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Efficient solution methods are investigated in this paper for solving the linear system of equations
resulting from the recently developed boundary element method~BEM! for the coupled structural
acoustic analysis@S. H. Chen and Y. J. Liu, J. Acoust. Soc. Am.106, Pt. 1, 1247–1254~1999!#. An
iterative solver, namely, the quasiminimal residual method~QMR!, is selected among others and
found to be very favorable over the direct solver for solving the linear systems of equations with
complex coefficients generated by the structural acoustic BEM. Four problem-dependent
preconditioning schemes are developed to facilitate or accelerate the convergence of the iterative
solver. A new effective preconditioner specially designed for frequency-sweep analysis is also
presented in this paper. With this preconditioner, the iterative solver has been found to be stable in
a frequency-sweep analysis and can converge much faster than the direct solver. The
double-precision arithmetic is also found very useful in improving the convergence rate of the
iterative solver for structural acoustic problems. ©2000 Acoustical Society of America.
@S0001-4966~00!04512-4#

PACS numbers: 43.20.Fn, 43.20.Rz, 43.40.Rj@CBB#
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I. INTRODUCTION

Recently, a unified boundary element method~BEM!
was developed for the coupled analysis of acoustic wa
interacting with thin, elastic, shell-like structures.1 Numerical
examples demonstrated that the unified BEM develope
very effective and accurate for the analysis of sound
shell-like structure interactions in both scattering and rad
tion problems. The method is valid for shell-like structur
with arbitrarily small or nonuniform thickness, and does n
suffer from the thin-shape breakdown and fictitious eigen
quency difficulty in the exterior acoustic domain. It is th
objective of this paper to improve the efficiency of the u
fied BEM developed by reducing the solution time of solvi
the linear system of equations generated. An iterative so
of the Krylov subspace type, that is, the quasiminimal
sidual ~QMR! iterative method, is investigated, among ot
ers, and found to be very efficient in this type of applicatio
Preconditioning techniques to improve the convergence
developed which include reordering of the mesh, scaling
the submatrices, and other special treatments designed
improving the characteristics of the matrix of the syste
Besides these problem-dependent preconditioning te
niques, a preconditioner specially designed for frequen
sweep analysis is also presented in this paper.

The iterative methods currently available for solving
linear system of equations@A#$x%5$b% can be characterize

a!Author to whom correspondence should be addressed. Electronic
Yijun.Liu@uc.edu
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into two groups, namely, stationary and nonstationary ite
tive methods. The stationary iterative methods refer to ite
tive methods such as Jacobi, Gauss–Seidel, successive
relaxation~SOR!, and symmetric successive over-relaxati
~SSOR!. In general, the stationary iterative methods, if th
converge, converge much slower than nonstation
methods.2 The nonstationary methods include conjugate g
dient ~CG!, conjugate gradient on the normal equatio
~CGNE!, generalized minimal residual~GMRES!, biconju-
gate gradient~BiCG!, quasiminimal residual~QMR!, conju-
gate gradient squared~CGS!, biconjugate gradient stabilize
~Bi-CGSTAB!, Chebyshev iteration, and so on. All nonst
tionary iterative methods listed above except Chebyshev
eration are of the Krylov subspace type. The differenc
among them depend on how the basis for spanning the K
lov space is found and how the linear system is enforced
this space. A variety of convergence behaviors for these
erative solvers is therefore observed, although they are
closely related to the characteristics of the left-hand-side
trix @A# and the right-hand-side vector$b%. CG is derived for
symmetric positive definite linear systems, with its conv
gence rate depending on the condition number of@A#. BiCG
is applicable to nonsymmetric systems and requires
matrix–vector multiplications~involving @A# or its transpose
@AT#!. The convergence behavior of BiCG is quite irregu
and may suffer breakdowns. CGS is similar to BiCG and h
no matrix–vector multiplication with@AT#. It can converge
faster than BiCG, although the convergence is still irregu
and may be subject to the breakdown problem. BiCGST
il:
2738108(6)/2738/8/$17.00 © 2000 Acoustical Society of America
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is an improved version of CGS designed to avoid the bre
down that often occurred in CGS while preserving the f
convergence rate. GMRES works on nonsymmetric syst
directly and generates orthogonal vectors that form the b
spanning the Krylov subspace. Only one matrix–vector m
tiplication is required at each iteration. It minimizes the r
sidual norm with exact arithmetic in each iteration and gu
antees the convergence in less thann steps without restar
~wheren is the number of equations!. Because the orthogo
nal vectors at each iteration have to be generated by usin
the previously computed vectors, the storage requirem
and computational effort tend to increase proportionally.
order to control the storage requirement, restarts after a
tain number of iterations are often needed. QMR is ap
cable to both symmetric and unsymmetric matrices with r
or complex elements. It requires two matrix-vector multip
cations per iteration, both with@A# and @AT#. Instead of
forming the exact orthogonal vectors as in GMRES, it ge
erates a biorghogonal basis for the Krylov subspace by u
the Lanczos process with short recurrences. Two recurre
schemes, three-term and coupled two-term, have been d
oped. A look-ahead Lanczos algorithm has been employe
extend QMR to general non-Hermitian matrices and av
the possible breakdowns in some cases. Smooth converg
behavior can be observed for QMR in general. AFORTRAN

