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Abstract

The piezoelectric boundary integral equation (BIE) formulation is applied to analyze thin piezoelectric solids, such as

thin piezoelectric films and coatings, using the boundary element method (BEM). The nearly singular integrals existing

in the piezoelectric BIE as applied to thin piezoelectric solids are addressed for the 2-D case. An efficient analytical

method to deal with the nearly singular integrals in the piezoelectric BIE is developed to accurately compute these

integrals in the piezoelectric BEM, no matter how close the source point is to the element of integration. Promising

BEM results with only a small number of elements are obtained for thin films and coatings with the thickness-to-length

ratio as small as 10�6, which is sufficient for modeling many thin piezoelectric films as used in smart materials and

micro-electro-mechanical systems. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, piezoelectric materials have been used widely as sensors and actuators in smart materials
and micro-electro-mechanical systems (MEMS), because piezoelectric materials possess many desirable
properties [1–3]. Analysis of the piezoelectric sensors and actuators is, however, very difficult because they
are usually made in the forms of thin films or coatings applied on elastic substrates. Detailed stress analysis
for durability assessment of such materials is challenging for any numerical methods based on the piezo-
electric plate or shell theories, especially in evaluating interface stresses which exhibit singularities near the
edges of the films (see e.g., Ref. [4]). To ensure the highest possible accuracy in the stress or fracture analysis
of the delicate piezoelectric films and coatings, accurate 2-D or 3-D models based on the piezoelectricity
theory should be employed.
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In the last decade, there have been increasing efforts in the research on modeling piezoelectric materials
using the boundary integral equation/boundary element method (BIE/BEM) based on the 2-D or 3-D
piezoelectricity theory. For example, Lee and Jiang [5–7] developed the BEM formulation for piezoelectric
solids and tested their method on a 2-D infinite piezoelectric medium with a cylindrical hole [7]. A 3-D
BEM for piezoelectric solids was developed by Chen and Lin [8], based on the fundamental solutions
derived earlier [9,10] for 3-D piezoelectric solids. The numerical examples using linear elements on a pi-
ezoelectric cube and a spherical cavity were presented in [8]. Hills and Farris [11] applied the quadratic
(eight node) boundary elements for 3-D piezoelectric bodies and tested their approach on the cube and
spherical void problems. Ding et al. [12,13] derived the fundamental solutions in terms of harmonic
functions and developed the BEM with several test cases for 2-D [12] and 3-D problems [13]. Recently,
Jiang [14] derived the fundamental solutions and the BIE for 3-D time-dependent thermo-piezoelectricity.
For piezoelectric solids with defects (various voids and cracks), Xu and Rajapakse [15] studied the influence
and interactions of various holes in 2-D piezoelectric media using a coupled BEM. Zhao et al. [16,17]
derived the 3-D fundamental solutions and the BIE for a penny-shaped crack in a piezoelectric solid. Pan
[18] recently presented a detailed study on cracks in 2-D piezoelectric media using the BEM. Both the
conventional BIE and a hypersingular BIE (traction BIE) were employed in [18] to handle the degeneracy
of the BIEs for crack problems. Recently, Qin [19] studied the cracks in a piezoelectric half plane under
thermal loading with the BEM.

All the above results using the BEM have clearly demonstrated the accuracy and efficiency of the pi-
ezoelectric BEM, especially in stress and fracture analyses, for single and bulky piezoelectric materials.
However, no piezoelectric BEM has been attempted to analyze thin piezoelectric materials, such as pi-
ezoelectric films and coatings. Applications of the piezoelectric BEM to thin piezoelectric structures face
two crucial questions: (1) Does the piezoelectric BIE degenerate when applied to shell-like piezoelectric
structures? (2) How to deal with the nearly singular integrals existing in the piezoelectric BIE when applied
to shell-like and crack-like problems? The first question has been addressed in a recent paper [20] which
proves that the piezoelectric BIE does not degenerate when applied to thin piezoelectric shell-like structures,
contrary to the case of modeling cracks in piezoelectric materials using the BIE. Related discussions on this
issue in the context of thin elastic structures using the BEM can be found in Refs. [21,22]. However, ac-
cording to the best knowledge of the authors, no work has been reported in the literature to address the
second question regarding the nearly singular integrals in the piezoelectric BIE when applied to shell-like
piezoelectric structures.

