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Abstract

In this paper, the conventional boundary integral equation (BIE) formulation for piezoelectric solids is revisited and the related issues are

examined. The key relations employed in deriving the piezoelectric BIE, such as the generalized Green's identity (reciprocal work theorem)

and integral identities for the piezoelectric fundamental solution, are established rigorously. A weakly singular form of the piezoelectric BIE

is derived for the ®rst time using the identities for the fundamental solution, which eliminates the calculation of any singular integrals in the

piezoelectric boundary element method (BEM). The crucial question of whether or not the piezoelectric BIE will degenerate when applied to

crack and thin shell-like problems is addressed. It is shown analytically that the conventional BIE for piezoelectricity does degenerate for

crack problems, but does not degenerate for thin piezoelectric shells. The latter has signi®cant implications in applications of the piezo-

electric BIE to the analysis of thin piezoelectric ®lms used widely as sensors and actuators. Numerical tests to show the degeneracy of the

piezoelectric BIE for crack problems are presented and one remedy to this degeneracy by using the multi-domain BEM is also demonstrated.

q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials have been used widely as sensors

and actuators in smart materials or structures because they

have many desirable properties [1±3]. Simulations of piezo-

electric solids, on the other hand, are very challenging

because of the anisotropy in piezoelectric materials,

coupling of elastic and electric ®elds and thinness of the

piezoelectric devices (for example, the thickness of

sensors/actuators is in the range of a few mm to a few

hundred mm). To add to the level of dif®culty, the simula-

tion of piezoelectric sensors and actuators demands high

accuracy, because they are very delicate electromechanical

devices. To ensure the highest possible accuracy in the

analysis, accurate 3D modeling and analysis have to be

employed, especially as stress analysis for durability assess-

ment has become an important issue with the increasing

applications of piezoelectric materials.

In the realm of 3D analysis, the boundary integral equa-

tion/boundary element method (BIE/BEM), pioneered in the

early work [4] for elasticity problems, has been demonstrated

to be a viable alternative to the ®nite element method (FEM)

for many problems, due to its features of surface-only discre-

tization and high accuracy in stress and fracture analyses [5±

8]. Another advantage of the BIE/BEM, which was recog-

nized only in recent years, is its high accuracy and ef®ciency

in handling thin-body problems, such as thin shell-like struc-

tures, layered structures (multi-coatings or thin ®lms), thin

voids or open cracks [9±16]. It has been demonstrated that

the BIE/BEM can handle the various thin-body problems

very effectively, regardless of the thinness of the structures

or voids, or non-uniform thickness, as long as the nearly

singular integrals are computed accurately [11,12,17].

Much fewer boundary elements can be used to solve these

problems for which the number of required ®nite elements is

at least two-orders larger to achieve the same accuracy in

stress analysis [11±14]. Considering the fact that the piezo-

electric sensors and actuators are often made in thin shapes

(®lms or patches), the BIE/BEM with thin body capabilities

has the potential to provide a very ef®cient and accurate tool

in the analysis of such piezoelectric materials.

There have been increasing research efforts in the analysis

of piezoelectric materials by the BEM in recent years, as the

advantages of the BEM for such analysis is being recognized.

For piezoelectric solids without defects, Barnett and Lothe

[18] derived a 2D fundamental solution for anisotropic piezo-

electric solids. Meric and Saigal [19] derived integral
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formulations for shape sensitivity analysis of 3D piezoelectric

solids. The formulations were tested on a 1D problem. Lee

and Jiang [20±22] developed the ®rst BIE formulation for the

piezoelectric solids. The 2D BEM was implemented and

tested for an in®nite piezoelectric medium with a cylindrical

hole under mechanical and electric loads [22]. Lu and

Mahrenholtz [23] derived a variational BEM formulation

for piezoelectric solids, which yields symmetric matrices.

However, no numerical implementation and examples were

given in Ref. [23]. A 3D BEM for piezoelectric solids was ®rst

developed by Chen and Lin [24]. The BEM formulation was

based on the fundamental solutions derived earlier by Chen

[25,26] for 3D piezoelectric solids. The numerical examples

using linear elements on a piezoelectric cube and a spherical

cavity were presented in Ref. [24]. Wang [27] derived the

explicit expressions of the 2D fundamental solutions for

piezoelectric materials. Dunn and Wienecke [28] also derived

the closed-form expressions for the fundamental solution for

transversely isotropic piezoelectric solids. Hill and Farris [29]

applied the quadratic (eight-node) boundary elements for 3D

piezoelectric bodies and tested their approach on the cube and

spherical void problems. Ding et al. [30,31] derived the funda-

mental solutions in terms of harmonic functions and devel-

oped the BEM with several test cases for 2D [30] and 3D

problems [31]. Recently, Jiang [32] derived the fundamental

solutions and the BIE for 3D time-dependent thermo-piezo-

electricity. No numerical examples were given in Ref. [32] for

this very complicated case.

For piezoelectric solids with defects (various voids and

cracks), Xu and Rajapakse [33] studied the in¯uence and

interactions of various holes in 2D piezoelectric media using

a coupled BEM. Zhao et al. [34,35] derived the 3D funda-

mental solutions and the BIE for a penny-shaped crack in a

piezoelectric solid. Pan [36] recently presented a detailed

study on cracks in 2D piezoelectric media using the BEM.

