-D elasticity case, where
r is the distance between the source point and the inte-
gration point on the boundary element. When the source
point is very close to, but not on the element �0 < e� 1,
with e being the distance from the source point to the
element of integration), although the kernels are regular
in the mathematical sense, the values of the kernels
change rapidly in the neighborhood of the source point.
The standard Gauss-quadrature is no longer practical in
this case since a large number of integration points are
needed in order to achieve the required accuracy. In the
last two decades, numerous research works have been
published on this subject in the BEM literature. Most of
the work has been focused on the numerical approaches,
such as subdivisions of the element of integration,
adaptive integration schemes and so on. However, most
of these earlier methods are either inef®cient or can not
provide accurate results when the ratio of the distance e
to the element size is smaller than 10ÿ2. They are not
very useful in dealing with thin structures, such as thin
®lms or coatings, with the thickness to length ratio in the
micro- or nano-scales.

Detailed studies on the behaviors of the nearly-singular
integrals and comprehensive reviews of the earlier work in
this regard can be found in (Cruse and Aithal 1993) and
(Huang and Cruse 1993). In (Cruse and Aithal 1993), a
semi-analytical approach is developed using Taylor ex-
pansions for the kernel functions. The singular part of the
kernel is integrated analytically and the remaining part is
computed using lower-order Gaussian integration. Signi-
®cant improvement in accuracy in computing the nearly-
singular integrals is achieved using this approach, as
demonstrated by several numerical examples of 3-D thin
structures with the thickness to length (or element size)
ratio in the 10ÿ3 range. In (Huang and Cruse 1993), a new
formulation is developed for computing the nearly-sin-
gular integrals in the BEM for 3-D elatostatic problems. A
coordinate transformation, which can smooth out the
variation of the nearly-singular kernels, is introduced in

the integral in the radial direction (which has the singular
part) in the local polar coordinates. For the test case using
a 1-D integral representing this polar integral, it is shown
that the nearly-singular integrals can be computed almost
exactly with only a few Gaussian points. Although no ap-
plications of this new approach to thin-structure problems
were reported in (Huang and Cruse 1993), this approach
has the potential to provide accurate results for thin
structures with arbitrary thickness to length ratios, pos-
sibly in the micro- or nano-scales. An alternative to
dealing directly with the singular or even hypersingular
integrals in the BEM is to employ a regularized algorithms,
see, for examples (Chien, Rajiyah and Atluri 1991) and
(Richardson, Cruse and Huang 1997). In this approach,
simple solutions or modes of the governing equations are
used to regularize the singular or hypersingular integrals
so that the singularities are reduced and thus ef®cient
numerical algorithms can be established. Very successful
numerical results have been reported in (Chien, Rajiyah
and Atluri 1991) and (Richardson, Cruse and Huang 1997)
for 2-D elasticity problems using the hypersingular BIEs.
However, whether or not this approach will work for thin
structures with nearly singular integrals, in which the
source point is close but off the boundary, will need fur-
ther investigation.

Another ef®cient and accurate approaches to deal with
the nearly-singular integrals in the BEM for 3-D problems
is to transform these (surface) integrals to line integrals
analytically and then carry out the numerical integration
for these line integrals (Liu, Zhang and Rizzo 1993;
Krishnasamy, Rizzo and Liu 1994; Liu and Rizzo 1997; Liu
1998). It has been found out that using this line integral
approach is not only accurate, but also very ef®cient. The
CPU time for computing these line integrals is only a
fraction of the CPU time used by subdividing the surface
elements and employing a large number of Gaussian
points on each sub-regions.

With the degeneracy issue for the CBIE in thin structure
problems having been clari®ed and the nearly-singular
integrals been dealt with accurately and ef®ciently, it is
believed that the boundary element method can now be
applied to a new and wide range of problems in engi-
neering, including simulations of thin shell-like structures,
composite materials in the micro-scale, and thin-®lm or
thin-layer structures in the micro- or nano-scales.