In the context of elastic structures or materials, it has been demonstrated that the BIE/BEM with thin-
body capabilities can handle various thin shell-like problems very effectively, regardless of the thinness of
the structures, or non-uniform thickness, as long as the nearly singular integrals are computed accurately.
Numerous examples of applying the BEM based on the elasticity theory to both 2-D and 3-D thin shell-like
structures, including thin elastic layered films, coatings, interphases in composites, with or without interface
cracks, can be found in Refs. [21,23–29]. These studies have shown that accurate, efficient, and yet stable
displacement and stress results can be obtained using the BEM for the analysis of the thin structures or
materials with the thickness-to-length ratios in the range of 10�6–10�9, once the nearly singular integrals are
computed accurately. The semi-analytical approach for 3-D case and the analytical approach for 2-D case
developed in the above mentioned work to deal with the nearly singular integrals in the elasticity BIEs can
be extended to the 2-D piezoelectric BIE with no new conceptual challenges, although it is much more
involved for the piezoelectric BIE case.

In this paper, a piezoelectric BEM is developed for analyzing 2-D thin piezoelectric structures with very
small thickness-to-length ratios. The nearly singular integrals (line integrals for 2-D problems) are trans-
formed into integrals containing summations of several polynomial fractions, which can be computed
analytically. For the test problems on piezoelectric films, coatings and beams, very promising BEM results
with only a few boundary elements are obtained when the thickness-to-length ratio is as small as 10�6. This
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is sufficient for modeling most thin piezoelectric materials in various applications such as smart materials
and MEMS.

2. The boundary integral equation formulation for piezoelectricity

Consider a piezoelectric solid occupying a domain V with the boundary S (Fig. 1). The basic equations
governing the elastic and electric fields in a linear piezoelectric material can be summarized in the following
(see e.g., Refs. [1,6,8,20]) (index notation is used here).

Equilibrium equations:

rij;j þ fi ¼ 0; ð1Þ

Di;i � q ¼ 0; ð2Þ
where rij is the stress tensor, fi is the body force vector per unit volume, Di is the electric displacement
vector and q is the intrinsic electric charge per unit volume.

Constitutive equations:

rij ¼ Cijklskl � ekijEk ðconverse effectÞ; ð3Þ

Di ¼ eiklskl þ eikEk ðdirect effectÞ; ð4Þ
where skl is the strain tensor, Ek is the electric field, Cijkl is the elastic modulus tensor measured in a constant
electric field, eijk is the piezoelectric tensor and eij is the dielectric tensor measured at constant strains.

Strain and electric fields:

sij ¼ 1
2
ðui;j þ uj;iÞ; ð5Þ

Ei ¼ �/;i; ð6Þ

where ui is the elastic displacement vector and / is the electric potential.

Boundary conditions (BCs):

ti ¼ rijnj ¼ �tti; on St; ui ¼ �uui; on Su ðmechanical BCsÞ; ð7Þ

x ¼ �Dini ¼ �xx; on Sx; / ¼ �//; on S/ ðelectric BCsÞ; ð8Þ
where ti is the traction, x is the surface charge, ni is the unit outward normal vector (Fig. 1) and the barred
quantities indicate given values. Note that the boundary S ¼ St [ Su ¼ Sx [ S/.

Eqs. (1)–(6) under BC (7), (8) form the complete mathematical description of the coupled elastic and
electric fields in a general anisotropic piezoelectric solid. The above differential governing equations can be

Fig. 1. A thin piezoelectric solid V with boundary S.
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formulated in BIEs using the reciprocal theorem and the fundamental solutions for the piezoelectric solid
(see e.g., Ref. [20]). For 2-D problems in analyzing piezoelectric materials, the representation integral is
given as follows (matrix notation is used here; see Refs. [12,20]):

uðP0Þ ¼
Z
S
UðP ; P0ÞtðP ÞdSðP Þ �

Z
S
TðP ; P0ÞuðP ÞdSðP Þ þ

Z
V
UðP ; P0ÞbðP ÞdV ðP Þ; 8P0 2 V ; ð9Þ

in which

u ¼
u1
u2
�/

8><
>:

9>=
>;; t ¼

t1
t2
�x

8><
>:

9>=
>;; b ¼

f1
f2
�q

8><
>:

9>=
>;; U ¼

U11 U12 U13

U21 U22 U23

U31 U32 U33

2
64

3
75; T ¼

T11 T12 T13
T21 T22 T23
T31 T32 T33

2
64

3
75 ð10Þ

are the generalized (or extended) displacement, traction and body force vectors, and the generalized dis-
placement and traction kernels in the 2-D piezoelectric fundamental solutions (see Appendix), respectively;
P0 the source point and P the field point. Note that the dimensions of matrices are 3	 3 for 2-D piezo-
electric problems because of the coupling of the elastic and electric fields.