Both the conventional BIE and a hypersingular BIE (trac-

tion BIE) were employed in Ref. [36] to handle the possible

degeneracy of the BIEs for crack problems. Numerical

results in Ref. [36] show excellent agreement between the

BEM and the analytical solutions. Recently, Qin [37]

studied the interactions of cracks in a piezoelectric half-

plane and under thermal loading using the BEM.

All the above results have clearly demonstrated the accu-

racy and ef®ciency of the BEM, especially in stress and frac-

ture analyses, for single and bulky piezoelectric materials.

However, there are many confusions and unanswered ques-

tions regarding the BIE formulation for piezoelectric solids.

For examples, how to evaluate the jump terms and thus the

free term in the BIE (this is not trivial as in the elasticity case,

since the fundamental solutions in the piezoelectricity case

are in general not available in explicit forms)? How to

compute the singular integrals in the BIE? Or, is there a

weakly singular form of the BIE as in the case of elasticity?

Are there any integral identities satis®ed by the piezoelectric

fundamental solutions? Will the piezoelectric BIE degenerate

or not when it is applied to crack or thin shell-like problems?

The same results as in the case of elasticity BIE, such as the

values of the jump terms in the limit as the source point

approaches the boundary and the free terms in the BIE,

have been assumed in the derivations of the piezoelectric

BIE in all the reported work [21,22,24,29,30,36]. Although

they turn out to be correct, as will be proved in this paper, the

piezoelectric BIE needs special attention since the elasticity

BIE is only a special case (subset) of the piezoelectric BIE

which can have different properties due to the presence of the

electric ®eld. Results in the elasticity BIE (a special case)

should not be generalized directly to the piezoelectric BIE

(a more general case).

In this paper, we will address the questions and issues

raised in the above paragraph. The BIE formulation for piezo-

electric solids is revisited ®rst. The key relations employed in

the development of the piezoelectric BIE, such as the general-

ized Green's identity (reciprocal work theorem) and integral

identities for the fundamental solution, are derived carefully.

A new weakly singular form of the BIE is developed using

the identities derived, which can eliminate the calculation of

any singular integrals in the discretizations of the BIE using

the BEM. Then the crucial question of whether or not the

piezoelectric BIE will degenerate when applied to crack and

thin shell-like structures is investigated. It is shown that the

conventional BIE for piezoelectricity does degenerate for

crack problems, but does not degenerate for shell-like struc-

tures, in the limit as the two opposing surfaces approaching

each other. The latter has signi®cant implications in the appli-

cations of the piezoelectric BIE to piezoelectric ®lms used

widely as sensors and actuators in smart materials. All the

above results for the piezoelectric BIE are consistent with

those for the conventional BIE in elasticity. The detailed

derivations of the piezoelectric BIE and the proof regarding

the degeneracy presented in this paper will clear the confu-

sions in the literature on the piezoelectric BIE and thus estab-

lish the BIE/BEM approach on a solid theoretical ground.

Numerical tests to show the degeneracy of the piezoelectric

BIE for crack problems are presented and one remedy to this

degeneracy by using the multi-domain BEM is also demon-

strated.

2. The boundary integral equation (BIE) formulation for
piezoelectricity

2.1. Governing equations in piezoelectricity

Consider a piezoelectric solid occupying a 3D domain V

with the boundary S, Fig. 1. The basic equations governing

the elastic and electric ®elds in a linear piezoelectric material

can be summarized in the following (see, e.g. Refs. [1,21,24])

(index notation is used in this paper).

Equilibrium equations:

sij;j 1 fi � 0; �1�

Di;i 2 q � 0; �2�
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where s ij is the stress tensor, fi the body force vector per unit

volume, Di the electric displacement vector and q the intrinsic

electric charge per unit volume.

Constitutive equations:

sij � Cijklskl 2 ekijEk; �converse effect� �3�

Di � eiklskl 1 1ikEk; �direct effect� �4�
where skl is the strain tensor, Ek the electric ®eld, Cijkl the

elastic modulus tensor measured in a constant electric ®eld,

eijk the piezoelectric tensor and 1 ij the dielectric tensor

measured at constant strains.

Strain and electric ®elds:

sij � 1
2
�ui;j 1 uj;i�; �5�

Ei � 2f;i; �6�
where ui is the elastic displacement vector and f the electric

potential.

Boundary conditions (BCs):

ti � s ijnj � �ti; on St; ui � �ui; on Su; �mechanical BCs�
�7�

v � 2Dini � �v ; on Sv; f � �f ; on Sf; �electric BCs�
�8�

where ti is the traction, v the surface charge, ni the unit outward

normal vector (Fig. 1) and the barred quantities indicate given

values. Note that the boundary S � St < Su � Sv < Sf:

Eqs. (1)±(6) under boundary conditions (7) and (8) form

the complete mathematical description of the coupled elas-

tic and electric ®elds in a general anisotropic piezoelectric

solid. For an isotropic elastic material, there is no coupling

of the elastic and electric ®elds, that is, the piezoelectric

tensor eijk � 0: In this case, Eqs. (1)±(6) will be decoupled

between the two ®elds, yielding the usual elasticity equa-

tions and a Poisson's equation for the electric potential f .