In this paper, the BEM based on the elasticity theory is
developed for 2-D thin structures with the thickness to
length ratio in the micro (10ÿ6) or nano (10ÿ9) range.
Adopting the same approach using the line integrals as in
the case of 3-D BIEs, an ef®cient method is developed to
deal with the nearly-singular integrals in the BIE for 2-D
thin structures. The nearly-singular integrals (line inte-
grals for 2-D problems) are transformed into function
evaluations at the two end points of the element of inte-
gration. In addition, a new nonlinear coordinate trans-
formation is developed for nearly weakly-singular
integrals to further increase the numerical accuracy. For
the test problems studied, very promising results are ob-
tained when the thickness to length ratio is in the orders of
10ÿ6 to 10ÿ9, which is suf®cient for modeling most thin
structures in the micro- or nano-scales.
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2
The nearly-singular integrals in 2-D elasticity
We consider the following conventional boundary integral
equation for 2-D elastostatic problems (the index notation
is used) (Mukherjee 1982; Cruse 1988; Banerjee 1994),

Cij�P0�uj�P0�
�
Z

L

Uij�P; P0�tj�P� ÿ Tij�P; P0�uj�P�
� �

dL�P�; 8P0 2 L

�1�
in which ui and ti are the displacement and traction ®elds,
respectively, Uij and Tij the displacement and traction
kernel (Kelvin's solution), respectively, P the ®eld point
and P0 the source point, and L the boundary of the
structure, Fig. 1. Cij�P0� is a coef®cient matrix depending
on the smoothness of the curve L at the source point P0

(for example, Cij�P0� � 1=2dij for smooth curves, where dij

is the Kronecker delta). The BIE (1) will be discretized
using the boundary elements (line segments for 2-D
problems) where analytical or numerical integrations will
be carried out, leading to a system of linear equations for
unknown boundary variables at a ®nite number of nodes.

The two kernel functions in Eq. (1), Uij�P; P0� and
Tij�P; P0�, are given as follows for 2-D plane strain
problems:

Uij�P; P0� � 1

8pl�1ÿ m� �3ÿ 4m�dij ln
1

r

� �
� or

oxi

or

oxj

� �
;

�2�

Tij�P; P0� � ÿ 1

4p�1ÿ m�
1

r

or

on

�
�1ÿ 2m�dij � 2

or

oxi

or

oxj

� �
��1ÿ 2m� or

oxj
ni ÿ or

oxi
nj

� ��
; �3�

where l is the shear modulus, m the Poisson's ratio, r the
distance from source P0 to the ®eld point P, and ni the
directional cosines of the normal n. Notice that the dis-
placement kernel Uij and traction kernel Tij contain the
terms ln(1/r) and 1/r, respectively, which are singular
terms when the distance r approaches zero. Because of the
existence of these two singular terms, the integrals on a
typical element DLZ

DL
Uij�P; P0�tj�P�dL�P� �4�

andZ
DL

Tij�P; P0�uj�P�dL�P� �5�

are called weakly- (the Logarithm type) and strongly- (the
Cauchy principle value (CPV) type) singular integrals, re-
spectively, when P0 is on the element DL. When the source
is not on the element but very close to it �0 < r � 1�, the
kernel is regular in the mathematical sense. However, the
values of the kernels change rapidly in the neighborhood of
the source point and the standard Gauss-quadrature be-
comes impractical since a very large number of integration
points is needed in order to achieve the required accuracy.
In such situations, the integrals (4) and (5) are called nearly
weakly- and strongly-singular integrals, respectively (or
simply, nearly-singular integrals). In the modeling of thin
structures in the micro- or nano-scales by the BEM, the
most important research efforts involve ®nding ef®cient
and accurate ways to deal with these nearly-singular inte-
grals. In the following, we will discuss how to evaluate them
by singularity subtraction and nonlinear coordinate
transformation methods for 2-D thin structure problems.

2.1 Regularize the nearly-singular integral by singularity
subtraction
A method similar to that developed in (Liu, Zhang and
Rizzo 1993; Krishnasamy, Rizzo and Liu 1994; Liu 1998)
for 3-D thin structures is used in this paper to regularize or
weaken the nearly-singular integral given in (5) in the 2-D
case. By subtracting and adding back a term in the fol-
lowing manner, the nearly-singular integral (5) can be
rewritten as:Z

DL
Tij�P; P0�uj�P�dL�P�

�
Z

DL

Tij�P; P0��uj�P� ÿ uj�P 00��dL�P�

� uj�P 00�
Z

DL

Tij�P; P0�dL�P�; �6�

where DL is the line segment under consideration, P
0
0 is

the closest point on DL to P0 (an image point of P0 on DL),
Fig. 2. As P! P

0
0, the term uj�P� ÿ uj�P00� has the order of

O(r0) (see Fig. 2 for r0). Then the order of the ®rst integral
on the right hand side is reduced to O(r0)/O(r). This
integral is a nearly weakly-singular integral when the
distance e (Fig. 2) is very small. We will discuss how to
evaluate it accurately by a nonlinear coordinate transfor-
mation in the next section. Now, we focus on the evalua-
tion of the last integral in (6) by an analytical method.