Let the source point P0 go to the boundary S in the above representation integral, we obtain the pi-
ezoelectric boundary integral equation in the traditional (singular) form:

CðP0ÞuðP0Þ þ
Z
S
TðP ; P0ÞuðP ÞdSðP Þ ¼

Z
S
UðP ; P0ÞtðPÞdSðP Þ þ

Z
V
UðP ; P0ÞbðP ÞdV ðP Þ; 8P0 2 S;

ð11Þ

where C is a 3	 3 coefficient matrix depending on the smoothness of S at P0.
Applying the integral identity for the piezoelectric fundamental solution developed in Ref. [20], we can

obtain the following weakly singular form of the boundary integral equation for piezoelectricity [20]:

Z
S
TðP ; P0Þ uðP Þ½ � uðP0Þ�dSðP Þ ¼

Z
S
UðP ; P0ÞtðP ÞdSðPÞ þ

Z
V
UðP ; P0ÞbðP ÞdV ðP Þ; 8P0 2 S; ð12Þ

for a finite piezoelectric solid (cf., the potential and elasticity cases [30–33]).
The weakly singular BIE (12) for piezoelectric solids has several advantages, compared with the singular

BIE (11). There are no singular integrals in the weakly singular BIE and its discretization leads directly to
the conclusion that the diagonal terms can be determined by summing the off-diagonal terms for the matrix
involving the singular kernel T (see Ref. [30]). By employing weakly singular BIE (12), one does not need to
evaluate any jump terms explicitly in deriving the piezoelectric BIEs. In recent years, regularizing the
singular integrals in the BIEs has become a common approach to dealing with the singular integrals in the
BEM [34,35].

As discussed in Section 1, before the piezoelectric BIE (12) can be applied to analyze thin piezoelectric
structures, an accurate and efficient method needs to be developed to deal with the nearly singular integrals
existing in BIE (12) for such problems. Section 3 is a first attempt to address this crucial issue.

3. Nearly singular integrals in the piezoelectric BIE for thin shapes

The numerical difficulty in applying the piezoelectric BEM based on BIE (12) is the treatment of the
nearly singular integrals which arise in both crack-like and thin shell-like problems. The integrals in the
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BIE, which determine the influence matrices, contain singular kernels of order O(1/r) and O(ln r) in 2-D
piezoelectricity case (same as in the elasticity case), where r is the distance between the source point P0 and
the field (integration) point P (Fig. 1). When the source point is very close to, but not on an element of
integration, although the kernels are regular in the mathematical sense, values of the kernels can change
rapidly on that element [23]. The standard Gaussian quadrature is no longer accurate or efficient in this
case since a large number of integration points or many subdivisions of the element are needed in order
to achieve the required accuracy [36]. Even the weakly singular form of the BIE, such as BIE (12), can
not avoid this nearly singular integral difficulty. As discussed in Refs. [21,23,36,37] for the 2-D and
3-D elasticity BIE cases, a very accurate and yet efficient approach to deal with these nearly singular inte-
grals is to evaluate them analytically through some manipulations. Although the case for the piezoelec-
tric BIE is much more complicated due to the lengthy expressions for the piezoelectric fundamental
solution [5–7], it is still possible to evaluate the nearly singular integrals analytically as in the elasticity BIE
case.

We first consider the integral in BIE (11) or (12) containing the singular kernel Tij when the source point
is close to but not on the element of integration. By subtracting and adding back a term in the following
manner, the nearly singular integral can be rewritten as (see Refs. [21,23,36] for details):

Z
DL

TijðP ; P0ÞujðP ÞdLðP Þ ¼
Z

DL
TijðP ; P0Þ½ujðP Þ � ujðP 0

0Þ�dLðP Þ þ ujðP 0
0Þ
Z

DL
TijðP ; P0ÞdLðPÞ; ð13Þ

where DL is the line element under consideration, P 0
0 is the closest point on the element to P0 (an image point

of P0 on the element [21,23,36]). Note that the indices i and j run from 1 to 3 for the 2-D piezoelectric BIE
case (see Eq. (10)). As P ! P 0

0, the term ujðP Þ � ujðP 0
0Þ has the order of Oðr0Þ, with r0 being the distance from

P 0
0 to P. The order of the first integral on the right-hand side of (13) is reduced to Oðr0Þ=OðrÞ. This integral is

a nearly weakly singular integral, which can be evaluated accurately by a non-linear coordinate transfor-
mation developed for the 2-D elasticity case in Ref. [23]. Now we focus on the evaluation of the last integral
in (13) containing only the singular kernel Tij by using an analytical approach.

