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Abstract

An advanced boundary element method (BEM) with thin-body capabilities was developed recently for the study of

interphases in ®ber-reinforced composite materials (Y.J. Liu, N. Xu and J.F. Luo, Modeling of interphases in ®ber-

reinforced composites under transverse loading using the boundary element method, ASME J. Appl. Mech. 67 (2000)

41±49). In this BEM approach, the interphases are modeled as thin elastic layers based on the elasticity theory, as

opposed to spring-like models in the previous BEM and some FEM work. In the present paper, this advanced BEM is

extended to study the interface cracks at the interphases in the ®ber-reinforced composites. These interface cracks are

curved cracks between the ®ber and matrix, with the presence of the interphases. Stress intensity factors (SIFs) for these

interface cracks are evaluated based on the developed models. The BEM approach is validated ®rst using available

analytical and other numerical results for curved cracks in a single material and straight interface cracks between two

materials. Then, the interface cracks at the interphases of ®ber-reinforced composites are studied and the e�ects of the

interphases (such as the thickness and materials) on the SIFs are investigated. As a special case, results of the SIFs for

sub-interface cracks are also presented. It is shown that the developed BEM is very accurate and e�cient for the in-

terface crack analyses, and that the properties of the interphases have signi®cant in¯uences on the SIFs for interface

cracks in ®ber-reinforced composites. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Interphases in ®ber-reinforced composite ma-
terials are thin layers of materials between the ®ber
and matrix, and play a very important role in the
functionality and reliability of the composite ma-
terials (Chawla, 1998; Hyer, 1998). The e�ective
utilization of the strength and sti�ness of the ®ber-

reinforced composites depends on e�cient load
transfers from the matrix to ®bers through the
interphases. However, during the manufacturing
of composites, a large number of micro-cracks
may develop, especially at the interfaces, even be-
fore any load has been applied. More interface
cracks may develop during the loading process
because of the di�erences in the sti�ness of the ®-
bers, interphases and matrix, resulting weak bonds
at these interfaces. It is therefore essential to pre-
dict when an interface crack will become unstable
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in the ®ber-reinforced composite materials, in or-
der to provide some guidelines in improving the
design of such materials.

Interface cracks between two dissimilar mate-
rials have been studied for at least four decades
(Williams, 1959). Some of the analytical work and
extensive reviews can be found, for example, in
(Sinclair, 1980; Gautesen and Dundurs, 1987;
Hutchinson et al., 1987; Rice, 1988; Suo and
Hutchinson, 1990) for interface cracks between
two isotropic materials, and in (Bassani and Qu,
1989; Qu and Bassani, 1989; Suo, 1990; Qu and
Bassani, 1993) for interface cracks between two
anisotropic materials. All of the above analytical
work focus on straight interface cracks in 2D, in-
®nitely large models of dissimilar materials.
Curved interface cracks as existing between the
®bers and matrix under transverse loading were
studied recently in (Chao and Laws, 1997). Al-
though the matrix is assumed to be in®nitely large
in this work, the analytical results have provided
very important information about the stress sin-
gularities and contact zone sizes near the crack tip.
For example, it is shown in (Chao and Laws, 1997)
that the contact zones near the crack tip, where
earlier analytical solutions have predicted over-
lapping of the crack faces and oscillatory singu-
larity of the stresses, are indeed very small ± only
about 0.1% of the total crack length. All the ana-
lytical works mentioned above have provided the
theoretical background and guidelines for numer-
ical methods in the studies of interface cracks in
materials or structures of more realistic geometries
and under more complex loading conditions.

Numerical simulations using the ®nite element
method (FEM) or the boundary element method
(BEM) are e�ective methods for the study of crack
problems. The boundary integral equation/
boundary element method (BIE/BEM), pioneered
in (Rizzo, 1967) for elasticity problems, has been
demonstrated to be a viable alternative to the
FEM for many problems in engineering, due to its
features of boundary-only discretization and high
accuracy (see, for example, Mukherjee, 1982;
Cruse, 1988; Brebbia and Dominguez, 1989;
Banerjee, 1994). The high accuracy and e�ciency
of the BEM for stress analysis, especially in frac-
ture mechanics (Cruse, 1988; Cruse, 1996), is well

recognized because of its semi-analytical nature
and boundary-only discretization. Analytical fun-
damental solutions (Green's functions) are em-
ployed as the engine in the BEM to generate, ®rst
numerical solutions on the boundary, then solu-
tions anywhere inside the domain (if desired). The
discretization errors in the BEM are mainly con-
®ned to the boundary of the structure and inter-
faces between di�erent materials. The meshing for
the BEM is also much more e�cient than that for
other domain-based methods, especially for prob-
lems with changing boundaries such as crack
propagation problems.