2.2. Generalized Green's identity

We ®rst establish the following generalized Green's iden-

tity, or reciprocal work theorem, for the piezoelectric solids:Z
S

tiu
p
i dS 1

Z
V

fiu
p
i dV 1

Z
S
vpf dS 1

Z
V

qpf dV

�
Z

S
tp
i ui dS 1

Z
V

f p
i ui dV 1

Z
S
vfp dS 1

Z
V

qfp dV ;

�9�
in which ui, ti, f , v , ¼, and up

i ; tp
i ; f

p, v p, ¼ are two sets of

admissible solutions satisfying Eqs. (1)±(8).

To prove identity (9), we ®rst prove the following relation

of the internal energy densities for piezoelectric solids:

�sij 1 ekijEk�sp
ij � �s p

ij 1 ekijE
p
k �sij: �10�

Applying Eq. (3), and noting the symmetries in the material

constant tensors:

Cijkl � Cklij � Cjikl � Cijlk; ekij � ekji; 1ik � 1ki;

�11�
we can derive,

�sij 1 ekijEk�sp
ij � �Cijklskl�sp

ij � �Cklijskl�sp
ij � �Cijklsij�sp

kl

� �Cijkls
p
kl�sij � �s p

ij 1 ekijE
p
k �sij;

which proves relation (10). Note that the term (s ij 1 ekijEk)

represents the mechanical stresses, as shown from Eq. (3).

Thus, Eq. (10) is a statement of the equivalence of the

(virtual) mechanical strain energy densities.

Now, integrating the left hand side of Eq. (10) over the

domain V, and applying Eqs. (1)±(8) and the Gauss theo-

rem, we have,Z
V
�sij 1 ekijEk�sp

ij dV �
Z

V
siju

p
i;j dV 1

Z
V
�eikls

p
kl�Ei dV

�
Z

V
�s iju

p
i �;j dV 2

Z
V
s ij;ju

p
i dV 1

Z
V
�Dp

i 2 1ikEp
k �Ei dV

�
Z

S
tiu

p
i dS 1

Z
V

fiu
p
i dV 2

Z
V

Dp
i f;i dV

2
Z

V
1ikEiE

p
k dV

�
Z

S
tiu

p
i dS 1

Z
V

fiu
p
i dV 2

Z
V
�Dp

i f�;i dV 1
Z

V
Dp

i;if dV

2
Z

V
1ikEiE

p
k dV ;
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Fig. 1. Domain V in R3 with boundary S (exterior domain E � R3 2 �V <
S��:



that is,Z
V
�s ij 1 ekijEk�sp

ij dV

�
Z

S
tiu

p
i dS 1

Z
V

fiu
p
i dV 1

Z
S
vpf dS

1
Z

V
qpf dV 2

Z
V
1ikEiE

p
k dV : �12�

Similarly, integrating the right hand side of Eq. (10), we

have,Z
V
�s p

ij 1 ekijE
p
k �sij dV

�
Z

S
tp
i ui dS 1

Z
V

f p
i ui dV 1

Z
S
vfp dS

1
Z

V
qfp dV 2

Z
V
1ikEp

i Ek dV : �13�

Note that 1ikEiE
p
k � 1ikEp

i Ek due to the symmetry of 1 ik

(Eq. (11)).

Thus, integrating Eq. (10) over the domain V and apply-

ing results (12) and (13), we obtain the generalized Green's

identity (9). Through above derivation, one can clearly iden-

tify the physical meanings and the sources of each term in

identity (9). Results (12) and (13) are statements of the

balance of the (virtual) work done by external forces/

charges and the internal strain energy stored in the piezo-

electric solid, while identity (9) is a statement of the equiva-

lence of the work done by the two force/charge systems.

2.3. Fundamental solutions

The fundamental solution for the piezoelectric problems

is the responses due to independently applied sources. One

source is a unit concentrated force in one of the coordinate

directions and the other is a unit concentrated charge, at the

source point in an in®nite piezoelectric medium.

First, consider the responses at a ®eld point P due to a unit

concentrated force acting at the source point P0 and in the

direction i �i � 1; 2; 3�: The equilibrium equations are,

S ijk;k�P;P0�1 dijd�P;P0� � 0; Dik;k�P;P0� � 0; �14�
in which S ijk and D ik are the stress and electric displacement

in the fundamental solution, respectively, d ij the Kronecker

d symbol, d(P,P0) the Dirac d -function, and the indices

i; j; k;¼ � 1; 2; 3: The displacement, traction, electric

potential and the surface charge in this case are denoted,

respectively, by

Uij�P;P0�; Tij�P;P0�; F i�P;P0�; V i�P;P0�;
i; j � 1; 2; 3:

Next, consider the responses at P due to a unit charge

acting at P0. The equilibrium equations are,

S4jk;k�P;P0� � 0; D4k;k�P;P0�2 d�P;P0� � 0; �15�
in which S 4jk and D4k �j; k � 1; 2; 3� are the stress and elec-

tric displacement, respectively. The displacement, traction,

electric potential and the surface charge in this case are

denoted, respectively, by

U4j�P;P0�; T4j�P;P0�; F4�P;P0�; V4�P;P0�;
j � 1; 2; 3:

Here the index ª4º is used to indicate that the responses are

due to the unit charge.