Considering the local polar coordinate with the origin at
the source point P0, Fig. 3, we have the following relations:

P0

P

r

L

Fig. 1. Sketch of a 2-D thin structure with boundary L

P0

P

r

∆L

r2

e

r ’

r1

P0’

Fig. 2. Source point P0 near the line DL of integration
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or

oxi
� d1i cos h� d2i sin h; �7�

or

on
� rdh

dL
: �8�

Applying (7) and (8) in (3), we can derive the following
expression:Z

DL

Tij�P; P0�dL�P�

� C1 C2

Z
DL

1

r

or

on
dijdL� 2

Z
DL

1

r

or

on

or

oxi

or

oxj
dL

�
�C2

Z
DL

1

r

or

oxj
ni ÿ or

oxi
nj

� �
dL

�
� C1 C2

Z
DL

dijdh� 2

Z
DL

or

oxi

or

oxj
dh

�
�C2

Z
DL

oln�r�
oxj

ni ÿ o ln�r�
oxi

nj

� �
dL

�

� C1 C2dijh

����h2

h1

� 2

Z
DL

�d1id1j cos
2 h� d2id2j sin

2 h

(
��d1id2j � d2id1j� sin h cos h�dh

�C2

Z
DL

o ln�r�
oxj

ni ÿ o ln�r�
oxi

nj

� �
dL

�
� C1 C2dijh� d1id1j�h� 1

2 sin 2h��
ÿ1

2�d1id2j � d2id1j� cos 2h� d2id2j�hÿ 1
2 sin 2h�	����h2

h1

� C1C2

Z
DL

o ln�r�
oxj

ni ÿ o ln�r�
oxi

nj

� �
dL �9�

where C1 � ÿ1=4p�1ÿ m� and C2 � 1ÿ 2v. Using the
Stokes' theorem (Kreyszig 1972) to evaluate the last inte-
gral in Eq. (9), we obtainZ

DL

o ln�r�
oxj

ni ÿ o ln�r�
oxi

nj

� �
dL � �e1ie2j ÿ e2ie1j�ln r

����r2

r1

;

�10�

where eij is the permutation tensor. Substitution of
(10) into (9) yields the ®nal expression:Z

DL

Tij�P; P0�dL�P� � C1C2�e1ie2j ÿ e2ie1j�ln r

����r2

r1

� C1fC2dijh� d1idlj�h� 1
2 sin 2h�

ÿ 1
2 �d1id2j � d2id1j� cos 2h� d2id2j�hÿ 1

2 sin 2h�g
����h2

h1

�11�
Thus, we have converted the last integral in (6) to
function evaluations at the two end points of the
element DL, as given in (11). It is interesting to note
that this integral does not depend on the integration
path DL. This means that, no matter what kind of
element is applied, the last integral in (6) is only
determined by locations of the source point P0 and the
two end points of the element DL. Obviously, there is
no dif®culty at all in obtaining the exact value of this
integral, no matter how close the source point is to the
element.

2.2 Evaluate the regularized nearly-singular integral by
nonlinear transformation
The order of the ®rst integral on the right hand side of
(6), i.e.,Z

DL
Tij�P; P0��uj�P� ÿ uj�P 00��dL�P�

is weakened to O(r0) O(r). However, as r 0 is not equal
to r, near singularity in the above integral is not
canceled completely and ordinary Gauss quadrature is
not good enough to evaluate it accurately when e is in
micro- or nano-scale. For simplicity, during the
following discussion we use the natural coordinate
system n 2 �ÿ1; 1� and the coordinate n of P 00 is 0 as
shown in Fig. 4. Then in the natural coordinate system,
r and r 0 can be written as:

r0 � n; r �
��������������
n2 � e2

q
�12�

where e is the distance from source P0 to the element DL.
For simplicity and clarity, the following integral is dis-
cussed at this time

θ1

θ2

θ

rdθ n

P0

P
r

∆L dL

r1
r2

Fig. 3. The local polar coordinate system

P0

P ’0 ξ( = )0

ξ

1-1

re

r ’

P ξ( )