package,QMRPACK,3 has been developed, which contains
the QMR algorithms. It should be noted that a transpose-
version of the QMR, TFQMR, has also been developed
added to theQMRPACK. For a complete review on solvin
linear system with iterative solvers, please refer to Refs
and 4 and the references therein.

The convergence behavior of iterative solvers varies
different types of applications. For a particular type of pro
lem, an iterative solver may or may not converge, or c
verge more slowly than direct solvers. A suitable precon
tioning scheme can greatly improve the situation. Intens
research efforts have been directed to address the sui
iterative solvers for all the existing applications and the c
responding preconditioning schemes. As long as a comp
tive iterative solver and a suitable preconditioning sche
can be identified for a particular problem, high efficiencies
solving the linear system of equations can be expected
direct solvers.

Generic preconditioning involves finding an econom
cally invertible matrix~often referred to in the literature as
preconditioner!, and applying the inverse of that matr
through multiplication to the original linear system for a ne
linear system which has a coefficient matrix with more
vorable characteristics. Clearly, it is desirable that the p
conditioner resembles@A#, as the new coefficient matrix
would be close to an identity matrix. The matrix–matr
multiplication is never computed explicitly but integrate
into the iterative process, where the factorization of the p
conditioning matrix is formed once, and only forward a
backward substitution processes are needed for all iterati
The existing generic preconditioning schemes include d
onal preconditioning, block diagonal preconditioning, SSO
preconditioning, incomplete LU decomposition~ILUD !, and
so on. Diagonal preconditioning employs only the diago
2739 J. Acoust. Soc. Am., Vol. 108, No. 6, December 2000
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terms of@A# to form the preconditioner. It is the simplest, b
often quite effective for some applications. The block p
conditioner is similar to the diagonal preconditioner b
formed by the small blocks on the diagonal direction of@A#.
The SSOR preconditioner is formulated from the diagon
lower, and upper triangular parts of@A#. A special case of the
SSOR preconditioner is the diagonal preconditioner.
though applying the SSOR preconditioner is relatively ine
pensive, it is unlikely to obtain a preconditioner closely r
sembling @A#, which is the key feature of a goo
preconditioner. The ILUD preconditioner is formed by dro
ping off the nonzero elements in the factorization of@A# in
positions where@A# has zeros. This preconditioning schem
is often very effective. The drawback, besides the mem
consumption, is the long computing time needed even w
@A# is sparse. As a BEM formulation usually generates
fully populated matrix, this preconditioning scheme is n
feasible. Preconditioning can also be performed in the p
cess of forming the linear system, which is problem dep
dent. This is often more effective and economical than
neric preconditioning. Some preconditioning schemes of
kind are presented in this paper and shown to be effective
the coupled sound thin-shell interaction problems cons
ered, although with all the preconditioning schemes ever
veloped, the iterative solution methods in general are con
ered to be less stable than direct solution methods. T
situation may have been changed with a precondition
scheme developed in this paper for problems requir
frequency-sweep analysis.

