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Abstract

The non-singular nature of the boundary integral equations (BIEs) in the boundary element method (BEM) is discussed in this paper. The

research effort leading to this conclusion is reviewed, tracing back to the early, classical BIE/BEM works in the 1960s and 1970s. It is

believed that Cruse's 1974 paper published in Computers & Structures was the ®rst work which demonstrates how the free term coef®cient

(Cij) for the elastostatic BIE can be expressed by an integral using the rigid-body motion (a simple solution). This concept later led to the

simple-solution method, and identities for fundamental solutions, developed to regularize various BIEs, including the hypersingular ones.

New results in the identities for fundamental solutions are presented and their applications in the BIE formulations are illustrated. Recent

work to show that the BIEs can be further regularized to completely non-singular forms is also discussed. q 2000 Elsevier Science Ltd. All

rights reserved.
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1. Singular or non-singular? The early approach

The boundary integral equation/boundary element method

(BIE/BEM), pioneered by Jaswon and his colleagues for

potential problems [1±3], by Rizzo for elastostatic problems

[4] and by Cruse et al. for elastodynamic, 3D stress, fracture

and elasto-plastic problems [5±10], has experienced almost

four decades of development. It is now applicable to almost

all areas of engineering as a powerful, alternative numerical

tool. However, singularities in the BIEs, arising from the

applications of the singular fundamental solutions in BIE

formulations, are still regarded by many as drawbacks in the

BIE/BEM or at least dif®cult to cope with. A great deal of

research efforts have been devoted to the subject of how to

compute accurately and ef®ciently the various singular

integrals in the BIE/BEM either numerically or analytically

in the last four decades. Although these efforts, which are

continuing even today, have led to the development of many

useful integration techniques for singular integrals, they turn

out to be not a necessity for the development of the BEM. In

fact, as will be discussed in this paper, the direct compu-

tation of various singular integrals can be avoided altogether

in the BIE/BEM in most cases, if the weakly singular or

non-singular forms of the BIEs are employed, with greater

ef®ciency and without sacri®cing any accuracy. This can be

achieved in the BEM because the BIEs for most problems

do not contain singular integrals at all if they are formulated

properly, even if the fundamental solutions employed in

BIEs are in general singular.

To trace back the historical development of the non-

singular BIEs, let us ®rst consider the direct BIE for elasto-

static problems [4] as given below (index notation is applied

in this paper):

Cij�P0�uj�P0� �
Z

S
�Uij�P;P0�tj�P�2 Tij�P;P0�uj�P��dS�P�;

;P0 [ S; (1)

in which ui and ti are the displacement and traction ®elds,

respectively; uij and Tij the displacement and traction

components, respectively, of the Kelvin (fundamental) solu-

tion in elasticity; P and P0 the ®eld and source points,

respectively; V the domain of the body and S the boundary

(Fig. 1). The kernel Tij is singular at the source point P0 with

the order of singularity O�1=r2� in 3D or O�1=r� in 2D (r is

the distance between P0 and P, Fig. 1); while the kernel Uij is

weakly singular with the order O�1=r� in 3D or O�ln�1=r�� in

2D.

BIE (1) is de®nitely singular (or in a singular form) if the

explicit values of the free term coef®cient Cij (containing a

solid-angle integral) are employed. For example, one can

use Cij � �1=2�dij (d ij is the Kronecker symbol) in BIE (1)

for source point P0 on boundary S where it is smooth. This

has been the practice in most BIE work and thus initiated the
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need of research on how to evaluate accurately and ef®-

ciently the singular integrals containing the Tij kernel in

BIE (1) for either 2- or 3D problems with various types of

boundary element. In the early days of the BIE/BEM

development [1±10], this form of the BIE was no hindrance

to the applications of the BEM, since the problems con-

sidered were 2D and/or constant boundary elements were

employed, where boundary segments are always smooth at

the collocation point P0 (center of the element). Under these

conditions, expression Cij � �1=2�dij is suf®cient and singu-

lar integrals can also be evaluated analytically. However, as

the numerical procedures for the BIEs became more

sophisticated, the singular form of BIE (1) with an expres-

sion such as Cij � �1=2�dij was no longer conveniently avail-

able, for example, for 3D geometries with corners and

edges, or employing linear [11] or quadratic elements

[12,13]. A more general approach to express or evaluate

the free term Cij would be desirable.