Fig. 4. Distances r and r0 in the natural coordinate system
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Z
DL

r0

r
dL �

Z 1

ÿ1

��������������
n2

n2 � e2

s
dn

�
Z 0

ÿ1

��������������
n2

n2 � e2

s
dn�

Z 1

0

��������������
n2

n2 � e2

s
dn

� 2

Z 1

0

��������������
n2

n2 � e2

s
dn: �13�

The above integral can not be evaluated accurately by
ordinary Gauss quadrature when e2 is small, say e2= 10ÿ2

to 10ÿ5 (but not zero), and nonlinear coordinate trans-
formation is needed. We can see this by considering the
following three functions in the form:

y � C

���������������
nm

nn � e2

s
: �14�

We select,

y1 � 2

��������������������
n2

n2 � 10ÿ5

s
; �m � 2; n � 2; e2 � 10ÿ5�

y2 � 2

�������������
n2

n2 � 1

s
; �m � 2; n � 2; e2 � 1�

y3 � 4

��������������������
n6

n4 � 10ÿ5

s
; �m � 6; n � 4; e2 � 10ÿ5�

where the y1; y2 are the function in integral (13) with
e2 � 10ÿ5 and 1, respectively, and y3 with e2 � 10ÿ5 and
higher orders of n.

Figure 5 is a plot of the three functions in the range of
n 2 �0; 1�. It is found that, in the neighborhood of zero, y1

changes very rapidly, while y2 and y3 vary moderately.
When approximating the above three functions by poly-
nomials, we will ®nd that higher order polynomials should
be used for function y1, which means higher order Gauss
quadrature is needed when evaluating its integration. A
lower order of Gauss quadrature may be used for y1 if we

can somehow reduce its rate of variation in the neigh-
borhood of zero. There are two possible ways to realize
this. One way is to increase the absolute value of e2 so that
y1 will behave more like y2. However, this approach is
infeasible since the absolute value of e is decided by the
location of source P0 and element DL and it can not be
changed. The other way is to increase the order of n in the
denominator so that y1 will behave more like y3. This can
be achieved by using the following nonlinear coordinate
transformation.

Let n � g2 in integral (13). Then (13) is transformed
to:

2

Z 1

0

��������������
n2

n2 � e2

s
dn � 4

Z 1

0

g

��������������
g4

g4 � e2

s
dg

� 4

Z 1

0

��������������
g6

g4 � e2

s
dg: �15�

We ®nd that for the special case e2 � 10ÿ5, the function in
the integral (13) changes from y1 to y3. With the order of n
in the denominator increasing from 2 to 4, the rate of
change of y3 in the neighborhood of zero is reduced
greatly, Fig. 5. It is much easier to evaluate y3 accurately by
using a smaller number of Gauss points.

In the above discussion, we considered the singular part
1/r in the stress kernel Tij and r0 part in uj�P� ÿ uj�P00�
only. It is true that for this simpli®ed case, an order of two
nonlinear transformation in (15) is enough to evaluate the
integral accurately even if the absolute value of e2 is small.
However, when the ®rst integral in the right hand side of
(6) is evaluated, for the in¯uence from other parts of Tij

and uj�P� ÿ uj�P00�, higher order transformation as follows
may be needed.

Let n � gm�m > 2� in (13), thus (13) is transformed to:

2

Z 1

0

��������������
n2

n2 � e2

s
dn � 2

Z 1

0

mgmÿ1

�����������������
g2m

g2m � e2

s
dg

� 2

Z 1

0

m

�����������������
g4mÿ2

g2m � e2

s
dg;

where m is called the order of the nonlinear coordinate
transformation. We observe that, when m is large enough,
the ®rst integral on the right hand side of (6) can be
evaluated accurately. From our experience, for quadratic
elements, when e is on 10ÿ6 scale or smaller, m � 6 will be
accurate enough. But best results will be obtained when m
is between 12 and 14 using 10±20 Gauss points.

Several other important points for nonlinear coordinate
transformation deserve mention:

(1) The nonlinear coordinate transformation can be used
for any type of elements, e.g., linear, quadratic or cubic
elements (quadratic elements are used in the example
problems in this paper).

(2) No CPU time penalty is incurred in using this non-
linear coordinate transformation, because all values of
gm at the Gaussian points can be evaluated once before
the kernels are computed.