In general, the fundamental solution for piezoelectric

solids can not be expressed in explicit forms yet

[24,25,29], except for some special cases, such as transver-

sely isotropic piezoelectric solids or 2D cases

[21,22,27,28,30,31,36]. However, the order of singularity

of the fundamental solution has been found to be the same

as that of the fundamental solution for elasticity problems.

For example, in 3D, the displacement is of order O(1/r)

(weakly singular), and the stress or traction is of order

O(1/r2) (strongly singular), with r being the distance from

the source point to the ®eld point (Fig. 1).

2.4. Identities for the fundamental solution

We now derive some identities satis®ed by the piezoelec-

tric fundamental solution, which will be very useful later in

establishing the weakly singular BIE, as demonstrated in the

context of potential and elasticity problems [38±40].

The following sifting property of the Dirac d -function

[41,42] will be applied frequently (Fig. 1)

Z
S

F�P�d�P;P0� dS�P� �
F�P0�; ;P0 [ V ;

1
2

F�P0�; ;P0 [ S�smooth�;
0; ;P0 [ E;

8>><>>:
�16�

where F(P) is any continuous function, including F(P)�
constants. The integral for P0 [ S is a Cauchy principal

value (CPV) integral and can be veri®ed by considering

the physical meaning of the Dirac d-function (e.g. a unit

concentrated force at P0) [42].

Integrating the ®rst equation in Eq. (14) over the domain

V (an arbitrary closed domain; see Fig. 1), and applying the

Gauss theorem and formula (16), we obtain,

Z
S

Tij�P;P0� dS�P� �
2dij; ;P0 [ V ;

2 1
2
dij; ;P0 [ S�smooth�;

0; ;P0 [ E;

8>><>>: �17�

where Tij � S ijknk has been applied and the indices i; j �
1; 2; 3: Integrating the second equation in Eq. (14), we
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obtain another identity,Z
S
V i�P;P0� dS�P� � 0; ;P0 [ V < S < E; �18�

where V i � 2Diknk has been applied and i � 1; 2; 3:

Similarly, integrating the two equations in Eq. (15), we

obtain another two identities,Z
S

T4j�P;P0� dS�P� � 0; ;P0 [ V < S < E; �19�

Z
S
V4�P;P0� dS�P� �

21; ;P0 [ V ;

2 1
2
; ;P0 [ S�smooth�;

0; ;P0 [ E;

8>><>>: �20�

where j � 1; 2; 3:

The established integral identities (17)±(20) for the

piezoelectric fundamental solution represent the equili-

brium of the forces or charges over boundary S of body V

in the presence of the unit force or charge (cf. results in

Refs. [38±40] for potential and elasticity problems).

2.5. Weakly singular BIE formulation for piezoelectricity

To derive the BIE, we ®rst choose, in the generalized

Green's identity (9) (with the dummy index i being replaced

by j), the ®eld

up
j � Uij; tp

j � Tij; fp � Fi; vp � V i;

f p
j � dijd�P;P0�; and qp � 0;

to be the fundamental solution due to the unit force, while

the ®eld uj, tj, f , v and q to be the solution satisfying

Eqs. (1)±(8). We have from identity (9),Z
S

tjUij dS 1
Z

V
fjUij dV 1

Z
S
V if dS

�
Z

S
Tijuj dS 1

Z
V
dijd�P;P0�uj dV 1

Z
S
vF i dS

1
Z

V
qFi dV :

Using Eq. (16) and identifying the variables explicitly, we

obtain the following representation integral for the displa-

cement ®eld,

ui�P0� �
Z

S
Uij�P;P0�tj�P� dS�P�2

Z
S

Tij�P;P0�uj�P� dS�P�

2
Z

S
F i�P;P0�v�P� dS�P�1

Z
S
Vi�P;P0�f�P� dS�P�

1
Z

V
Uij�P;P0�fj�P� dV�P�2

Z
V
F i�P;P0�q�P� dS�P�;

;P0 [ V ; (21)

in which i; j � 1; 2; 3:

Similarly, if we choose, in identity (9),

up
j � U4j; tp

j � T4j; fp � F4; vp � V4; f p
j � 0;

and qp � d�P;P0�;
to be the fundamental solution due to the unit charge, we

obtain the following representation integral for the electric

potential ®eld,

2f�P0� �
Z

S
U4j�P;P0�tj�P� dS�P�2

Z
S

T4j�P;P0�uj�P� dS�P�

2
Z

S
F4�P;P0�v�P� dS�P�1

Z
S
V4�P;P0�f�P� dS�P�

1
Z

V
U4j�P;P0�fj�P� dV�P�2

Z
V
F4�P;P0�q�P� dS�P�;

;P0 [ V ; (22)

in which j � 1; 2; 3:

From the two representation integrals (21) and (22), we

can clearly identify the similarities as compared with the

elasticity case and the coupling between the displacement

and electric ®elds. To simplify the notation to make it easier

for the numerical implementation, we adopt the following

matrix notation [30],

u �

u1

u2

u3

2f

8>>>>><>>>>>:

9>>>>>=>>>>>;
; t �

t1

t2

t3

2v

8>>>>><>>>>>:

9>>>>>=>>>>>;
; b �

f1

f2

f3

2q

8>>>>><>>>>>:

9>>>>>=>>>>>;
;

U �

U11 U12 U13 F1

U21 U22 U23 F2

U31 U32 U33 F3

U41 U42 U43 F4

26666664

37777775;

T �

T11 T12 T13 V1

T21 T22 T23 V2

T31 T32 T33 V3

T41 T42 T43 V4

26666664

37777775:

�23�

Then, the representation integrals (21) and (22) can be

combined to yield,

u�P0� �
Z

S
U�P;P0�t�P� dS�P�2

Z
S

T�P;P0�u�P� dS�P�

1
Z

V
U�P;P0�b�P� dV�P�;

;P0 [ V ; (24)

where u, t and b can be called the generalized (or extended)

displacement, traction and body force vectors, respectively;
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and U and T the generalized displacement and traction

kernels, respectively.

Before we let the source point P0 go to the boundary in

Eq. (24) to derive the BIE, we note that the integral with the

strongly singular kernel T can be regularized by using the

identities (17)±(20) which can now be written in the follow-

ing matrix form:

Z
S

T�P;P0� dS�P� �
2I; ;P0 [ V ;

2 1
2

I; ;P0 [ S�smooth�;
0; ;P0 [ E;

8>><>>: �25�

where I is a 4 £ 4 identity matrix. Note that the ®rst part of

this identity (for P0 [ V) can also be derived by considering

a simple solution u�P� � I; which satis®es the governing

Eqs. (1)±(6) with fi � 0 and q � 0; in the representation

integral (24) (cf. the results in Refs. [38±40]).

Therefore, for the integral with the strongly singular

kernel T in Eq. (24), we haveZ
S

T�P;P0�u�P� dS�P� �
Z

S
T�P;P0��u�P�2 u�P0�� dS�P�

1
Z

S
T�P;P0� dS�P�u�P0�

�
Z

S
T�P;P0��u�P�2 u�P0�� dS�P�2 u�P0�;

;P0 [ V ; (26)

by using identity (25) (cf. the potential and elasticity cases

[38±40]).

Substituting result (26) into Eq. (24), and letting the

source point P0 go to the boundary S, we obtain the follow-

ing weakly singular form of the BIE in piezoelectricity,Z
S

T�P;P0��u�P�2 u�P0�� dS�P�

�
Z

S
U�P;P0�t�P� dS�P�1

Z
V

U�P;P0�b�P� dV�P�;

;P0 [ S;

�27�

for a ®nite domain (interior problem). There are no jump

terms arising from the limit process as the source point Po

goes to the boundary S, since all integrals involved are at

most weakly singular, e.g. of order O(1/r) for 3D problems,

after the regularization shown in Eq. (26).

Similarly, for an in®nite domain (exterior problem), we

can establish the following weakly singular form of the BIE

u�P0�1
Z

S
T�P;P0��u�P�2 u�P0�� dS�P�

�
Z

S
U�P;P0�t�P� dS�P�1

Z
V

U�P;P0�b�P� dV�P�;

;P0 [ S:

�28�

The weakly singular BIE (27) or (28) for piezoelectric

solids has several advantages, compared with the following

singular BIE in the literature:

C�P0�u�P0�1
Z

S
T�P;P0�u�P� dS�P�

�
Z

S
U�P;P0�t�P� dS�P�1

Z
V

U�P;P0�b�P� dV�P�;

;P0 [ S;

�29�

where C is a coef®cient matrix depending on the smooth-

ness of S at P0 (see next section).

First, there are no singular integrals in the weakly singular

BIE and its discretization leads directly to the conclusion

that the diagonal terms can be determined by summing the

off-diagonal terms for the matrix involving the singular

kernel T [39]. Second, by employing the identity for the

piezoelectric fundamental solution, we do not have to eval-

uate any jump terms explicitly in deriving the weakly singu-

lar BIE (27) or (28). Evaluations of the jump terms are

required in deriving the singular BIE (29) as used in the

literature. For general 3D piezoelectric solids, the funda-

mental solution is not available in explicit form and the

jump terms have been assume to be the same as in the

elasticity BIE, without suf®cient justi®cations, in the litera-

ture. The use of the weakly singular BIE can avoid the

confusions caused by this lack of justi®cations. Third, regu-

larizing the singular integrals in the BIEs has become a

standard approach to dealing with the singular integrals in

the BEM [43,44]. The weakly singular nature of the piezo-

electric BIE is quite general, as in the cases for potential and

elastostatic problems [38±40]. Not only can the various

strongly singular (conventional) BIEs be recast in weakly

singular forms, but also can the hypersingular BIEs be writ-

ten in weakly singular forms, by employing the various

identities for the fundamental solutions [39,40] or through

other means.