The BIE/BEM has been applied to fracture
mechanics analysis ever since its early days of de-
velopment (Cruse, 1988; Cruse, 1996). The BEM
can deal e�ectively with straight cracks, curved
cracks (Zang and Gudmundson, 1988; Paulino
et al., 1993), interface cracks in isotropic materials
(Miyazaki et al., 1993; Xiao and Hui, 1994; Yuuki
and Xu, 1994; Sladek and Sladek, 1995) or in an-
isotropic materials (Berger and Tewary, 1997), as
well as wave scattering from cracks (Lin and Keer,
1987; Budreck and Achenbach, 1988; Krishna-
samy et al., 1990; Krishnasamy et al., 1992; Liu
and Rizzo, 1997). Other forms of the integral
equation methods have also been applied to the
interface crack analysis in the context of ®ber-re-
inforced composites. In (Lee and Mal, 1997; Lee
and Mal, 1998), the stress distributions near the
interface cracks between the ®ber and matrix were
studied by a volume integral method. The inter-
phases between the ®ber and the matrix were
considered in these models in which the matrix was
assumed to extend to in®nity. Interactions of a
cluster of ®bers were also investigated in (Lee and
Mal, 1997; Lee and Mal, 1998). Another integral
equation approach was developed recently in
(Helsing, 1999) to study the interface crack of a
general shape. An interesting example was pre-
sented, in which the stress intensity factors (SIFs)
were computed for a crack at the interface of an
inclusion (®ber) with 19 protruding arms and
embedded in an in®nite elastic plane (matrix).

However, no interface cracks between the ®ber
and matrix with the presence of the interphases
have been studied by the BEM. This may be re-
lated to the fact that the BEM had been regarded
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until recently as di�cult, if not impossible, to deal
with thin bodies such as the interphases. Recently,
an advanced BEM with thin-body capabilities was
developed for the studies of the interphases in ®-
ber-reinforced materials (Liu et al., 2000), and
coatings or thin ®lms (Luo et al., 1998; Luo et al.,
2000). In this BEM approach, the interphases are
modeled as thin elastic layers using the elasticity
theory, as opposed to the spring-like models in the
previous BEM (Achenbach and Zhu, 1989;
Achenbach and Zhu, 1990; Pan et al., 1998) and
some FEM work. The developed BEM approach
is found to be extremely accurate and e�cient for
the analysis of thin and layered structures. By
employing much fewer boundary elements (less
than 200) for a whole unit-cell model, the devel-
oped BEM can provide accurate stress results for
which the FEM has to employ more than 3500
elements for only a quarter model of the same
unit-cell as reported in (Wacker et al., 1998).

In this paper, this advanced BEM approach is
extended to the study of interface cracks in the
interphase regions in ®ber-reinforced composites.
These interface cracks are curved cracks between
the ®ber and matrix, with the presence of the in-
terphases. Stress intensity factors for these inter-
face cracks are calculated based on the developed
models. The BEM approach is validated ®rst using
available analytical and other numerical results for
curved cracks in a single material and straight in-
terface cracks between two materials. Then, the
interface cracks in the interphase regions of ®ber-
reinforced composites are studied and the e�ects of
the interphases (such as the thickness and materi-
als) on the SIFs are investigated. As a special case,
results of the SIFs for sub-interface cracks are also
presented. It is shown that the developed BEM is
very e�cient for the interface crack analyses and
that the properties of the interphases have signi®-
cant in¯uences on the SIFs for interface cracks in
®ber-reinforced composites.