To the authors’ best knowledge, no applications of ite
tive solvers for frequency-dependent problems, using
BEM have been reported in the literature. For static pro
lems, such as elastostatic and potential problems, the pe
mance of the iterative solvers in solving linear system
equations generated by the BEM have been reported.5–8 In
Ref. 5, CGN and GMRES were applied to 2D elastosta
problems with the use of diagonal, block diagonal, and ILU
preconditioners. Example problems with degrees of freed
up to 488 were tested using double-precision arithme
with residual norm of 1026 as the stopping criterion. The
preconditioned GMRES was found to be faster than the
rect solver in general, while CGN was found not as fast w
or without preconditioners. In Ref. 6, GMRES, CG
BiCGSTAB, and CGN with diagonal and block diagon
preconditioners were tested on small thermal and ela
problems with 2D and 3D geometries. The largest 3D mo
used for the elastostatic analysis contains 541 nodes. S
ping criterion in the form of residual norm was set as 1026

~1027 in some cases! and 1024 for elastic and thermal prob
lems, respectively. GMRES with diagonal preconditioni
was shown to be significantly faster than the direct sol
and was the most effective solver among other iterative s
ers tested. CGS and BiCGSTAB were also found faster t
the direct solver when used with diagonal preconditioning
Ref. 7, the comparison of a number of iterative solvers w
performed using two linear systems~with 250 and 1000
equations! generated by the BEM for a 2D potential pro
lem. Four different types of matrices, two from the conve
tional boundary integral equation~BIE! and the other two
2739Chen et al.: Efficient BEM solution techniques
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from the hypersingular BIE, were considered. GMRES w
no restart, BiCG, and QMR outperformed other iterat
schemes such as CG, CGS, CGN, and BiCGSTAB, when
preconditioning schemes were considered for all the a
rithms. All the iterative algorithms were in general fast
than direct methods, even with very stringent stopping cr
rion (10210). In Ref. 8, a reorthogonalization scheme wi
double-precision arithmetic was adopted to generate m
accurate basis vectors for GMRES, which was then use
solve a relatively large linear system~up to 4902 equations!
resulting from the BEM for 3D elastostatic problems. T
solution time in the case of 4902 equations was more t
five times faster than that of a direct solver, even with
stringent stopping criterion (1027). The non-restart version
of GMRES was used in Ref. 8.

For dynamic analyses formulated in the BEM, QMR is
very good candidate among all the iterative solvers as
applicable to unsymmetrical matrices with complex eleme
and less prone to numerical breakdowns. In this paper,
feasibility and efficiency of the iterative solver QMR in sol
ing the linear system resulting from a BEM formulation of
frequency-dependent coupled structural acoustic problem
demonstrated. In the following, the stopping criterion used
QMR for BEM applications is justified first. The perfor
mance of QMR is then demonstrated by a pure acoustic
plication formulated in the BEM. The preconditionin
schemes developed in this paper are then described in d
and tested. Finally, the comparison of the direct sol
~LAPACK! and the iterative solver QMR for solving th
linear system resulting from the BEM formulation for
coupled sound–structure interaction problem is presented
ing the testing cases.

II. THE ITERATIVE SOLVER FOR THE STRUCTURAL
ACOUSTIC BEM

The detailed formulation of the unified boundary e
ment method for analyzing the coupled sound–structure
teraction problem has been presented in Ref. 1. The two
of ordinary differential equations corresponding to the aco
tic field and the elastic field in the frequency domain a
recast into two sets of boundary integral equations~BIEs!,
which are coupled by the interface conditions defined on
wet surface of the elastic structure. After the discretization
the two BIEs on the surfaces of the structure, a linear sys
of equations@A#$x%5$b% is obtained, which has the follow
ing structure:

F H D 0

Ea Taa Tab

Eb Tba Tbb

G H F
ua

ub

J 5H F8
2Uabtb

2Ubbtb

J , ~1!

where$F% and $u% are vectors that account for the total di
turbed acoustic pressure and displacement at the nodes
spectively;@H# and@T# are square submatrices resulting fro
the singular kernel of the BIE for acoustic field and elas
dynamic field, respectively;@D# and @E# are rectangular
submatrices obtained after applying the interface conditio
the subscriptsa andb denote the outer~wet! surface and the
inner ~dry! surface, respectively;$F8% and $tb% are known
2740 J. Acoust. Soc. Am., Vol. 108, No. 6, December 2000
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vectors resulting from the incident wave and traction on
inner surface, respectively. Please refer to Ref. 1 for the d
vation of ~1!.