Let us analyze the expressions of the Tij kernel first. For 2-D piezoelectric problems, the fundamental
solution is much more complicated and the expressions for the corresponding kernels are very lengthy, as
first presented in Refs. [5–7]. For brevity and clarity, we only list the major expressions here and leave the
other expressions in the Appendix and the references therein. The Tij kernel for the 2-D piezoelectric
fundamental solution can be expressed as (see Appendix):

T11 ¼ ðc11U111 þ c12U122 þ e21U132Þn1 þ ðc33ðU112 þ U121Þ þ e13U131Þn2;

T21 ¼ ðc11U211 þ c12U222 þ e21U232Þn1 þ ðc33ðU212 þ U221Þ þ e13U231Þn2;

T31 ¼ ðc11U311 þ c12U322 þ e21U332Þn1 þ ðc33ðU312 þ U321Þ þ e13U331Þn2;

T12 ¼ ðc12U111 þ c22U122 þ e22U132Þn2 þ ðc33ðU112 þ U121Þ þ e13U131Þn1;

T22 ¼ ðc12U211 þ c22U222 þ e22U232Þn2 þ ðc33ðU212 þ U221Þ þ e13U231Þn1;

T32 ¼ ðc12U311 þ c22U322 þ e22U332Þn2 þ ðc33ðU312 þ U321Þ þ e13U331Þn1;

T13 ¼ �ðe13ðU112 þ U121Þ � e11U131Þn1 � ðe21U111 þ e22U122 � e22U132Þn2;

T23 ¼ �ðe13ðU212 þ U221Þ � e11U231Þn1 � ðe21U211 þ e22U222 � e22U232Þn2;

T33 ¼ �ðe13ðU312 þ U321Þ � e11U331Þn1 � ðe21U311 þ e22U322 � e22U332Þn2;

ð14Þ
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where n1 and n2 are directional cosines of the normal n; c11; . . . ; e11; . . . ; and e11; . . . are the elastic modulus,
piezoelectric and dielectric constants, respectively (in the matrix notation); and Uijk are the spatial deriv-
atives of the Uij kernel (see Appendix).

From the lengthy expressions (A.4)–(A.6) listed in the Appendix, we can conclude that the Tij kernel can
be written in the following form:

Tij ¼
X12
m¼1

ðCm1Xmn1 þ Cm2Xmn2Þ; ð15Þ

where Cmk are combinations of the constants, and Xm is one of the gij terms defined in (A.4) in the Appendix.
Thus we can write:

Z
DL

TijðP ; P0ÞdLðPÞ ¼
Z

DL

X12
m¼1

ðCm1Xmn1 þ Cm2Xmn2ÞdLðP Þ

¼
X12
m¼1

Cm1

Z
DL

Xmn1 dLðP Þ
�

þ Cm2

Z
DL

Xmn2 dLðP Þ
�
: ð16Þ

That is, the integration of Tij can be determined by the integrations of Xmn1 and Xmn2 on the element DL.
Apply quadratic line elements on the boundary and assume that the coordinates of the three nodes of the

element of integration are ðx1; y1Þ, ðx2; y2Þ (middle node) and ðx3; y3Þ, and the source point is ðx0; y0Þ. Em-
ploying the quadratic shape functions:

N1ðnÞ ¼ ðn � 1Þn=2; N2ðnÞ ¼ 1� n2; N3ðnÞ ¼ ðn þ 1Þn=2;

with n (�16 n6 1) being the natural coordinate, we have

r1 ¼ x� x0 ¼
X3

a¼1

Naxa � x0 ¼
x1 þ x3 � 2x2

2
n2 þ x3 � x1

2
n þ x2 � x0;

r2 ¼ y � y0 ¼
X3

a¼1

Naya � y0 ¼
y1 þ y3 � 2y2

2
n2 þ y3 � y1

2
n þ y2 � y0:

ð17Þ

That is, r1 and r2 are quadratic functions of n. On the element, it can be shown that

n1 ¼
1

J
ðy1
h

þ y3 � 2y2Þn þ y3 � y1
2

i
;

n2 ¼ � 1

J
ðx1
h

þ x3 � 2x2Þn þ x3 � x1
2

i
;

dL ¼ J dn;

ð18Þ

where J is the Jacobian. Therefore, for a typical integral in (16) we obtainZ
DL

Xmn1 dLðP Þ ¼
Z 1

�1

Xm ðy1
h

þ y3 � 2y2Þn þ y3 � y1
2

i
dn: ð19Þ

Substituting the expressions (17) for r1 and r2 into Xm, which in turn is one of the terms in (A.4) in the
Appendix, the above formula (19) can be shown to have the following final form:

Z
DL

Xmn1 dLðP Þ ¼
Z 1

�1

an3 þ bn2 þ cn þ d

en4 þ f n3 þ gn2 þ hn þ q
dn; ð20Þ
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where constants a–q are combinations of the nodal coordinates and the material constants. Note that the
constants e, f, g, h and q in (20) cannot be zero at the same time. It is also found from the numerical tests
that the denominator of the integrand in (20) has no roots in the interval ½�1; 1�. The integration of Xmn2 is
handled in a similar way.

In general, an integral like (20) can be integrated analytically, given constants a–q (for example, using a
symbolic manipulation software). Then integrals in (16) can be determined easily. In this way, we can
convert the last integral in (13) containing the singular kernel to the summation of integrals containing
polynomial fractions like (20), and these polynomial fraction integrals (20) do not depend on the inte-
gration path DL. There is no difficulty at all in obtaining the exact values of such integrals, no matter how
close the source point is to the element.

For the nearly weakly singular integrals, that is, the one containing the Uij kernel in BIE (12) and the first
integral on the right-hand side of (13), the non-linear coordinate transformation developed in [23] for 2-D
elasticity BIE is applied in the current study. It is found that this technique is equally effective and efficient
in the case of the 2-D piezoelectric BIE.

4. Numerical examples

To verify the procedures presented in the previous section for dealing with the nearly singular integrals in
the piezoelectric BIE, a 2-D piezoelectric BEM program is developed and three numerical test problems are
studied in which the BEM solutions are obtained and compared with the analytical solutions when they are
available.

4.1. Test problem 1: a thin piezoelectric film

First, a thin piezoelectric film under a uniform stretch �uu in the x direction (Fig. 2) is studied, for which
analytical solution can be found readily. We assume the dimension of the film in the z direction is very large
so that it can be considered as a plane strain problem. The length L of the film is constant (¼ 1 m here),
while the thickness h changes from L to 10�6 L. Note that the thickness h is changing from the macro- to
micro-scales, relative to the length L, which may already be outside of the limits of the continuum me-
chanics assumptions for many materials. However, it is of more interest here to verify the validity and
effectiveness of developed advanced BEM approach for such 2-D thin piezoelectric materials.

The boundary of the film is discretized with 10 quadratic boundary elements, with four elements on each
of the two horizontal (long) edges and one element on each of the two vertical (short) edges. For the
mechanical BC, displacement in the y direction is constrained along the edge y ¼ 0; displacement in the x

Fig. 2. A thin piezoelectric film.
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direction is constrained along the edge x ¼ 0; the specified stretch �uu ¼ 0:01 m and traction-free conditions
are applied on other boundaries and directions (Fig. 2). For the electric BC, the electric potential is zero
along the top and bottom edges; and the surface charge is zero on the two vertical edges. No body forces
and changes are applied to the piezoelectric body. The material used is PZT-4 and the material constants (in
the matrix notation) are given below [7]:

elastic modulus: c11 ¼ 14:1; c22 ¼ 11:6; c33 ¼ 2:53; c12 ¼ 7:57 ð1010 N=m2Þ;

piezoelectric constants: e21 ¼ �5:3; e22 ¼ 15:5; e13 ¼ 13:0 ðC=m2Þ;

dielectric constants: e11 ¼ 6:37; e22 ¼ 5:53 ð10�9C=VmÞ:

Fig. 3 shows the results of stress rx at the upper-right corner, for different thicknesses of the film, using
the regular piezoelectric BEM (without employing the techniques for dealing with the nearly singular in-
tegrals) and the new BEM presented in this paper. It is obvious that the regular BEM results deteriorate
quickly as the thickness decreases (‘‘m’’ in the plot represents the exponent in the thickness, e.g., ‘‘m ¼ 1’’
means h ¼ 10�1L). Data at m ¼ 4, 5 and 6 are not plotted for the regular BEM, since they are meaningless
due to the poor accuracies of the integration schemes in the regular BEM for such thin piezoelectric solid
case. The same conclusion was made in Refs. [21,23] for the 3-D and 2-D thin elastic solid cases. For the
advanced piezoelectric BEM using the techniques for dealing with the nearly singular integrals, as discussed
in Section 3, we notice that for all the thickness-to-length ratios h=L down to 10�6, the results are still very
accurate and stable, with the maximum error (at h=L ¼ 10�5) less than 3% (the better accuracy at

Fig. 3. Stress rx at point ðL; hÞ with the piezoelectric BEMs (h=L ¼ 10�m).

2304 Y.J. Liu, H. Fan / Comput. Methods Appl. Mech. Engrg. 191 (2002) 2297–2315



h=L ¼ 10�6 is purely a coincidence). From hereafter, all the BEM results reported are obtained by using the
new advanced BEM presented in the previous sections.

The BEM results for the x-displacement of the point ðL=2; 0Þ (Fig. 4) are very accurate for this example as
well, almost reproducing the exact values. The BEM results for the surface charge at the point ðL=2; 0Þ (Fig.
5) are also very close to the values from the analytical solution, with all the errors less than 3%. All these
BEM results demonstrate that the developed analytical method for dealing with the nearly singular inte-
grals in the piezoelectric BEM procedure is very effective and accurate. It is also shown that the piezoelectric
BIE does not degenerate when applied to thin shell-like piezoelectric structures, as proved analytically in
Ref. [20].

4.2. Test problem 2: piezoelectric coating on a rigid cylinder

We next study the case of a rigid cylinder covered with a thin piezoelectric (PZT-4) coating (Fig. 6). The
radius of the cylinder a is fixed (¼ 1 m here), while the thickness of the coating h is reduced to test the
developed piezoelectric BEM on this case with curved boundaries. For the mechanical BC, the coating is
subjected to a uniform pressure load p at the outer boundary, and is fixed at the inner boundary (interface
with the rigid cylinder). For the electric BC, zero surface charge is applied on both inner and outer
boundaries. When the thickness h decreases, the radial stress at the interface (e.g., point A, Fig. 6) should
approach the value of the applied pressure, while the mechanical displacement at the outer boundary
should approach zero. These can be employed to verify the BEM solutions.

Fig. 4. The x-component of displacement at point ðL=2; 0Þ.
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Two BEM meshes with very small numbers of elements are used for the coating, one with eight quadratic
elements (four elements on each circular boundary) and another one with 16 quadratic elements (eight
elements on each circle). Fig. 7 shows the results for the radial stress at point A (interface) with the two
boundary element discretizations, as the thickness of the PZT-4 coating decreases from h ¼ 10�0:301a
(¼ 0.5a), 10�1a, 10�2a; . . . ; to 10�5a. Both the BEM interface stress results approach the applied pressure p

Fig. 5. The electric surface charge at point ðL=2; 0Þ.

Fig. 6. A rigid cylinder with a thin piezoelectric coating under pressure p.

2306 Y.J. Liu, H. Fan / Comput. Methods Appl. Mech. Engrg. 191 (2002) 2297–2315



as the thickness decreases, which is expected. Fig. 8 gives the mechanical displacement (radial component)
at point B, while Fig. 9 shows the electric displacement (tangential component) at point B. Both the me-
chanical and electric displacement components vanish with the decrease of the coating thickness, which is
also expected.

This example demonstrates that the developed piezoelectric BEM for thin shell-like structures can handle
models of curved boundaries very efficiently and accurately as well. Stable and converged BEM results can
be obtained with a small number of boundary elements, regardless how small the thickness of the piezo-
electric coating is.