Cruse [11] was the ®rst to introduce the alternative

(indirect) way to evaluate the free term Cij. He applied a

translational rigid-body motion (a simple solution) to BIE

(1) and obtained an expression for this free term [11] that

can now be written as:

Cij�P0� � 2
Z

S
Tij�P;P0�dS�P�; ;P0 [ S; �2�

which is itself a singular integral in the sense of Cauchy-

principal value (CPV). Cruse pointed out in Ref. [11] that

this integral for Cij can be obtained by summing the already

computed integrals containing the same Tij kernel on all

other elements. Thus, the use of expression (2) for the free

term does not endure any penalty in the BEM procedure.

This approach in evaluating the free term is quite general,

applicable to all geometries (with corners and edges) and all

types of boundary element employed. Direct evaluation of

the Cij coef®cients, although attempted later by many

researchers for various geometric settings, is actually not

needed for the BEM process. In fact, this author believes

that the method for computing the diagonal submatrices by

summing the off-diagonal submatrices for the ®nal BEM

matrix associated with the singular kernel, as presented in

later BEM textbooks (see, for example, Refs. [14,15]), can

be traced back to this earlier observation by Cruse on

computing the Cij term using expression (2) and the summa-

tion of off-diagonal coef®cients.

There is another important implication of expression (2)

for the free term Cij, which was unfortunately not explicitly

expressed in Ref. [11]. That is, if one substitutes expression

(2) back into BIE (1) and rearranges the terms, one can

arrive at the following explicit weakly singular form of

the BIE for elastostatic problems:Z
S

Tij�P;P0��uj�P�2 uj�P0��dS�P� �
Z

S
Uij�P;P0�tj�P�dS�P�;

;P0 [ S; (3)

in which the integral on the left-hand side is only weakly

singular, due to the subtraction using the one-term Taylor's

series expansion of the density function (displacement).

Eq. (3) is valid for a ®nite domain. What happened in the

rearrangement of the terms is that the two CPV integrals,

one in the Cij expression (2) and one in the original form of

the BIE as shown in Eq. (1), are cancelled out naturally and

completely. Therefore, there is no strongly singular integ-

rals in BIE (3) anymore, which can signi®cantly reduce the

burden on the BEM implementations, as has been demon-

strated in the literature. A polar-coordinate transformation

on a surface element will further remove the remaining

weak singularities in the two integrals in BIE (3) for 3D

problems and the regular Gaussian quadrature can be

applied thereafter [13].

Rizzo and Shippy [13] were the ®rst to write the elasto-

static BIE (including thermal loading) in a form equivalent

to Eq. (3) by employing the one-term subtraction of the

displacement ®eld and expression (2) to evaluate the free

term. There are no singular integrals ever computed, either

numerically or analytically, in the work reported in [13].

This weakly singular-integral-only approach was later

extended to acoustics [16] and elastodynamics [17], and

has been the philosophy in the BIE/BEM work of many

research groups.

The process leading to the weakly singular form (Eq.

(3)) of the elastostatic BIE demonstrates that the two

strongly singular integrals in the BIE can be cancelled

out completely, if they have been identi®ed. The utili-

zation of the fundamental solutions, which are the origin

of the singularity, in the BIEs does not necessarily give

rise to singular BIE formulations for the physical

problems which, in most cases, are not singular at all in

the ®rst place.

2. Generalization of the simple-solution method

The weakly singular nature of the BIEs is quite general,

not just limited to the conventional BIE formulations of

elastostatic, acoustic or elastodynamic problems. In

Ref. [18], Rudolphi systematically generalized the simple-

solution approach and obtained two integral identities for
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the fundamental solutions in potential problems. He

successfully applied these two identities, for the ®rst time,

in the derivations of the weakly singular form of the hyper-

singular BIE (derivative of the conventional BIE) for

potential problems. In this simple-solution approach, simple

solutions (or modes of the problem, such as the rigid-body

translation and rotation in the elastostatic case) are imposed

on the BIEs and result in certain identities for the funda-

mental solutions, which are then applied to regularize the

singular or hypersingular BIEs. This simple-solution

concept can be readily extended to elasticity and even

nonlinear problems.