2. BIE formulation

The following conventional BIE for two-di-
mensional, isotropic, linearly elastic structures

(Rizzo, 1967) is applied in this study (index nota-
tion is used here):

Cij�P0�u�b�j �P0� �
Z

S
U �b�ij �P ; P0�t�b�j �P�
h

ÿ T �b�ij �P ; P0�u�b�j �P �
i

dS�P � �1�

in which u�b�i and t�b�i are the displacement and
traction ®elds, respectively, U �b�ij �P ; P0� and
T �b�ij �P ; P0� the displacement and traction kernels
(Kelvin's solution or the fundamental solution),
respectively, P the ®eld point, �P0� the source
point, S the boundary of a single material domain
V, Cij�P0� a constant coe�cient matrix depending
on the smoothness of the curve S at the source
point P0 . The superscript b on the variables in
Eq. (1) signi®es the dependence of these variables
on the material domain. The expressions for the
kernel functions U �b�ij �P ; P0� and T �b�ij �P ; P0�, which
contain the material constants, can be found in
(Liu et al., 2000) or any other references on the
BEM (see, e.g., Mukherjee, 1982; Brebbia and
Dominguez, 1989; Banerjee, 1994).

BIE (1) is applied to each material domain
(matrix, ®ber and interphase), which will relate the
boundary displacement and traction ®elds in that
domain only. The multi-domain method is em-
ployed, where each crack surface is modeled as
part of the boundary of the domain. The resulting
BIEs from each domain are coupled through the
interface conditions. The continuity of the dis-
placement and traction is imposed at the perfectly
bonded interface, while traction-free condition is
applied on the interface crack faces. The isopara-
metric quadratic boundary (line) elements are ap-
plied in this study. Details of coupling the BIEs
from each domain and the numerical implemen-
tations can be found in (Luo et al., 1998; Liu et al.,
2000).

There have been several questions or concerns
in the BEM community about applying the con-
ventional BIE (1) to crack problems and thin shell-
like problems. Is the conventional BIE (1) suitable
for analyzing such problems? If it is, how to deal
with the nearly singular integrals arising from such
problems when parts of the boundary are very
close to each other? It is well known (Cruse, 1988)
that the conventional BIE (1) will degenerate when
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it is applied to bodies containing a crack which is
modeled as two separate faces (curves in 2D or
surfaces in 3D). The equation at a point on one
face of the crack is identical to the equation at a
point on the opposing face, if the crack opening is
approaching zero. The corresponding two rows in
the matrix for the linear algebra equations are the
same and this leads to the degeneracy of the linear
system (the matrix is singular). To solve this de-
generacy di�culty in the BEM for crack problems,
the hypersingular BIE, which is the derivative of
the conventional BIE (1), is introduced and has
been applied successfully in the BEM for crack
problems (see, e.g., Gray et al., 1990; Krishnasamy
et al., 1990; Liu and Rizzo, 1997). Another re-
medy to this degeneracy is to introduce arti®cial
boundaries, starting from the crack tips and
leading to the outer boundary, therefore dividing
the original domain into two sub-domains. BIE (1)
is applied in each sub-domain separately with the
crack faces as boundaries for the sub-domains.
The resulting two systems of equations from each
domain are coupled together using the continuity
(interface) conditions on the arti®cial boundaries.
In this way the degeneracy can be avoided. For
interface cracks sitting between two materials
(sub-domains), BIE (1) must be applied to each
material domain and the crack faces are treated as
part of the boundary of the sub-domains. There-
fore the degeneracy issue of the conventional BIE
does not exist for analyzing interface crack prob-
lems using the BEM.

For thin shell-like structures or materials, such
as the interphases in ®ber-reinforced composite
materials, it has been shown recently (Liu, 1998)
that conventional BIE (1) will not degenerate,
contrary to the case of a crack in one material for
which BIE (1) does degenerate, as discussed above.
The main obstacle in applying BIE (1) for thin
shell-like structures is therefore the nearly-singular
integrals existing in the BIE when integrations
need to be done on one surface while the source
point is on the other closely nearby surface. E�-
cient analytical and numerical procedures have
been devised for computing such nearly-singular
integrals for both 3D (Liu et al., 1993; Liu, 1998)
and 2D (Luo et al., 1998) problems. Excellent
numerical results have been obtained for various

thin shell-like structures using these advanced
techniques in dealing with thin bodies or thin shell-
like structures (Liu et al., 1993; Liu and Rizzo,
1997; Liu, 1998; Luo et al., 1998; Liu and Chen,
1999; Liu et al., 2000; Luo et al., 2000).