4.3. Test problem 3: a piezoelectric strip under a combined mechanical and electric load

A piezoelectric (PZT-5) strip under a combined loading of pressure p and voltage V0 (Fig. 10) is studied
next. This is the same example problem as presented in Ref. [38]. The polarization direction of the pi-
ezoelectric strip is in the z direction. The analytical solution for this problem can be derived readily and is
given as Eqs. (87)–(89) in Ref. [38] (where the symbol ‘‘h’’ in Eq. (88) should be replaced by ‘‘L=2’’) and is
employed here to validate the developed piezoelectric BEM for thin piezoelectric solids under shear de-
formation. The mechanical boundary conditions are as shown in Fig. 10, while the electrical boundary
conditions are:

/ ¼ V0; at x ¼ 0; and / ¼ �V0; at x ¼ L;

Fig. 7. Magnitude of the stress rx ð	pÞ at point A ðh=a ¼ 10�mÞ.
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o/
oz

¼ 0; at z ¼ �h:

The length of the strip used is fixed at L ¼ 1 mm, while the thickness 2h is changed from L to 10�4L. The
applied pressure p ¼ 5 N/mm2 and the voltage V0 ¼ 1000 V, as used in Ref. [38]. The shear deformation
dominates under these conditions, due to the applied voltages along the two vertical edges [38]. This pi-
ezoelectric beam-like model can be viewed as a simple piezoelectric device which converts the applied
electric field into deflection of the beam for sensing or actuating purposes. The material constants used for
PZT-5 are given below:

elastic modulus: c11 ¼ 7:3383; c22 ¼ 6:4015; c33 ¼ 2:1053; c12 ¼ 2:8182 ð104 N=mm2Þ;
piezoelectric constants: e21 ¼ �2:0817; e22 ¼ 19:0942; e13 ¼ 12:2947 ð10�3 N=ðmmVÞÞ;
dielectric constants: e11 ¼ 0:8130; e22 ¼ 14:3001 ð10�8 N=V2Þ:

A total of 16 boundary elements (four on each edge) are used in the analysis using the developed
piezoelectric BEM and converged results are obtained. Further increase of the elements does not show any
significant changes in the results. Fig. 11 shows the BEM results of the displacement component w along
the bottom edge of the PZT-5 strip, as compared with the analytical solutions, for three different values
of the thickness 2h. Again, the BEM results are very accurate (with maximum error less than 2%) for all
the thin strip cases. It is also noticed that the shear deformation is insensitive to the thickness of the
strip when it is thin. This example demonstrates that the developed BEM can handle the combined loading

Fig. 8. Magnitude of the mechanical displacement ux ð	pÞ at point B.
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easily and may be applied to analyze MEMS problems in which many beam-like piezoelectric structures
exist.

All the test problems studied in this section are, of course, relatively simple regarding the geometry and
loading conditions. The purpose of these studies is to validate the techniques developed for computing the
nearly singular integrals in the piezoelectric BEM. Investigations are underway to apply the developed

Fig. 9. Magnitude of the electric displacement Dy ð	pÞ at point B.

Fig. 10. A PZT-5 strip subjected to pressure load p and voltage V0.
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piezoelectric BEM to problems of thin and multi-layered piezoelectric films and coatings with more realistic
geometry and loading conditions.

5. Conclusion

An advanced 2-D piezoelectric BEM has been developed for the analysis of thin piezoelectric solids. A
analytical method has been devised for computing the nearly singular integrals in the piezoelectric BEM for
such applications. The numerical results show that the developed piezoelectric BEM is very accurate and
efficient for the analysis of thin piezoelectric films and coatings. It is also shown numerically that the pi-
ezoelectric BIE does not degenerate when applied to thin piezoelectric solids, as has been proved analyt-
ically in Ref. [20]. All these new findings suggest that the BEM can be a very attractive numerical tool for
the analysis of piezoelectric films and coatings as employed widely in smart materials, MEMS and other
engineering applications.
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Appendix A. The fundamental solution for 2-D piezoelectric solids

For the completeness and reference, we list here the main results of the 2-D piezoelectric fundamental
solution which were first derived in Refs. [5–7].

A.1. The U-components in the 2-D piezoelectric fundamental solution

Introduce the following parameters (similar to L1–L6 used in [5–7]):

g1 ¼
lnðp20r21 þ r22Þ

2
; g4 ¼ arctan

r2 þ p1r1
q1r1

� �
;

g2 ¼
ln ðp1r1 þ r2Þ2 þ q21r

2
1

h i
2

; g5 ¼ arctan
r2 � p1r1

q1r1

� �
;

g3 ¼
ln ðp1r1 � r2Þ2 þ q21r

2
1

h i
2

; g6 ¼ arctan
r2
p0r1

� �
;

ðA:1Þ

and the parameters [5–7]:

I0 ¼ R0g1 þ P0ðg2 þ g3Þ þ Q0ðg4 � g5Þ;