In this paper, the performance of the iterative solv
QMR in solving linear systems of complex equations resu
ing from the BEM, as shown in Eq.~1!, is investigated. The
QMR algorithm based on the coupled two-term variant of
look-ahead Lanczos process3 is used. The iterative solver i
considered converged when the relative residual norm is
than a preset value~often referred to as tolerance!. The rela-
tive residual norm is defined as

ir ni2

ir 0i2
5

iAxn2bi2

iAx02bi2
, ~2!

where$xn% is the solution vector at the end of thenth itera-
tion, $x0% the initial guess~usually set as a zero vector!, $r n%
the residual vector andi•i2 the Euclidean norm. The prese
tolerance has to be small enough so that reliable results
be obtained, but not so small that computation efforts
wasted.

The proper value of the tolerance was studied num
cally using the radiation problem of a pulsating sphere~no
coupling with elastic structure!, for which the analytical so-
lution is available. A mesh consisting of quadratic eleme
with 290 nodes was generated over the surface of a
sphere for this purpose. The corresponding linear syst
formed after the discretization of the BIEs were solved us
both direct solver and iterative solver. The error with resp
to the analytical solution was calculated in the Euclide
norm

iErrori25
ix2Xi2

iXi2
, ~3!

where$X% represents the analytical solution,$x% the solution
resulting from the BEM using direct solver or iterativ
solver. The error levels at eight frequencies from using dir
solver and QMR with two stopping tolerances~1024 and
1026! are shown in Fig. 1. It can be seen that the dir
solver and QMR achieved virtually the same level of acc
racy over all eight frequencies. The error level is in gene
increasing toward higher frequencies, due to the fact t
there are fewer elements within one wavelength. Higher

FIG. 1. Error level for the radiation analysis of a pulsating sphere (D
5290).
2740Chen et al.: Efficient BEM solution techniques
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ror levels are observed atka53 and 6, which are in the
vicinity of the fictitious eigenfrequenciesp and 2p, due to
the adverse matrix characteristics although unique solut
have been guaranteed by Burton and Miller’s formulat
~which employs the hypersingular BIE!. Since the round-off
error ~on the order of 1024! is small relative to the discreti
zation error~on the order of 1023!, solving the linear system
more exactly~reducing round-off error! cannot render a more
accurate result as compared to the analytical solution~reduc-
ing the discretization error!. This fact is also supported b
the results from the iterative solver. With the stopping cri
rion set as 1024, the iterative solver achieved the same lev
of accuracy as the direct solver~compared to the analytica
solution!. The solution resulting from using 1026 as the tol-
erance gave trivial improvement in the accuracy with resp
to the analytical solution~Fig. 1!, while consuming three
times more solution time. The stopping criterion is therefo
set as 1024 for all the following test cases, since errors in t
1024 level are acceptable for most engineering purpos
Higher levels of accuracy can only be achieved by us
finer meshes to reduce the discretization errors. It was
served that QMR is not free of breakdowns. In fact, when
tolerance was set as 1026, the iterative solver suffered ab
normal termination before it reached the stopping tolera
at ka53. This breakdown was not encountered when dou
precision was used~Fig. 1!, as the direction vectors can b
further refined in double-precision arithmetic.

III. PURE ACOUSTICS ANALYSIS—TEST RESULT

The iterative solver was first tested with pure acous
problems, i.e., without the coupling with structures. The co
ventional BIE for the same pulsating sphere problem
scribed in the previous section was discretized using six
ferent meshes with the total number of nodes as: 290, 1
2594, 4610, 7202, and 10 370. The highest frequency
sible for each mesh~ka58, 16, 24, 32, 40, and 48, respe
tively! was employed in obtaining the corresponding CP
time consumption. Single-precision arithmetic was used
all six cases. The saving in CPU time by using the iterat
solver over direct solver is illustrated in Fig. 2. All data we

FIG. 2. CPU time consumption for the radiation analysis of a pulsat
sphere.
2741 J. Acoust. Soc. Am., Vol. 108, No. 6, December 2000
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obtained on a Pentium II PC~400 MHz, 256 MB RAM! with
WINDOWS NT operating system. An estimated value of t
CPU time consumption of the direct solver for the case w
the largest mesh was used since the CPU time was too
~estimated over 10 days of clock time! for the direct solver.
The ratio between the time consumed by direct solver
that by iterative solver increases as the problem size
creases. For the case with 7202 nodes, the iterative so
was 86 times faster than the direct solver. It should be no
that the CPU time consumption of the iterative solver is le
for 4610 degrees of freedom than for 2594 degrees of fr
dom, as the iterative solver is sensitive to the conditioning
the system. The iterative solver was applied without us
any preconditioning schemes in this pure acoustic case. F
this test, the CPU time savings in solving the acoustic BE
equations using the iterative solver QMR are evident.