0.2 0.4 0.6 0.8

3

2

1

y

0 ξ

y (e = 10 )3
2 -5

y (e = 10 )1
2 -5

y (e = 1)2
2

Fig. 5. Plot of the functions y1; y2 and y3
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(3) The regularization process in part (2.A) is indispens-
able, because it signi®cantly reduces the order of sin-
gularity and provides the basis for the success of the
nonlinear coordinate transformation.

(4) Although in the mathematical sense, larger m should be
better, m should not be greater than 16, where the value
of gm�ÿ1 � g � 1� may approach zeros within the
machine precision.

2.3 Evaluation of nearly weakly-singular integral
In 2-D elasticity problems, the weakly-singular integrals
given in (4) contain the singular term ln(r). In the sin-
gular case, i.e., if r � 0, a special logarithm Gaussian
quadrature can be employed. However, when r is very
small but not zero, this nearly weakly-singular integral
can cause dif®culties in the 2-D BEM procedure. At-
tempts have been made to obtain the analytical expres-
sions for this integral with the weakly-singular kernel
when r 6� 0, but they are successful only for constant and
linear elements. For general curved elements, such as
quadratic elements, a more general approach needs to be
established. Here we use a similar nonlinear coordinate
transformation as developed in the previous section to
evaluate the nearly weakly-singular integrals accurately,
no matter how close the source point is to the element of
integration. To illustrate the idea, let us consider the
natural coordinate system n again and use the nonlinear
coordinate transformation n � gm (the approach is
equally applicable to any types of elements on which the
local coordinate system n can always be established). We
obtain:Z

DL

ln�r� dL � 2

Z 1

0

1
2 ln�n2 � e2� dn

�
Z 1

0

mgmÿ1ln�g2m � e2� dg:

For a similar reason to that given in section (2.2), this
integral can be evaluated accurately using a small number
of Gauss points when m is large enough, as revealed in the
numerical studies.

3
Numerical verification
To verify the method developed above, three simple test
problems are studied in which BEM solutions are com-
pared with the exact or FEM solutions.

3.1 Test problem 1: a thin plate
First, a thin plate under external pressure p shown in Fig. 6
is studied. We assume the length of the plate in z direction

is large so that this problem can be simpli®ed as a plane
strain problem. The length L of the plate in x direction is
constant in this study, while the thickness h changes from
L to 10ÿ9 L. Note that the thickness is changing from
macro-scale to micro-scale, and eventually to nano-scale,
which may already be outside of the limits of the contin-
uum mechanics assumptions for many materials. How-
ever, it is of more interest here to verify the validity and
effectiveness of the developed BEM approach for such 2-D
thin structures.

In the BEM model, the boundary of the plate is dis-
cretized with only four quadratic boundary elements, two
elements with length L � 4 m, and two other elements
with size (thickness h) changing from L to 10ÿ9 L, as
shown in Fig. 6. On node 1 and 3, displacement in y di-
rection is constrained. On node 2, displacement compo-
nents in both x and y directions are constrained. Figure 7
shows the displacement of node 5 in x direction by the
BEM without using singular subtraction and the nonlinear
coordinate transformation. It is obvious that the results
deteriorate quickly as the thickness decreases. Figure 8
shows the same displacement results by the BEM with the
singularity subtraction and nonlinear coordinate trans-
formation. We see that even for thickness to length ratio
h/L in the nano-scale, results are still very good. Results for
the stress components are even more accurate for this
example, almost reproducing the exact values (e.g.,
ry � 7:5Pa) for all the values of the thickness . This proves
that the developed analytical work in the BEM procedure
is effective. The ®nite element analysis of this simple
problem was also attempted, but it was soon found out
that the number of the 2-D ®nite elements were so large
that the task quickly exceed the capacity of the computer
used. A simple calculation reveals that the total number of
the 2-D ®nite elements required for this example is de-
termined by

M � 2� L

5� h
2

ÿ � � 4L

5h
;

if only two layers of elements are used across the thickness
and an aspect ratio of ®ve is maintained. This gives
M � 3; 200; 000 elements if h � 10ÿ6 m�L � 4 m) and an
even larger number of nodes, depending on the type of
®nite elements employed.