In the recent work in (Liu et al., 2000), inter-
phases in unidirectional ®ber-reinforced compos-
ites under transverse loading are modeled
successfully by the BEM based on the elasticity
theory. The interphases are regarded as elastic
layers between the ®ber and matrix, as opposed to
the spring-like models in the BEM literature. Both
cylinder and square unit-cell models of the ®ber±
interphase-matrix systems are considered. The
e�ects of varying the modulus and thickness (in-
cluding nonuniform thickness) of the interphases
with di�erent ®ber volume fractions are investi-
gated. Numerical results demonstrate that the de-
veloped BEM is very accurate and e�cient in
determining the interface stresses and e�ective
elastic moduli of ®ber-reinforced composites with
the presence of interphases of arbitrarily small
thickness and nonuniform thickness.

In this paper, the BIE as given in Eq. (1) and
with the thin-body capabilities developed in (Luo
et al., 1998; Liu et al., 2000) for 2D elastic thin
structures are extended to study the stress distri-
butions and stress intensity factors for ®ber-
reinforced composites containing interface cracks,
with or without the presence of the interphases
between the ®ber and matrix.

3. Stress intensity factors (SIFs)

Formulas scattered in the literature for calcu-
lating the stress intensity factors for cracks in one
material and interface cracks between two mate-
rials are listed in this section for convenience.

For a ¯at, homogeneous and isotropic plate
with a center crack of length 2a (in the x-direction)
and width 2w, subjected to a uniform tension r0 (in
the y-direction), the SIF K1 is given by the fol-
lowing expression (see, e.g., (Hellan, 1984)):

K1 � r0

������
pa
p 1ÿ 0:5a=w� 0:326a2=w2�����������������

1ÿ a=w
p" #

: �2�
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For an in®nitely large plate (w!1�, this ex-
pression is reduced to the familiar result K1 �
r0

������
pa
p

.
For an interface crack with the length 2a and

between two dissimilar materials subjected to a
uniform tension r0, an analytical expression for
the stress intensity factors K1 and K2 is given in the
following complex form (Rice, 1988):

K1 � iK2 � r0�1� 2ie��2a�ÿie ������
pa
p

; �3�
where i � �������ÿ1

p
, and

e � 1

2p
`n

j1

G1

��
� 1

G2

��
j2

G2

�
� 1

G1

��
; �4�

jb � 3ÿ 4mb �for plane strain�;
jb � 3ÿ mb

1� mb
�for plane stress�

with mb and Gb being the Poisson's ratio and shear
modulus of the material b, respectively. In a dif-
ferent expression for K1 � iK2, given in (Yuuki and
Xu, 1994), the constant multiplier �2a�ÿie

does not
appear on the right-hand side of Eq. (3).

The stress intensity factors can be computed
using the following two methods:

(1) From crack opening displacements (the COD
method). The following formulation is used to
calculate the SIF from the crack opening dis-
placement (Rice, 1988; Xiao and Hui, 1994):

K1 � iK2 � 2�2p�1=2�1� 2ie� cosh�pe�� ��Dv� iDu�
Cr1=2�ie

;

�5�
where Dv� iDu � �v� iu� jh�p ÿ�v� iu� jh�ÿp, u
and v denote the displacements of the nodes be-
hind the crack tip in the x- and y-directions, re-
spectively, and �r; h� is the polar coordinate with
its origin at the (right) crack tip (distance r should
be very small compared to the crack length 2a).
The material constant C is de®ned by

C � j1 � 1

G1

� j2 � 1

G2

: �6�

(2) From stresses ahead of the crack tip (the
stress method). The relation of stresses ahead of
the crack tip and the SIF for an interface crack can
be expressed as (Rice, 1988):

K1 � iK2 � �ry � isxy�rÿie
�������
2pr
p

; �7�

where ry and sxy are the tensile stress and shear
stress, respectively, ahead of the crack tip, and r is
the distance to the crack tip from the point where
stresses are used in Eq. (7). To obtain more ac-
curate results of K1 and K2, only the points which
are near the crack tip should be selected. From
Eq. (7), it is easy to see that when e � 0 and
�sxy� � 0, one obtains K1 � ry

�������
2pr
p

, which is the
result for one material case. Again, in a di�erent
expression given in (Yuuki and Xu, 1994), a con-
stant multiplier �2a�ie appears on the right-hand
side of Eq. (7).