IV. COUPLED STRUCTURAL ACOUSTICS
ANALYSIS—FIVE PRECONDITIONING SCHEMES

For the coupled problem, the linear system of equatio
~1! has very high condition numbers in general due to
mismatch of the materials~structure and fluid!. A special
partitioning scheme has to be used for the direct solve
obtain reliable solutions. The solution time can also be d
matically reduced by using the iterative solver, but not wi
out the help of preconditioning. The three existing precon
tioners available in the literature~the diagonal, the block-
diagonal, and the SSOR preconditioners! were tested and
found not working for the applications considered. The
fore, five new preconditioning schemes are developed in
study. They will be referred to as scheme 1, 2, 3, 4, and 5
the following sections. A steel spherical shell~Fig. 3! im-
mersed in water will be used as the test case for the first
preconditioning schemes. The dimension of the shell isa
51 m, h/a50.01, wherea is the outer radius andh is the
thickness.

g

FIG. 3. A spherical shell with uniform thickness~outer radius5a,
inner radius5b, thickness5h5a2b!.
2741Chen et al.: Efficient BEM solution techniques
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Scheme 1 reorders the nodes on the outer~wet! surface
of the structure, which are used for the discretization of
acoustic BIE. This scheme is aimed at providing a suita
numbering of the nodes in the mesh to place all the domin
entries ~i.e., with larger absolute values! of the matrix as
close as possible to the main diagonal. Specifically,
nodes in the vicinity of every single node in the mesh will
assigned node numbers close to the node number of
node by an algorithm calculating and comparing the dista
between nodes. Figures 4 and 5 show the image of the c
ficient matrix @A# resulting from the spherical shell mod
before and after applying scheme 1, respectively. The la
the absolute value of an entry, the darker the dot show
the image. It can be seen in Fig. 4 that the@H# and @D#
submatrices dominate matrix@A# with very large entries dis-
tributed all over these submatrices. The@Ea# and @Eb#
submatrices consist of very small entries~shown as a nearly
white area in the image!. The@Taa#, @Tab#, @Tba#, and@Tbb#
submatrices in@A# result from the singular integral operato

FIG. 4. Image of matrix@A# before applying any of the four preconditionin
schemes.

FIG. 5. Image of matrix@A# after applying preconditioning scheme 1.
2742 J. Acoust. Soc. Am., Vol. 108, No. 6, December 2000
e
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for the elastic domain. The diagonal dominant phenome
is evident in each of the four submatrices, although@Tab#
and@Tba# can’t contribute to the overall diagonal dominan
of @A#. Figure 5 shows the image of the same coefficie
matrix after applying scheme 1. Significant changes can
observed in submatrices@H#, @Taa#, @Tab#, @Tba#, and
@Tbb#.

Scheme 2 involves reordering of all the nodes on
two structure surfaces for the discretization of the elasto
namic BIE. This reordering scheme is motivated by the f
that when the thickness of the shell gets smaller, the ma
entries with contributions from the nearly singular integra
become larger. It is therefore desirable to place these en
closer to the main diagonal by reordering the nodes. Figu
shows the coefficient matrix after applying schemes 1 an
The entries of the zero block of the primitive matrix are no
mixed with the entries of the@D# submatrix. It is evident that
the@Taa#, @Tab#, @Tba#, and@Tbb# submatrices are now con
tributing toward the overall diagonal dominance of@A#. Be-
cause of the coupling process of the two domains, the ma
is again extremely unbalanced with@D# featuring very large
entries, while@Ea# and @Eb# consist of very small entries.

Scheme 3 is designed to render a better scaling of
coefficient matrix@A#. Because of the mismatch of the tw
domains with quite different material properties, the entit
in @D# are much larger than those in@E#. This kind of unbal-
ance among entities in a system matrix results in a very h
condition number. A scaling factor related to material pro
erties is used to provide a better scaling. Figure 7 shows
resulting matrix after applying schemes 1, 2, and 3. The m
trix is now evidently diagonally dominant with a very clea
pattern except for the@H# submatrix.