3. Degeneracy issues with the piezoelectric BIE for thin
shapes

In this section, we prove that the piezoelectric BIE does

degenerate when applied to the two opposing surfaces of a

crack, but does not degenerate when applied to the two

surfaces of a thin shell-like structure. Although the same

conclusions have been proved analytically and numerically

in the context of the elasticity BIE for cracks (see, e.g. [6,9])

and thin shell-like structures [11] (see also Ref. [45]), they

can not be generalized automatically to the more general

piezoelectric BIE. For example, the coupling of the elastic

and electric ®elds in the piezoelectricity theory could have

an effect in these conclusions, unless we can prove rigor-

ously that the same conclusions hold for the piezoelectric

BIE.
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3.1. The jump terms

We need some results for the jump terms in the limit as

the source point P0 approaches the boundary S. We can

establish the results for the jump terms readily by applying

the identity (25) for the fundamental solution, without

exploiting the explicit expressions of the fundamental solu-

tion which are not yet available for 3D piezoelectric solids.

The results for the jump terms are as follows

lim
P0!S

Z
S

T�P;P0�u�P� dS�P�

�
Z

S
T�P;P0�u�P� dS�P�2 1

2
u�P0�;

;P0 [ S�smooth�;

�30�

when P0 approaches S in the same direction of the normal n;

and

lim
P0!S

Z
S

T�P;P0�u�P� dS�P�

�
Z

S
T�P;P0�u�P� dS�P�1 1

2
u�P0�;

;P0 [ S�smooth�;

�31�

when P0 approaches S in the opposite direction of the

normal n, where the ®rst integral on the right hand side of

Eqs. (30) and (31) is a CPV integral.

To prove results (30) and (31), we employ the classical

approach in the BEM literature by considering the limit as

Po approaching S from either inside or outside. However, the

explicit expressions for kernel T is not used at all in eval-

uating these limits. The integral identity (25), which is a

concise notation for identities (17)±(20), can be employed

to avoid the tedious task of evaluating the integral of the

kernel explicitly, which is possible only when explicit

expressions for the kernels are available. The details of

this new approach in deriving the jump terms (30) and

(31), in the context of elastostatics, can be found in Ref.

[42].

To study the degeneracy issue with the piezoelectric BIE,

we follow the integral operator notation used in Ref. [11]

and write the weakly singular BIE in Eqs. (27) and (28) as

D�u�P�2 u�P0�� � Bt; �for an interior problem� �32�
and

u�P0�1 D�u�P�2 u�P0�� � Bt;

�for an exterior problem�
�33�

where the body forces and charges have been ignored. The

two operators are de®ned by

B�´� �
Z

S
U�P;P0��´� dS�P�; and

D�´� �
Z

S
T�P;P0��´� dS�P�;

�34�

with U and T being the two 4 £ 4 matrices given in Eq. (23).

Consider a thin shape as shown in Fig. 2 and apply the

piezoelectric BIE (32) or (33) on both S1 and S2. In the limit

as the thickness h goes to zero (i.e. S2 goes to S1), we arrive

at different conclusions regarding the degeneracy of the BIE

for cracks and for thin shells.

3.2. Degeneracy of the piezoelectric BIE for crack problems

Following the steps in Ref. [11] for the elasticity BIE,

applying BIE (33) on the two surfaces of a crack (an exter-

ior-like problem, Fig. 3) and employing the jump term rela-

tion (31), we can derive the following two equations in the

limit as the distance h! 0,

D1�u1 2 u2�1 1
2
�u1 1 u2� � B1�t1 1 t2�;

from P0 [ S1;
�35�

D1�u1 2 u2�1 1
2
�u1 1 u2� � B1�t1 1 t2�;

from P0 [ S2;
�36�

where u1, t1, u2 and t2 are the generalized displacement

and traction vectors, as given in Eq. (23), on S1 and S2,

respectively, D1 and B1 are given by Eq. (34) with S being

replaced by S1 (see Ref. [11]). Eqs. (35) and (36) are exactly

the same. Therefore, the piezoelectric BIE does degenerate

when applied to cracks. The same conclusion can be drawn

if we apply the singular BIE (Eq. (29)) instead of the weakly

singular BIE (33).

3.3. Non-degeneracy of the piezoelectric BIE for thin

piezoelectric shells

Applying BIE (32) on the two surfaces of a thin piezo-

electric shell (an interior-like problem, Fig. 4) and employ-

ing the jump term relation (30), we can obtain the following

two equations in the limit as the thickness h! 0,

D1�u1 2 u2�1 1
2
�u1 2 u2� � B1�t1 1 t2�;

from P0 [ S1;
�37�
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Fig. 2. Boundary S of a thin-shape: S � S1 < S2
:

Fig. 3. Boundary and normal for a crack (an exterior problem).



D1�u1 2 u2�2 1
2
�u1 2 u2� � B1�t1 1 t2�;

from P0 [ S2;
�38�

which are two distinctive equations no matter how thin the

shell is, as long as the piezoelectric shell is under realistic

boundary conditions (e.g. not constrained on the entire

boundary S; see discussions in Ref. [11]). Therefore, the

piezoelectric BIE does not degenerate when applied to

thin shells. Again, the same conclusion can be drawn if

we apply the singular BIE (Eq. (29)) instead of the weakly

singular BIE (32), as demonstrated for the elasticity BIE in

Ref. [11].

4. Numerical examples

To demonstrate that the piezoelectric BIE does degener-

ate for crack problems, a test problem is considered in this

section. A multi-domain BEM approach to remedy this

degeneracy problem in using the conventional piezoelectric

BIE for crack problems is also presented.