A more general way to establish the identities for the

fundamental solutions was developed by Liu and Rudolphi

in Ref. [19] based on a so-called operational approach. In

this approach the governing equations for the fundamental

solutions are integrated over an arbitrary closed domain, and

Gauss' theorem and the properties of the Dirac-delta func-

tion (representing the unit source) are employed to trans-

form the domain integrals to boundary ones. This approach,

although involving the concept of generalized functions,

does not depend on the availability of the BIE formulations

of the problems, offers more physical insights to the identi-

ties for the fundamental solutions (equilibrium of the forces,

moments, etc.) and is applicable to both ®nite and in®nite

domains. The weakly singular forms of the conventional

and hypersingular BIEs for potential as well as elastostatic

problems, in both ®nite and in®nite (2- and 3D) domains,

were established readily in Ref. [19] using these identities.

It was also shown in Ref. [19], perhaps for the ®rst time,

that the discretization of the weakly singular form of the BIE

(e.g. Eq. (3)), leads directly to the results that the diagonal

submatrices in the matrix associated with the strongly

singular kernel Tij are determined by the summation of the

off-diagonal submatrices. That is,

Tii �
2
X
j±i

Tij; for a finite domain;

I 2
X
j±i

Tij; for an infinite domain;

8>>><>>>: �4�

where Tij is the submatrix and I the identity matrix. Thus,

the method of summing the off-diagonal submatrices to

obtain the diagonal ones, initiated in Ref. [11] and presented

in a more straightforward way (imposing the simple solution

directly to the discretized BEM equations) in Refs. [14,15],

is fully consistent with the BIE formulation. There is no

approximation involved in this process and the practice

of calculating the singular integrals directly using either

analytical or numerical methods does not provide any

additional bene®t in accuracy, as has been pointed out in

Ref. [19].

Use of the identities for fundamental solutions in deriving

the weakly singular forms of the BIEs, especially those of

the hypersingular BIEs [20±24], has been employed success-

fully in potential problems [18,19,25,26], elastostatics

[19,27±31], acoustics [32,33], elastodynamics [34,35], elec-

tromagnetics [36] and many other problems (see, e.g. the

review papers in Refs. [37,38]). Recently, this simple solu-

tion approach was successfully extended to nonlinear

problems in Ref. [39] for regularizing the hypersingular

BIE in elastoplasticity, and in Ref. [40] for regularizing

the hypersingular BIE for thermoelastic fracture mechanics

problems.

Recently, Liu and Rudolphi [41] further showed that the

BIEs for potential and elastostatic problems can be written

in non-singular forms, which do not contain even the weakly

singular integrals, by employing additional integral identi-

ties for the fundamental solutions. For example, the conven-

tional BIE (1) for elastostatic problems can be written in the

following non-singular form [41]:Z
S

Tij�P;P0��uj�P�2 uj�P0�2 uj;k�P0��xk 2 x0k��dS�P�

�
Z

S
Uij�P;P0��sjk�P�2 sjk�P0��nk�P�dS�P�;

;P0 [ S; (5)

for a ®nite domain V (Fig. 1), where s ij is the stress ®eld. A

free term ui�P0� needs to be added to the left-hand side of

Eq. (5) if it is applied to an in®nite domain [41]. The weak

and strong singularities in the two kernels Uij and Tij, respec-

tively, have been cancelled out due to the use of Taylor's

series expansions for the two density functions. Although

this non-singular form of the BIE may not have the merit

suitable for the BEM procedure, its existence however

further enhances the argument that the singularities in the

BIEs are nonessential and removable [19,42].

From the initial strongly singular form (Eq. (1)) of the

conventional BIE for elastostatic problems, to the weakly

singular form (Eq. (3)) and recently to the non-singular form

(Eq. (5)), the simple-solution concept or applying identities

(properties) satis®ed by the fundamental solutions, initiated

in Ref. [11] and explored fully in Refs. [18,19,41], played

a crucial role in revealing the non-singular nature of the

BIEs.

3. Review of the identities for fundamental solutions

The four integral identities developed so far for the funda-

mental solution in elastostatics are reviewed in this section.

Applications of these identities in regularizing the various

BIE formulations and their advantages are discussed. New

results (extensions) of these identities and the implications

will be presented in Section 4.