Scheme 4 is designed to further improve the charac
istics of @A# by utilizing the inverse of@H#, which is obtained
by the direct method. This preconditioning scheme is m
expensive than the previous three. However, the resul
coefficient matrix@A# ~Fig. 8! has better characteristics th
often reduce the total solution time~including the time used
for obtaining the inverse of@H#!. This is due to the further

FIG. 6. Image of matrix@A# after applying preconditioning schemes 1 and
2742Chen et al.: Efficient BEM solution techniques
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2, 3,
reduction in the condition number of@A#, as demonstrated in
the following test cases.

In practice, a dynamic problem often needs to be sol
for many frequencies. Scheme 5 is specially designed for
kind of application. It is found that the coefficient matrix@A#
at the first frequency in a frequency sweep can serve a
perfect preconditioner for all the subsequent frequencies
all the system matrices for different frequency cases re
from the same geometry and boundary conditions, they
semble each other. Any one of them can be used as a
conditioner for all the other cases. With the help of this p
conditioner, a frequency sweep for a dynamic problem
be performed very efficiently using the iterative solver. T
inverse of this preconditioner is never computed explicit
Instead, a more economical process, the LU factorization
performed and the result is stored. The matrix–vector mu
plication involving the preconditioner in each iteration st
is then obtained by one forward and one backward subs
tion, which consume the same amount of computation ef
as that of a direct matrix–vector multiplication. The matrix
vector multiplication involving the transpose of the preco
ditioner presents no extra computing effort. As the time c
sumed by each of the consecutive frequency cases ca
dramatically reduced by using the iterative solver, the ove
time consumption for the frequency sweep can be much
than that by using the direct solver for every frequency. T

FIG. 7. Image of matrix@A# after applying preconditioning schemes 1,
and 3.
2743 J. Acoust. Soc. Am., Vol. 108, No. 6, December 2000
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more frequencies are involved in a frequency sweep,
more saving in CPU time can be expected. The significa
of this scheme is that the iterative solver can converge m
faster than the direct solver and provide the efficiency
frequency-sweep analyses.

V. COUPLED STRUCTURAL ACOUSTICS
ANALYSIS—TEST RESULTS

The effectiveness of the first four preconditionin
schemes in accelerating the convergence of the itera
solver was tested first. Three different meshes for the sph
cal shell~Fig. 3! with 64, 256, and 576 quadratic elemen
which yield 574, 2478, and 5726 equations in the final line
system, respectively, were used. Ten test cases represe
all the interesting scenarios were performed using the m
with 256 elements on the Pentium II PC. Results from five
the ten cases~case 1 with no preconditioning; case 2 wi
preconditioning scheme 1; case 3 with precondition
schemes 1 and 2; case 4 with preconditioning schemes
and 3; and case 5 with preconditioning schemes 1, 2, 3,
4! are shown in Table I. It was found that with the applic
tion of all the four preconditioning schemes~case 5!, the
iterative solver converged at the fastest rate among all
test cases. The condition number of the original mat
dropped from the order of 108 to the order of 104. The cor-
responding CPU time consumption of the iterative solver

FIG. 8. Image of matrix@A# after applying preconditioning schemes 1, 2,
and 4.
TABLE I. The effectiveness of the preconditioning schemes. Note: o—not applied;A—applied; SP—single
precision; DP—double precision.

Scheme
1

Scheme
2

Scheme
3

Scheme
4

Number of
iterations CPU time~s!

SP DP SP DP

Case 1 o o o o .1000 .1000 ¯ ¯

Case 2 A o o o .1000 932 ¯ ¯

Case 3 A A o o .1000 933 ¯ ¯

Case 4 A A A o 355 58 ¯ ¯

Case 5 A A A A 190 47 425.83 196.15
2743Chen et al.: Efficient BEM solution techniques
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425.83 s and 196.15 s, compared to 581.38 s and 972.
consumed by the direct solver, for single-precision a
double-precision arithmetic, respectively. The saving in
lution effort rendered by the iterative solver over the dire
solver is clearly demonstrated in this coupled analysis, es
cially in the case of double precision~about five times faste
than the direct solver!. To show the consistency of this ap
proach, two additional tests were performed on the sa
spherical shell with the other two meshes using the four p
conditioning schemes with double-precision arithmetic. T
comparison of CPU time consumption of direct solver a
QMR for all the three meshes are shown in Fig. 9. The f
mation time is also plotted as a reference. The effectiven
of the first four preconditioning schemes is evident.