A 2D BEM based on the piezoelectric BIE (27) without

body forces and charges, or Eq. (32), is implemented using

quadratic (three-node) line elements. Fig. 5 shows a square

piezoelectric medium (PZT-4, under plane strain condition)

with an elliptical hole at the center. The square domain is

suf®ciently large compared with the hole �b=L � 20� so that

the analytical solution in Ref. [46] for an in®nite domain can

be used to validate the BEM solutions. The materials

constants of PZT-4 are as given in Ref. [22] in which only

the circular hole case is considered. The model is under

uniform tension in the x1 direction. The elliptical holes are

formed by starting with a circular hole and scaling it in the

x1 direction (axis a).

Figs. 6±8 show the results of the ®rst principal stress,

total mechanical displacement and electric displacement at

the nodes on the holes, respectively, for three values of the

ratio a/b, by the piezoelectric BEM and the analytical solu-

tion [46] (Note that the angle u is measured on the original

circular hole in all the cases, Fig. 5). It is shown that the

BEM results using only 44 elements are in excellent agree-

ment with the exact solution for all the three quantities in the

three cases studied �a=b � 1:0; 0.5 and 0.05).

When the ratio a/b is further reduced and the elliptical

hole becomes an open crack, many more elements on the

edge of the hole are needed in order to obtain possible

converged BEM results. Fig. 9 shows the BEM results for

the mechanical displacement at the hole when a=b � 0:01

with increasing numbers of elements. It is observed that

only when the elliptical hole is discretized using 180

elements (a total of 204 elements), do the BEM results

converge to the analytical solution. However, when the

case a=b � 0:001 is studied, even the ®nest BEM mesh

(204 elements) cannot provide converged results, as

shown in Fig. 10 for the electric displacement result. More-

over, the symmetry in the BEM results with respect to the

crack tip �u � 908� is also lost (Fig. 10). This is a clear

indication of the degeneracy of the piezoelectric BIE/

BEM for crack problems, as predicted by the theory in

Section 3.2.

As discussed in Refs. [11,12] and by many others, there

are two dif®culties when the elasticity BIE/BEM is applied

to a thin void (or open crack) with increasingly smaller

opening. The ®rst dif®culty is in dealing with the nearly

singular integrals when the source point is on one surface

and the integration on the opposite surface of the crack. The

other dif®culty is the degeneracy of the BIE when applied to

true (zero-opening) cracks. These two dif®culties also exist

in the piezoelectric BIE/BEM when applied to a thin void in

a piezoelectric material, as has been proved and demon-

strated in this paper. Increasing the number of elements

on the two faces of the open crack (thus decreasing the

element sizes) can alleviate the dif®culty in computing

nearly singular integrals, although it is not the ef®cient

way to deal with nearly singular integrals in the BEM

[11,12]. This is why good BEM results are obtained with

a large number of elements in the case when a=b � 0:01

(Fig. 9). However, increasing the number of elements will

not help in easing the dif®culty of the BIE/BEM degeneracy

for crack problems. This is why the BEM results deteriorate

even with the large number of elements in the a=b � 0:001

case, which is closer to a true crack (Fig. 10). Alternative

BIE formulations or different BEM modeling techniques are

needed in order to tackle the crack problems.

Next, the multi-domain BEM approach to crack problems

is demonstrated in the context of piezoelectric BIE. The
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Fig. 4. Boundary and normal for a thin piezoelectric shell (an interior

problem).

Fig. 5. An elliptical hole in a square piezoelectric medium under tension

(plane strain condition).
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Fig. 6. The ®rst principal stress �s p
1 � on the edge of the holes (number of boundary elements M � 44�:

Fig. 7. The total mechanical displacement (uuu) on the edge of the holes (number of boundary elements M � 44�:
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Fig. 8. The magnitude of electric displacement (uDu) on the edge of the holes (number of boundary elements M � 44�:

Fig. 9. The total mechanical displacement on the edge of the hole when a=b � 0:01 (M� number of boundary elements applied).



main idea in the multi-domain BEM for crack problems

(see, e.g. Ref. [6]) is to introduce auxiliary interfaces in

the domain, starting from the crack tips to the outer bound-

ary of the domain so that the original single domain is

divided into two (or several, if needed). Then the conven-

tional BIE is applied to each domain and the two systems of

equations are coupled together through the use of interface

conditions (e.g. continuity of displacements and equilibrium

of stresses). In this way, the degeneracy dif®culty, and the

nearly singular integrals in some cases, in the BEM for

crack problems are avoided since the two equations on the

two opposing crack faces are now from different domains.

The disadvantage of using this multi-domain approach to

crack problems is that the auxiliary interfaces introduced

could be large and hence the problem size could be much

larger. Nevertheless, it is a simple, straightforward approach

to crack problems by using only the conventional BIE.

Fig. 11 shows the division of the piezoelectric medium,

considered earlier (see Fig. 5), into two subdomains.

Figs. 12±14 show the stress, displacement and electric

displacement, respectively, on the edge of the hole (in

fact, an open crack) when a=b � 0:001 (Fig. 5), using the

multi-domain BEM as compared with the single-domain

BEM with the same mesh on the hole and the outer bound-

ary. Additional 20 elements are employed on the two inter-

face lines (Fig. 11) for the multi-domain BEM. As shown

and discussed earlier (Fig. 10), the single-domain BEM

results depart dramatically from the analytical solutions

for all the three quantities, due to the degeneracy of the

BIE in this open-crack case. However, the multi-domain

BEM results agree very well with the analytical solutions

with a relatively small number of elements, as expected.