4. Numerical examples

First, numerical examples are studied to verify
the developed BEM approach to the analysis of
interface cracks, using the available analytical and
other numerical results for special cases in the lit-
erature. Then, the stress intensity factors for in-
terface cracks in the ®ber-reinforced composites
are computed to demonstrate the e�ciency and
usefulness of the BEM for such applications.
Quadratic line elements are used on the boundaries
and interfaces of the material domains. In all the
cases, the total number of boundary elements used
are less than 200, which is in strong contrast to the
FEM which requires a much large number of 2D
®nite elements even for the case without interface
cracks (Wacker et al., 1998).

4.1. Straight cracks in a ®nite plate

4.1.1. Center crack in one material
To verify the developed BEM, the stress inten-

sity factor for a center crack in a homogeneous
plate (Fig. 1) is studied ®rst. The quarter-point
element (QPE) and double nodes (see, e.g.,
(Brebbia and Dominguez, 1989; Cook et al., 1989))
are used near the crack tip in the BEM model.
Fig. 2 shows the BEM discretization around the
crack tip (which is closed, not open as shown in
Fig. 2). The plate is discretized using two regions
(multi-domain approach, Fig. 1) and conventional
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BIE (1) is applied in each domain independently.
In this multi-domain BEM approach to crack
problems, the degeneracy issue of the conventional
BIE is avoided (Cruse, 1988). The COD method
and the stress method, discussed in Section 3, are
applied in computing the SIF.

The following parameters are used for the cal-
culation: a� 1 mm; w� 2:5 mm; L� 10 mm; r0 �
104 Pa:

Material properties are the same in domains
one and two in this case, i.e., E � 107 Pa and
m � 0:3.

Results of the normalized SIF K�1 � K1=
�r0

������
pa
p � for this model is shown in Table 1.

Compared with the theoretical value of SIF for an
in®nite plate (Eq. (2)), K�1 obtained from the COD
is found to be more accurate than that from the
stresses. The result from stresses is more sensitive
to the element type and size near the crack tip due
to the singular behavior of the stresses near the
crack tip. Smaller elements are needed in this re-
gion to obtain more accurate stress data.

Table 2 shows the normalized stress intensity
factor of the center crack in one material with

Fig. 2. Boundary element discretization around the crack tip.

Fig. 1. A center crack in one homogeneous material.
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di�erent crack sizes (the ratio a=w varies from 0.1
to 0.6) by the COD method. Compared with the
analytical results from Eq. (2), the maximum error
in the BEM results is only 1.06%.

The good agreement of the SIF results using the
COD in the above examples validates the devel-
oped BEM approach and demonstrates the accu-
racy of the COD method for calculating the SIF in
this case. If not speci®ed, all the SIF results for the
following examples are computed based on the
COD method.

4.1.2. Interface crack between two dissimilar mate-
rials

An interface crack in a bi-material plate sub-
jected to uniform tension r0 �� 104 N� is consid-
ered, Fig. 3. The two materials used are Si3N4 and
S45C with the following properties:

Si3N4 : E � 304 GPa; m � 0:27;

S45C : E � 206 GPa; m � 0:30:

Again, traction-free boundary conditions on the
crack surfaces and the quarter-point element near
the crack tips are used. The analysis was per-
formed by changing the ratio of a=w from 0.1 to
0.6. Table 3 shows a comparison of the SIF results
by the present BEM and those in (Yuuki and Xu,
1994) which is also based on a BEM approach. It
is observed that the normalized stress intensity

factor F1 increases as the size of the crack in-
creases, with the value oscillating around 1.0 (the
theoretical value for an in®nite plate with a center

Fig. 3. Model of an interface crack under tension in a ®nite

plate of dissimilar materials.

Table 1

Normalized K1 for a center crack in one material from the COD and stressa

Node location Node 1 or 10 Node 2 or 20 Node 3 or 30

COD K�1 1.0294 1.0270 1.0126

Error (%) 0.85 0.61 )0.80

Stress K�1 1.1173 1.1881 1.2391

Error (%) 9.45 16.39 21.38

a Note: (1) K�1 � K1=r0

������
pa
p

; The exact value is K�1 � 1:0208; (2) Nodes 1, 2 and 3 are used in the COD method and 10; 20 and 30 in the

stress method.