To demonstrate the effectiveness of scheme 5 for
frequency-sweep analysis, a submarine-like model~Fig. 10!
was studied next. The length of the submarine-like mode
7 m, main radius 0.5 m, and the thickness of the shell 0
m. The result from the iterative solver with the first fo
preconditioning schemes could not render fast converge
for this slender submarine-like model in the coupled ana
sis. With scheme 5, however, a stable result was obtained
the frequency-sweep analysis. The BEM model used in

FIG. 9. CPU time consumption for the coupled radiation analysis of a s
spherical shell (h/a50.01).

FIG. 10. A submarine-like model~main radius50.5 m, total length57 m,
and thickness50.01 m!.
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study consists of 416 quadratic elements and 1188 no
The structure is immersed in seawater and impinged upon
a plane incident wave in the positivex direction. With the
use of all the first four preconditioning schemes, the iterat
solver could not even come close to convergence in
iterations, twice as much time as the direct solver wo
consume. This extremely slow convergence rate was
matically changed by using the preconditioner in scheme
A frequency sweep over 8 frequencies fromkL52 to kL
54 was performed for demonstration purpose~L is the total
length of the model!.

Figure 11 shows the CPU time consumption by us
QMR for each frequency case in the frequency sweep
compared to the direct solver. The preconditioning schem
1, 2, 3, and 5 were used. Besides the first frequency c
where the LU factorization of the preconditioner was p
formed, a great deal of savings in CPU time was achieved
all the subsequent cases. It can be seen in Fig. 11 tha
preconditioner performed better when the frequency at wh
the calculation was conducted was closer to the frequenc
which the preconditioner was generated. The reason is q
obvious, as the system matrix obtained after precondition
would be closer to the identity matrix, when the two freque
cies are closer to each other. In light of this fact, better p
formance can be expected when the preconditioner is ge
ated at the middle frequency of a frequency span. T
condition number of the resulting linear system~with 4158
unknowns! after applying schemes 1, 2, and 3 is on the or
of 106. Scheme 4, which is the most costly one among
first four schemes, is found unnecessary when the preco
tioner provided by scheme 5 is used. Since fast converge
is ensured by the preconditioning schemes, the CPU t
consumption at each frequency can be much less than th
a direct solver. The more frequency steps in the frequen
sweep analysis, the more savings in CPU time can
achieved in the solution process. The forward-scattering
back-scattering results of the coupled analysis using Q
and the direct solver are compared in Figs. 12 and 13,
spectively. The results from pure acoustic analysis~consid-
ering the structure as rigid and stationary! are also plotted as

elFIG. 11. Comparison of CPU time consumption at each frequency fo
scattering problem on the submarine-like model using QMR and di
solver.
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a reference. The consistency between the results from Q
and the direct solver again demonstrates the efficiency
reliability of the iterative solver, and the sufficiency of usin
1024 as the stopping tolerance for the QMR solver.

More sophisticated numerical tests, for example th
involving nonuniformly applied loads, at higher frequenci
or larger models, need to be studied to further fine-tune
iterative solver for the analysis of coupled structural aco
tics problems using the BEM.

VI. CONCLUSION

Effective solution schemes for the applications of t
unified BEM to coupled sound and thin-shell structure int
action problems have been studied. An iterative solv
namely, the quasiminimal residual method~QMR!, was se-

FIG. 12. Forward-scattering result at point~35, 0, 0!.

FIG. 13. Backward-scattering result at point~235, 0, 0!.
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lected among others and found to be much more effic
compared to the direct solver in solving the linear systems
equations with complex coefficients generated by the str
tural acoustic BEM. Four problem-dependent preconditio
ing schemes are developed to accelerate the convergen
the iterative solver. Double-precision arithmetic is also ve
useful in improving the convergence rate.

In addition, an effective preconditioner~scheme 5! spe-
cially designed for frequency-sweep analysis is presen
With this preconditioner, the iterative solver has been fou
to be stable in a frequency-sweep analysis. The scheme
sures convergence, and the CPU time consumption is m
less than that of the direct solver in the case studied in
paper.

To further improve the efficiency of the developed BE
in analyzing even larger structural acoustic problems, me
ods to reduce the CPU time in the formation of the coe
cient matrices should be explored. The formation time h
been shown to become dominant in the whole BEM proc
with the use of the iterative solver~see, e.g., Fig. 2!. This
reduction can be achieved by using, for example, the mu
pole expansion method~see, e.g., Ref. 9! emerging recently
in the BIE/BEM.
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