Note that the BEM is able to capture the strong singularity

of the stresses near the crack tip as shown in Fig. 12. Also

note that the hoop stress on the edge of the hole is compres-

sive in most regions in this crack-like case, therefore the ®rst

principal stress is zero, except for the regions near the crack

tips. The multi-domain BEM results for the electric displa-

cement (Fig. 14) is less accurate in the small region of the

crack tip. This is due to the rapid oscillation of the ®eld

when a=b � 0:001 as shown by the analytical solution.
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Fig. 10. Degeneracy of the piezoelectric BIE/BEM: results for the magnitude of electric displacement on the edge of the hole when a=b � 0:001 (M� number

of boundary elements applied).

Fig. 11. A multi-domain BEM approach to the crack-like problems.
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Fig. 12. The ®rst principal stress on the edge of the hole when a=b � 0:001 using the multi-domain BEM.

Fig. 13. The total mechanical displacement on the edge of the hole when a=b � 0:001 using the multi-domain BEM.



The multi-domain piezoelectric BEM based on the

conventional BIE, as demonstrated in the above, can

provide reasonably good results for the analysis of crack-

like problems. However, the more ef®cient and accurate

way to handle crack problems is to apply the piezoelectric

hypersingular BIE [36].

5. Discussions

A weakly singular BIE for the analysis of piezoelectric

solids has been derived in this paper. The derivation is based

on the generalized Green's identity or reciprocal work theo-

rem and the governing equations satis®ed by the piezoelec-

tric fundamental solution. The mathematical properties of

the Dirac d -function is exploited fully, which facilitates

conciseness and rigorousness in the derivations. Four inte-

gral identities for the elastic and electric components in the

piezoelectric fundamental solution are established, which

are employed in deriving the weakly singular BIE for piezo-

electricity. Degeneracy issues with the piezoelectric BIE

when applied to thin shapes are examined. It is shown analy-

tically that the piezoelectric BIE does degenerate when

applied to cracks, but does not degenerate when applied to

thin shells. In deriving or proving all the above results, the

explicit expressions of the fundamental solution, which are

not yet available for 3D piezoelectric solids, are not needed

at all, due to the use of the developed integral identities for

the fundamental solution. The established procedures and

results for the piezoelectric BIE are general and valid for

both 2D and 3D cases. 2D numerical tests to show the

degeneracy of the piezoelectric BIE for crack problems

are presented and one remedy to this degeneracy by using

the multi-domain BEM is also demonstrated in this paper.

Piezoelectric equations are in a more general framework

than the elasticity equations. Therefore, results regarding

the elasticity BIE, such as values of the jump terms and

whether or not degenerate/non-degenerate when applied to

thin shapes, can not be generalized to the piezoelectric BIE

without explicit proofs. These results have been assumed in

the BEM literature for the piezoelectric BIE, which turn out

to be correct, but have left many confusions regarding the

piezoelectric BIE. This paper serves in part to clarify these

confusions by providing the necessary and rigorous deriva-

tions or proofs. In the meantime, the method developed in

this paper for deriving the BIEs without ever exploiting the

explicit expressions of the fundamental solutions is quite

interesting and general, which can be applied to other

cases when the fundamental solutions are not available in

explicit forms.

The degeneracy of the piezoelectric BIE when applied to

the two surfaces of a crack, as proved in this paper, neces-

sitates the study of the hypersingular BIE for piezoelectric

solids with defects. For elastic solids with cracks, the hyper-

singular (traction) BIE has been found very effective and

ef®cient. However, the results for the hypersingular BIE in
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Fig. 14. The magnitude of electric displacement on the edge of the hole when a=b � 0:001 using the multi-domain BEM.



elasticity, such as the regularization of the hypersingular

kernel, cannot be generalized automatically to the hypersin-

gular BIE in piezoelectricity. Rigorous derivations and

proofs are necessary and underway. Results regarding the

hypersingular BIE in piezoelectricity, such as additional

integral identities for the fundamental solutions, regulariza-

tion procedures and the weakly singular form, will be

reported in a separate paper.

The non-degeneracy of the piezoelectric BIE when

applied to the two surfaces of a thin piezoelectric shell,

also proved in this paper, has signi®cant implications in

applications of the piezoelectric BIE to smart materials.

The piezoelectric sensors and actuators employed widely

in smart material applications are often made in thin ®lms.

The BIEs based on elasticity and with thin-body capabilities

have been found extremely accurate and ef®cient in analyz-

ing elastic thin shells, ®lms or coatings [11±15]. Extending

these capabilities of the elastic BIE to the piezoelectric BIE

promises to provide a much needed accurate and ef®cient

numerical tool for the analysis of piezoelectric sensors and

actuators.

The BEM implementation and applications of the devel-

oped weakly singular piezoelectric BIE to thin piezoelectric

®lms, including treatment of nearly singular integrals in

such applications, are underway and will be reported in a

subsequent paper.
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