Consider an arbitrary, closed domain V in the in®nite

space Rm, with m � 2 or 3 for 2- or 3D space, respectively

(Fig. 1). The following four integral identities for the funda-

mental solution Uij�P;P0� (Kelvin solution) in elastostatics

can be established:
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The ®rst identity [11,13,19]:Z
S

Tij�P;P0�dS�P� �
2dij; ;P0 [ V ;

0; ;P0 [ E;

(
�6�

the second identity [19]:Z
S

2Tij�P;P0�
2x0k

dS�P� � 0; ;P0 [ V < E; �7�

the third identity [19]:

Ejlpq

Z
S

2Uiq�P;P0�
2x0k

np�P�dS�P�

2
Z

S

2Tij�P;P0�
2x0k

�xl 2 x0l�dS�P�

�
dijdkl; ;P0 [ V ;

0; ;P0 [ E;

(
�8�

and the fourth identity [41]:Z
S

Tij�P;P0��xk 2 x0k�dS�P�2 Ejkpq

Z
S

Uip�P;P0�nq�P�dS�P�

� 0;

;P0 [ V < E; (9)

where Eijkl is the elastic modulus tensor and d ij the Kronecker

delta. These four identities for the elastostatic fundamental

solution can be derived by using the operational approach

[19,41], that is, by integrating the following governing

equations (or their derivatives) for the fundamental solution

and applying the properties of Dirac d-function d�P;P0�
representing the unit source:

S ijk;k�P;P0�1 dijd�P;P0� � 0; ;P;P0 [ Rm
; �10�

where Sijk�P;P0� � EjkpqUip;q�P;P0� is the stress tensor in

the fundamental solution. In general, all the integral identi-

ties for the fundamental solution in elastostatics can be

derived by starting with the following integration of govern-

ing Eq. (10) over the domain V:Z
V
�xp 2 x0p�a 2b

2x
b
0q

S ijk;k�P;P0�1 dijd�P;P0�
h i

dV�P� � 0;

;P0 [ V < E; (11)

where a;b � 0; 1; 2; 3;¼: The ®rst four identities derived

so far (Eqs. (6)±(9)) are corresponding to the combinations

of a;b � 0 or 1. A similar starting integral expression exists

for potential problems [41]. Four similar identities for the

fundamental solution in potential problems are provided in

Refs. [19,41].

The integral identities in Eqs. (6)±(9) for the elastostatic

problem, in the cases when P0 [ V ; can also be derived

by imposing certain types of simple solution, such as

rigid-body translations, to the corresponding representation

integrals [11,13,19,41]. However, the operational approach

developed in Refs. [19,41] and based on the original govern-

ing equations seems to be more general and offers more

insights into the BIE formulations. Indeed, the operational

approach does not depend on the existence of the integral

equation formulations and the explicit expressions of the

fundamental solutions. The physical meaning (equilibrium

of forces, moments, and so on [19]) of these integral identi-

ties can also be recognized readily from their derivations

using this operational approach. Finally, the operational

approach is applicable to both ®nite and in®nite domain

problems, while the simple-solution approach is limited

only to a ®nite domain problem since the rigid-body motion

cannot be imposed to an in®nite domain directly.

The ®rst identity (6) can be used to regularize the conven-

tional BIE (1) to weakly singular form (3) [11,13,19]; the

second and third identities (7) and (8) can be employed to

regularize the hypersingular (traction) BIE [19,27,34], and

identity (9) can be applied to regularize BIE (1) to the non-

singular form (5) [41]. Using these identities offers a general

and systematic approach to the development of the weakly

singular or even non-singular forms of the BIEs, as

compared to the earlier approach where the explicit expres-

sions of the fundamental solutions need to be exploited in

great length in order to cancel the singularities in the BIEs

(see, e.g. Refs. [28,43]).

4. Extension of the identities for fundamental solutions
for P0 [ S

In the four identities for fundamental solutions, as

presented in Eqs. (6)±(9) for elastostatics, the source point

P0 can only be either within the enclosed boundary S�P0 [
V� or outside the boundary S�P0 [ E�; see Fig. 1. Although

these results are suf®cient for the purposes of regularizing

the singular or hypersingular BIEs, one is always curious

about these identities when the source point is right on the

boundary S�P0 [ S� and the possible applications of such

results in the BIE formulations.