Table 2

Normalized K1 for a center crack with di�erent sizes in one materiala

a=w 0.6 0.5 0.4 0.3 0.2 0.1 a=w! 0

K�1 Present BEM 1.3025 1.1871 1.1067 1.0479 1.0131 0.9953 1.0000

(Isida, 1973) 1.3033 1.1867 1.1094 1.0577 1.0246 1.0060

a Note: (1) K�1 � K1=r0

������
pa
p

; (2) K1 � r0

������
pa
p

as a=w! 0.
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crack). The value of K2=K1 does not change
monotonically as a=w increases. It should be
pointed out that the bi-material constant e given
in (Yuuki and Xu, 1994) is ± 0.0113, but the
value from Eq. (7) for e is ± 0.01285 in plane
strain case which is the case assumed in (Yuuki
and Xu, 1994). However, in order to compare
with the results in (Yuuki and Xu, 1994), the ®rst
value for e is used here. From Table 3, one can
conclude that the present BEM approach can
provide accurate SIFs for the interface crack
problem studied.

4.2. Curved cracks in one material

A ®nite plate with a circular±arc crack loaded
by uniform tension r0 in both x- and y-directions
is shown in Fig. 4. The analytical solutions of the
SIF for a circular±arc crack in an in®nite plate
under uniform bi-directional loading are available
in (Sih, 1973). In the present numerical test, w=R is
®xed at 5 and the half-crack angle a varies from
15° to 90°. Again, the traction-free boundary
condition and the quarter-point elements are used.
In Tables 4 and 5, the calculated stress intensity
factors K1 and K2 , respectively, normalized with
respect to r0

���������
pRa
p

, are compared to the exact
values for an in®nite plate. It is observed that the
maximum di�erences for K1 and K2 are only 1.32%
and 3.06%, respectively. This excellent comparison
is another strong indication that the present BEM
approach can provide accurate SIF data for both
straight and curved cracks.

4.3. Curved interface cracks between the ®ber and
matrix

A square unit-cell model of a composite, shown
in Fig. 5, with a circular±arc crack at the interface
of the ®ber and matrix (without the presence of the
interphase), is studied. The applied boundary
conditions are shown in Fig. 5, in which d a given
displacement. The ®ber radius R is determined by
the ®ber volume fraction and the length 2w is equal
to one in this unit-cell model. The half-crack angle
a changes from 15° to 90° for the interface crack.

Fig. 4. A square plate under tension with a circular±arc crack

(two domains with the same material are used ± a circular and a

square domains).

Table 3

Normalized stress intensity factors for a center interface cracka

a=w K�1 K2=K1

Present BEM Yuuki and Xu (1994) Present BEM Yuuki and Xu (1994)

0.6 1.3148 1.301 )0.0212 )0.012

0.5 1.1854 1.169 )0.0220 )0.015

0.4 1.0999 1.083 )0.0200 )0.010

0.3 1.0442 1.038 )0.0228 )0.020

0.2 1.0111 1.003 )0.0239 )0.022

0.1 0.9912 0.979 )0.0272 )0.026

0.0 1.000 )0.026

a Note: (1) K�1 � K1=r0

������
pa
p

; (2) Values at a=w � 0:0 are the analytical solutions (Yuuki and Xu, 1994) for an interface crack in an

in®nite plate of dissimilar materials.

776 Y.J. Liu, N. Xu / Mechanics of Materials 32 (2000) 769±783



The properties of the constituent materials con-
sidered are:

for fiber : E�f� � 72:4 GPa �10:5� 106 psi�;
m�f� � 0:22;

for matrix : E�m� � 3:45 GPa �0:5� 106 psi�;
m�m� � 0:35:

The normalized stress intensity factors obtained
using the present BEM are shown in Table 6.
Three ®ber volume fractions are considered. From
Table 6, one can conclude that for a ®xed volume
fraction ratio, the maximum value of K1 is corre-
sponding to the minimum angle a, while the
maximum value of K2 occurs when a reaches the
maximum. When a < 45°, K1 decreases as the ®ber
volume ratio increases and this trend is reversed
when a > 45°.

Table 4

Normalized K1 for the circular±arc crack in one materiala

Angle a �°� K�1 Errors (%)

Present BEM Sih (1973)

15 0.962145 0.969272 0.7345

25 0.922027 0.917834 0.4568

30 0.896306 0.884647 1.3178

45 0.762705 0.764644 )0.2535

60 0.632476 0.630045 0.3859

75 0.498917 0.497235 0.3390

90 0.372517 0.376126 )0.9596

a Note: K�1 � K1=r0

��������
pRa
p

(a is in radians for this factor).