The example problem studied here is a very simple one
in thin structures. The purpose of using this example is to
verify the correctness of the singularity subtraction and
nonlinear coordinate transformation in dealing with
nearly-singular integrals. Because of the simplicity of the
boundary condition (constant pressure), a model with
much smaller length can actually be applied. For example,
in the cases when thickness of the plate is in the micro-

p = 7.5 Pa

567
y

h48

x
321

L = 4 m

8 Fig. 6. A thin plate under
constant pressure p (2-D plain
strain model, shear modulus
l � 8:0� 1010 Pa, Poisson's
ratio m � 0:2)
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scale, we can use a model with length in the micro-scale.
Then, no nearly singular integral problem exists in the
BEM. Also no aspect ratio problem exists for FEM using 2-
D elements. However, more cases exist that the length of
the model can not be decreased. For example, in this
simple problem if the pressure p is not constant but varies
along the side of the plate, then the model with
length = 4 m should be used. In such situation, with the
2-D BEM, as we have seen in this example, accurate results
can be obtained by using just a few boundary elements.

3.2 Test problem 2: thin coating on a shaft
The method developed in this paper will be used to solve
two related sample problems of a shaft with a thin coating.
Plane strain is assumed, and the shaft is considered to be
rigid when compared to the coating. The shaft and coating
have outer radii rs and rc respectively, and the two cases to
be considered are: (a) the coating is of uniform thickness
h � rc ÿ rs as shown in Fig. 9(a), and (b) the coating is of
nonuniform thickness; both the shaft and coating pro®les
remain circular, but their centers are misaligned, pro-
ducing some normalized eccentricity d � xc

rcÿrs
, where xc is

the center offset, as shown in Fig. 9(b). In both examples,
the coated system is loaded by a pressure p which is

uniformly distributed around the circumference. In addi-
tion, the boundary conditions for both cases, considering
the rigid shaft assumption, are ux � uy � 0 for all nodes at
the shaft/coating interface. Finally, the BEM discretization
uses 16 elements for both sample problems, regardless of
the thickness of the structure. The FEM discretization
varies according to the structure thickness and element
aspect ratio requirements.

(a) First case: uniform thickness coating
For the uniform thickness case, an analytical solution for
the stress ®eld can be obtained (Boresi and Chong 1987),
and a comparison of BEM and FEM solutions can be made.
For this problem, the coating thickness varies in the range
of 10ÿ2rs � h � 10ÿ9rs; this variation is achieved by
holding the shaft radius rs constant while varying the
coating outer radius rc appropriately. The stress solution
has been obtained by the BEM and compared with the
analytical solution.

Figure 10 shows the error magnitude of radial stress rrr

prediction using the BEM for the uniform coating thick-
ness. Note that as the coating thickness decreases, no loss
in solution accuracy is shown. In fact, in this particular
case, the solution becomes better as the thickness gets
smaller. The radial stress approaches the applied pressure
p, as expected, when the thickness approaches zero.

(b) Second case: nonuniform thickness coating
The second important case for analysis is the nonuniform
thickness case, which does not demonstrate the symmetry
of the ®rst sample problem. As a result, the FEM mesh in
this case must consider the entire structure, which sig-
ni®cantly increases the number of elements. In addition, as
the eccentricity d increases, more ®nite elements are re-
quired in the thinnest section in order to maintain rea-
sonable element aspect ratio. Note that the same BEM
mesh is used, including 16 elements. While no analytical
solution exists for d 6� 0 case, the asymptotic behavior of
the solution as d! 0 can be checked to verify the for-
mulation. In this case, shaft radius is held constant at
rs � 0:1 m and coating outer radius is also held constant at
rc � 0:11 m. However, the eccentricity has been system-
atically varied over the entire range 0 � d < 1. For each
case of eccentricity, the stress solution has been obtained
by using the BEM, while the FEM solution breaks down as
d! 1.

Figure 11 shows the normalized radial stress rrr at point
A, and also the number of nodes needed to achieve solu-
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tion for both the BEM and FEM. Note ®rst the asymptotic
behavior of the BEM solution, which approaches the an-
alytical value of the sample problem as d! 0(case (a)).
Also notice that the same stress value at point A ap-
proaches the applied pressure p as d! 1, which is con-
sistent with the physical interpretation. Again, the BEM
mesh does not change across the entire range of normal-
ized eccentricity. The solution time and memory require-
ments are therefore quite modest for the BEM procedure.
The FEM solution, however, demonstrates a very different
behavior. While the low eccentricity cases are easily solved
with the FEM, with a fairly small number of elements, the
solution requires signi®cantly more effort for d! 1. The
FEM element count increases dramatically at approxi-
mately d � 0:9, corresponding to an absolute coating
thickness of h � 0:001 m at the thinnest point on the
structure. Indeed, for d > 0:99, the FEM solution becomes
infeasible due to memory limitations. On the other hand,
the BEM can continue to provide results for
d � 0:999; 0:9999 and 0.99999 without any dif®culty, be-
cause of the effective approach developed in this paper to
deal with the nearly-singular integrals. Clearly, the BEM

solution, which does not require a re®ned mesh, regardless
of the coating thickness, is preferable.