In fact, the ®rst result derived by Cruse [11], i.e. Eq. (2),

for the free-term coef®cient Cij�P0�; is the result of the ®rst

identity (6) with the source point on the boundary S.

However, this result (Eq. (2)) was derived by imposing

the simple solution to the BIE (Eq. (1)). Therefore, this

approach depends on the availability of the BIEs. In

the following, we will derive this same identity (Eq.

(2)) for source point on the boundary S by using the

operational approach and without using BIE (1). In this

way, the result will be shown to be independent of the

existence of BIE (1).

Extension of the identities is possible to include the

case P0 [ S; by using the operational approach, at least

for the ®rst identity (6) and when S is smooth at the

source point P0. To demonstrate this, the following sifting

property of the Dirac d -function [44] in 2 or 3D needs to be
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established:

Z
S

f �P�d�P;P0�dS�P� �
f �P0�; ;P0 [ V ;

1
2

f �P0�; ;P0 [ S�smooth�;
0; ;P0 [ E;

8>><>>:
�12�

where f �P� is an arbitrary and continuous function. Note that

the integral for P0 [ S is a CPV integral and its result

� 1
2

f �P0�� can be veri®ed by considering the following

relations, for example, in 1D [44]:

d�x; x0� � d

dx
H�x; x0�; and H�x; x0� �

1; x . x0;

1
2
; x � x0;

0; x , x0;

8>><>>:
�13�

where H�x; x0� is the Heaviside unit-step function [44] and

x0 a reference (source) point. Thus, one can derive, using the

integration by part, for the function f �x� on an interval (a,b):

Then, combining this result with the familiar results when

x0 is either inside or outside the interval, one can write:

Zb

a
f �x�d�x; x0�dx �

f �x0�; for x0 [ �a; b�;
1
2

f �x0�; for x0 � a or b;

0; for x0 Ó �a; b�;

8>><>>: �14�

in which [a,b] indicates the closed interval. This is the result

for the 1D case corresponding to Eq. (12) for the 2 and 3D

cases.

Now, if one integrates the governing Eq. (10) over the

domain V and applies the Gauss theorem and formula (12),

one can obtain the following extended result for the ®rst

identity (6):

Z
S

Tij�P;P0�dS�P� �
2dij; ;P0 [ V ;

2 1
2
dij; ;P0 [ S �smooth�

0; ;P0 [ E;

8>><>>: ; �15�

where Tij �
P

ijk nk has been applied. Again, the integral for

P0 [ S must be interpreted as a CPV integral. As discussed

in Ref. [19], the physical meaning of this identity is that the

tractions on S are in equilibrium with the unit concentrated

force applied at P0. When this unit force is applied at a point

P0 on S, this unit force is split into two halves for a smooth S

(see Fig. 2), thus the coef®cient (1/2) in Eq. (15). If S is not

smooth at the source point P0, then a different value other

than (1/2) should be used.

Extensions of the second, third and fourth identities (7)±

(9) to include the results for P0 [ S are possible. However,

the second and third identities (7) and (8) will involve the

hypersingular integrals in this case, which may have to be

interpreted in the Hadamard ®nite part sense. This is an

interesting but challenging task. Here we limit our attention

to results in Eq. (15) for the ®rst identity for a smooth

boundary S at source point P0 and focus on the interesting

consequences this extension brings to the BIE formulation.

5. Jump terms of the singular integral in BIE (1)

Evaluation of the jump terms of the singular integrals in

the limit as the source point approaching the boundary is

necessary in cases in which the BIE characteristics need to

be studied, such as in the study of degeneracy or non-degen-

eracy of the BIEs for crack problems or thin shell-like struc-

tures [20,45,46].

With the extended results (Eq. (15)) for the ®rst identity,

established independently of BIE (1), one can derive the

jump terms of the singular integral in BIE (1) for elasto-

statics using the classical limit-to-the-boundary approach,

without, however, employing the explicit expressions of

the fundamental solution. This is of non-trivial signi®cance

in the cases for which explicit expressions of the funda-

mental solutions do not exist, such as in the 3D BIE formu-

lations for piezoelectric materials used in smart structures

[47±49].