Table 5

Normalized K2 for the circular±arc crack in one materiala

Angle a �°� K�2 Errors (%)

Present BEM Sih (1973)

15 0.127215 0.127607 )0.3072

25 0.209626 0.203479 3.0209

30 0.236693 0.237041 )0.1468

45 0.31940 0.316726 )0.8443

60 0.369960 0.363757 1.7052

75 0.390917 0.381542 2.4571

90 0.387646 0.376126 3.0628

a Note: K�2 � K2=r0

��������
pRa
p

.

Fig. 5. A circular±arc interface crack between the ®ber and

matrix.
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4.4. Curved interface cracks between the interphase
and matrix

Finally, the most interesting and challenging
case that an interface circular±arc crack existing in
the ®ber-reinforced composite with the presence of
the interphase, as shown in Fig. 6, is studied. Be-
cause of the presence and thinness of the inter-
phase, which can cause di�culties for both FEM
and earlier BEM approaches, no previous numer-
ical as well as analytical results have been reported
in the literature. The model used for this case is the
same one as used in the previous example (Fig. 5),
except that an interphase is introduced.

The e�ects of the interphase thickness are
studied ®rst. The material properties used for the
interphase are:

E�i� � 36:2 GPa �5:25� 106 psi�; m�i� � 0:30;

where the Young's modulus of the interphase has
been taken as half of that of the ®ber. The ®ber
volume fraction considered for this case is 60%,
and the interphase thickness h varies from
h � 0:01R to h � 0:05R. The BEM mesh for
h � 0:05R is shown in Fig. 7, in which increased
mesh density is employed at the two crack tips and
uniform, larger mesh size is used elsewhere.

The normalized SIF K1 and K2 (with respect to
rave

���������
pRa
p

; where rave is the averaged tensile stress
on the right edge, Fig. 6) for di�erent interphase
thickness are shown in Figs. 8 and 9, respectively,
with the half-crack angle a changing from 15° to
90°. For comparison, the results for the previous
case without the interphase, from the last two
columns of Table 6, are also plotted in Figs. 8 and
9, respectively. It can be seen that for all the in-
terphase thickness, in general, K1 decreases and K2

increases, as the angle a increases. For a < 45°, the
e�ect of the interphase thickness on K1 is not sig-
ni®cant. For a > 45°, K1 increases as the thickness
of the interphase increases. The change of K2 ver-
sus the interphase thickness is negligible until the
angle a is in the range of 60±90°, where K2 is larger
for a thicker interphase.

The e�ects of the interphase materials are
studied next. In this study, the material of the in-
terphase is changing from that of the matrix to
that of the ®ber (see Section 4.3 for ®ber and

Table 6

Normalized stress intensity factors for the circular±arc interface crack in the composite with di�erent ®ber volume fractionsa

Angle a �°� Fiber volume fractions (%)

20 40 60

K�1 K�2 K�1 K�2 K�1 K�2
15 1.3925 0.0644 1.1836 0.1095 1.0574 0.1140

25 1.3056 0.3573 1.1716 0.2714 1.0308 0.0911

30 1.2613 0.4403 1.1337 0.3304 1.0182 0.1637

45 0.9669 0.7233 0.9592 0.6123 1.0009 0.5018

60 0.7033 0.8899 0.7948 0.8714 0.9745 0.9079

75 0.3839 0.9794 0.4952 1.0732 0.7384 1.3035

90 0.0355 0.9226 0.1047 1.0832 0.3242 1.4727

a Note: K�1 � K1=rave

��������
pRa
p

; K�2 � K2=rave

��������
pRa
p

, where rave is the average normal stress on edge AB (see Fig. 5).

Fig. 6. A circular±arc crack between the interphase and the

matrix.
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matrix material properties used), with ®ve cases
altogether (from material one to material ®ve). For
materials 2, 3 and 4, values of the Young's mod-
ulus are 20:7 GPa �3:0� 106 psi�, 36:2 GPa �5:25
�106 psi�, and 58:6 GPa �8:5� 106 psi�, respec-

tively, and the Poisson's ratio is ®xed at 0.30. The
®ber volume fraction is 60% for all the cases and
the interphase thickness h � 0:01R. Figs. 10 and 11
show the BEM results of the normalized stress
intensity factors K1 and K2, respectively, for the

Fig. 7. The BEM mesh using quadratic line elements (three nodes form one element) for the unit-cell model with the circular±arc

interface crack between the interphase and matrix (half-crack angle a � 15°, interphase thickness h � 0:05R, ®ber volume fraction �
60%).