4
Discussion
The applicability of the conventional BIE for 2-D elasticity
problems to the analysis of 2-D thin structures in micro-
and nano-scale is investigated in this paper. It is shown
that the CBIE, using singularity subtraction and nonlinear
coordinate transformation to deal with the nearly singular
integrals, will be very accurate and ef®cient in modeling
2-D thin structures. The numerical veri®cation on two
sample problems using thin coating models supports this
assertion.

For all the test problems of thin structures studied in
this paper, the BEM provides a computationally-ef®cient
solution for both displacement and stress ®elds. While the
FEM performs well over certain parameter ranges, in
general it is not suitable for thin structures such as those in
the examples for the following reasons: (1) For accurate
stress solution using FEM, particularly for thin structures
in which normal stresses are of interest, 2-D continuum
elements must be used. Shell elements cannot be used
because they lack accuracy in stress predictions, a crucial
consideration in many thin structure problems including
fatigue performance of coated machine elements. As a
result, for the required 2-D quadratic plane strain ele-
ments, the number of degrees of freedom increases rapidly
with the number of elements. In addition, shell elements
present implementation problems for structures of non-
uniform thickness, for which each shell element would
possess a different thickness. (2) Finite element count in-
creases rapidly for thin structures due to aspect ratio
limitations. To maintain element aspect ratio for the
nonuniform thickness case, a large number of elements
must be inserted in the thinnest portion of the structure.
In addition, for each change in thickness, a complete re-
meshing of that portion of the domain must be conducted
to insure accurate solution. (3) The FEM eventually be-
comes infeasible due to memory constraints and the ne-
cessity for a very large number of DOF's for very thin
structural problems, or for cases in which symmetry
cannot be exploited.

The BEM is able to circumvent these problems through
the novel approach developed in this paper. The BEM
approach to thin structure analysis described here can
solve the stress ®eld problem accurately for (in theory)
arbitrarily thin structures, because of the following at-
tractive features: (1) Using only boundary discretization
(e.g., quadratic line elements) instead of domain discreti-
zation (area elements), the BEM does not suffer from
thickness or aspect ratio dif®culties related to FEM shell or
2-D continuum elements described above. (2) Therefore,
the element count using the BEM can be held constant for
thin structural problems as described in the example,
without any loss in solution accuracy as the thickness
decreases. (3) The BEM procedure therefore requires no
remeshing as the thickness decreases. The BEM solution
seldom confronts memory or storage issues in the nu-
merical solution, and symmetry issues need not be
considered.
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Using the analytical singularity subtraction and non-
linear coordinate transformation techniques demonstrated
in this paper, the seemingly dif®cult task of evaluating the
nearly-singular integrals in the BIE for 2-D thin structures
can be dealt with effectively and ef®ciently. The BEM ap-
proach developed here for thin structural problems
achieves accurate stress predictions for arbitrarily thin
structures, even for problems with geometric length scale
approaching the limits of the validity of continuum me-
chanics formulations.

The developed method of using the BEM based on
elasticity theory for analyzing 2-D thin structures can be
extended readily to model layered coatings, thin ®lms or
other layered structures to analyze contact stresses, in-
terfacial cracks, thermal effects and nonlinear deforma-
tions. All of these topics, in the cases of bulky structures,
can be dealt with effectively and ef®ciently by the BEM
(Mukherjee 1982; Cruse 1988; Banerjee 1994). Some work
along this line for thin structures is already underway.

5
Conclusion
An ef®cient way to deal with nearly singular integrals in 2-
D elastostatic BEM is developed in this paper. By using the
singularity subtraction and nonlinear transformation,
nearly singular integrals in 2-D BEM can be evaluated
accurately, even if the ratio of the distance to the typical
element size is smaller than the order of 10ÿ6. This BEM
approach will be most useful in the numerical analysis of
thin structures such as coating system or thin ®lms on
micro and even smaller scales where other computational
models, such as the FEM, become inef®cient or fail.
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