We can establish the results for the jump terms readily by

applying the identity (15) for the fundamental solution,
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Zb

a
f �x�d�x; x0�dx �

Zb

a
f �x� dH�x; x0�

dx
dx � f �x�H�x; x0� u

b

a

2
Zb

a

df �x�
dx

H�x; x0�dx

�
f �b�H�b; a�2 f �a�H�a; a�2

Zb

a

df �x�
dx

1dx � f �b�2 f �a� 1
2

2 f �b�1 f �a� � 1
2

f �a�; if x0 � a;

f �b�H�b; b�2 f �a�H�a; b�2
Zb

a

df �x�
dx

0dx � 1
2

f �b�; if x0 � b:

8>>><>>>:



without exploiting the explicit expressions of the fundamen-

tal solution. The results for the jump terms are as follows:

lim
P0!S

Z
S

Tij�P;P0�uj�P�dS�P�

�
Z

s
Tij�P;P0�uj�P�dS�P�2 1

2
ui�P0�;

;P0 [ S �smooth�; (16)

when P0 approaches S in the same direction of the normal n;

and

lim
P0!S

Z
S

Tij�P;P0�uj�P�dS�P�

�
Z

s
Tij�P;P0�uj�P�dS�P�1 1

2
ui�P0�;

;P0 [ S �smooth�; (17)

when P0 approaches S in the opposite direction of the

normal n, where the ®rst integral on the right-hand side of

Eqs. (16) and (17) is a CPV integral. To prove Eq. (16), we

consider the con®guration shown in Fig. 1, that is, with P0

approaching S from inside. In this case, we employ the

classical approach for the limiting process [14,15] to obtain

lim
P0!S

Z
S

Tij�P;P0�uj�P�dS�P�

� lim
e!0

Z
S 2 Se

Tij�P;P0�uj�P�dS�P�

1 lim
e!0

Z
Se

Tij�P;P0�dS�P�uj�P0�

�
Z

S
Tij�P;P0�uj�P�dS�P�

1 lim
e!0

"Z
�S 2 Se�< Se

Tij�P;P0�dS�P�

2
Z

S 2 Se

Tij�P;P0�dS�P�
#

uj�P0�

�
Z

S
Tij�P;P0�uj�P�dS�P�1 �2dij 2 �2 1

2
dij��uj�P0�

�
Z

S
Tij�P;P0�uj�P�dS�P�2 1

2
ui�P0�;

;P0 [ S �smooth�;
where Se is an outward hemisphere (bump) with radius e
and centered at P0 placed on S, and the results in identity

(15) have been applied. The resulting integral is a CPV

integral. This proves Eq. (16). Result (17) can be proved

similarly by using identity (15). Note that the surface S in

Eqs. (16) and (17) can be a closed surface or an open surface.

In the case of an open surface, an auxiliary surface can be

introduced to form a closed one in order to apply the identity

(15) which can be established for closed surfaces only.

Although the results (16) and (17) for the jump terms are

not new, the way in which they are established as shown

above is quite interesting. Here, the explicit expressions for

the kernel Tij�P;P0� is not used at all. The application of

identity (15) with the source point on the boundary S

can avoid the tedious task of evaluating the jump terms

explicitly, which is only possible when explicit expressions

for the kernels are available. When explicit expressions of

the fundamental solutions are not available, such as for 3D

piezoelectric solids [47±49], the above approach in evalu-

ating the jump terms will be very valuable.

6. Conclusion

The simple-solution concept, applied ®rst to the BIE for

elastostatics by Cruse in Ref. [11] in 1974 to evaluate the

free-term coef®cient, is reviewed in this paper. The simple-

solution method, or the identities for fundamental solutions,

developed later are natural extensions of this simple, yet

powerful concept. The approach to regularize the BIEs

using these simple-solutions or identities clearly demon-

strates that the strongly singular and hypersingular integrals

in the various BIE formulations can be removed analyti-

cally. Thus, the BIEs can be recast in weakly singular and

even non-singular forms. Singular integrals in the BIE

should not be a problem in the applications of the BEM.

Properties of the fundamental solutions, as represented by

the identities, play an important role in achieving the regu-

larization. Strongly singular and hypersingular integrals can

be cancelled out naturally and completely, from both sides

of the BIE formulations by exploiting these identities.

Singularities in the fundamental solutions are deceiving

and do not lead necessarily to singularities of the BIE

formulations, if the properties of the fundamental solutions

have been examined carefully and utilized, as was demon-

strated elegantly in the earlier work by Cruse [11].
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