Fig. 8. E�ects of the interphase thickness on the normalized stress intensity factor �K1=rave

��������
pRa
p � for the circular±arc interface crack.
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circular±arc interface crack between the interphase
and the matrix (Fig. 6). For comparison, the
results of K1 and K2 for the case without the in-
terphase (from the last two columns of Table 6)
are also plotted in Figs. 10 and 11, respectively. In
Fig. 10, it is observed that K1 is much smaller when
the interphase material is the same as the matrix
(material 1). In this special case, the crack is ac-

tually a curved sub-interface crack in the matrix
material and parallel to the interface of the ®ber
and the matrix with a distance of 0:01R. This is in
itself another class of interface crack problem
(Hutchinson et al., 1987), which deserves further
study. On the other hand, when the interphase
material is the same as the ®ber (material 5), K1

values are very close to those for the case without

Fig. 9. E�ects of the interphase thickness on the normalized stress intensity factor �K2=rave

��������
pRa
p � for the circular±arc interface crack.

Fig. 10. E�ects of the interphase materials on the normalized stress intensity factor (K1=rave

��������
pRa
p

) for the circular±arc interface crack.
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the interphase. Actually, this case is almost iden-
tical to the case without the interphase, except that
the ®ber radius is increased from R to 1:01R. Re-
sults of K2 (Fig. 11) show similar phenomenon,
with the sub- interface crack results (material one)
deviating substantially from the other interface
crack results.

It should be pointed out that no overlapping of
the two crack faces near the crack tips was ob-
served in all the numerical studies presented
above. This overlapping or contact of the crack
faces is due to the oscillatory behavior of the
displacement ®elds near the crack tips, predicted
by the theory for linear, elastic interface crack
problems (see, e.g., Rice, 1988; Chao and Laws,
1997). However, this oscillatory zone is extremely
small as compared with the crack length. For
example, the ratio of the length of this oscillatory
zone to the crack length is only about 0.1% or
smaller for a curved interface crack (Chao and
Laws, 1997) and is less than 10ÿ5 for a straight
interface crack (Yuuki and Xu, 1994). In the
current study, the size of the smallest elements
employed near the crack tips is about 1% of the
crack length, which is not small enough to cap-
ture the extremely small oscillatory zone predict-
ed in the theory. The same observation was made

in (Yuuki and Xu, 1994) for the analysis of
straight interface cracks using the BEM. Ex-
tremely ®ne mesh (with elements several orders
smaller near the crack tips) would be needed to
capture this overlapping zone, which may not
improve the accuracy of the SIF calculation sig-
ni®cantly. The quarter-point elements employed
in the current study at the crack tips (Figs. 2 and
7) are intended to capture the dominating, sin-
gular behaviors of the stress ®elds near the crack
tips, which exhibit the 1=

��
r
p

singularity. Appli-
cations of such quarter-point elements near the
crack tips have been proven very accurate and
e�cient in evaluating the stress intensity factors
with reasonably ®ne mesh near the crack tips.

5. Conclusion

An advanced boundary element method has
been developed to study the interface cracks in the
®ber-reinforced composite materials with the
presence of the interphases. Curved interface
cracks have been studied and the results carefully
veri®ed using available analytical and other nu-
merical results. In¯uences of the interphase thick-
ness and material properties on the stress intensity

Fig. 11. E�ects of the interphase materials on the normalized stress intensity factor (K2=rave

��������
pRa
p

) for the circular±arc interface crack.
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factors for the interface cracks, including the spe-
cial case of sub-interface cracks, have been inves-
tigated. The numerical results demonstrate that
the developed BEM is very accurate and e�cient
for the interface crack analysis for thin-layered
structures, such as the interphases in composite
materials. Extensions of the BEM to consider the
thermal loading, multi-layered materials (coatings
and thin ®lms), contact models near the crack tip
and 3D interface cracks will be interesting topics
and can be carried out readily.
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