I1 ¼ R1g6 þ P1ðg4 þ g5Þ þ Q1ðg3 � g2Þ;

I2 ¼ R2g1 þ P2ðg2 þ g3Þ þ Q2ðg4 � g5Þ;

I3 ¼ R3g6 þ P3ðg4 þ g5Þ þ Q3ðg3 � g2Þ;

I4 ¼ R4g1 þ P4ðg2 þ g3Þ þ Q4ðg4 � g5Þ;

ðA:2Þ

then the U-components in the 2-D piezoelectric fundamental solution can be expressed as:

U11 ¼
1

2p
ða11I4 þ b11I2 þ c11I0Þ;

U21 ¼
1

2p
ða12I3 þ b12I1Þ;

U31 ¼ � 1

2p
ða13I3 þ b13I1Þ;

U12 ¼ U21;

U22 ¼
1

2p
ða22I4 þ b22I2 þ c22I0Þ;

U32 ¼ � 1

2p
ða23I4 þ b23I2 þ c23I0Þ;

U13 ¼
1

2p
ða13I3 þ b13I1Þ;

U23 ¼
1

2p
ða23I4 þ b23I2 þ c23I0Þ;

U33 ¼ � 1

2p
ða33I4 þ b33I2 þ c33I0Þ;

ðA:3Þ
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where aij, bij, cij, Ri, Pi, Qi, p0, p1, and q1 are parameters related to the material constants, as defined in Refs.
[5–7]; and r1 and r2 are given in Eq. (17).

A.2. The T-components in the 2-D piezoelectric fundamental solution

The generalized traction kernels Tij are obtained by taking the derivatives of the generalized displacement
kernel Uij and applying the relations as specified in Eqs. (3)–(8). First, introduce the following parameters
(derivatives of g1; g2; . . . ; g6 given in (A.1)):

g11 ¼
p20r1

p20r
2
1 þ r22

; g41 ¼
�q1r2

ðp1r1 þ r2Þ2 þ q21r
2
1

;

g12 ¼
r2

p20r
2
1 þ r22

; g42 ¼
q1r1

ðp1r1 þ r2Þ2 þ q21r
2
1

;

g21 ¼
ðp21 þ q21Þr1 þ p1r2
ðp1r1 þ r2Þ2 þ q21r

2
1

; g51 ¼
�q1r2

ðp1r1 � r2Þ2 þ q21r
2
1

;

g22 ¼
p1r1 þ r2

ðp1r1 þ r2Þ2 þ q21r
2
1

; g52 ¼
q1r1

ðp1r1 � r2Þ2 þ q21r
2
1

;

g31 ¼
ðp21 þ q21Þr1 � p1r2
ðp1r1 � r2Þ2 þ q21r

2
1

; g61 ¼
�p0r2

p20r
2
1 þ r22

;

g32 ¼
r2 � p1r1

ðp1r1 � r2Þ2 þ q21r
2
1

; g62 ¼
p0r1

p20r
2
1 þ r22

;

ðA:4Þ

and

I01 ¼ R0g11 þ P0ðg21 þ g31Þ þ Q0ðg41 � g51Þ;
I11 ¼ R1g61 þ P1ðg41 þ g51Þ þ Q1ðg31 � g21Þ;
I21 ¼ R2g11 þ P2ðg21 þ g31Þ þ Q2ðg41 � g51Þ;
I31 ¼ R3g61 þ P3ðg41 þ g51Þ þ Q3ðg31 � g21Þ;
I41 ¼ R4g11 þ P4ðg21 þ g31Þ þ Q4ðg41 � g51Þ;
I02 ¼ R0g12 þ P0ðg22 þ g32Þ þ Q0ðg42 � g52Þ;
I12 ¼ R1g62 þ P1ðg42 þ g52Þ þ Q1ðg32 � g22Þ;
I22 ¼ R2g12 þ P2ðg22 þ g32Þ þ Q2ðg42 � g52Þ;
I32 ¼ R3g62 þ P3ðg42 þ g52Þ þ Q3ðg32 � g22Þ;
I42 ¼ R4g12 þ P4ðg22 þ g32Þ þ Q4ðg42 � g52Þ;

ðA:5Þ

and finally

U111 ¼
1

2p
ða11I41 þ b11I21 þ c11I01Þ;

U211 ¼
1

2p
ða12I31 þ b12I11Þ;

U311 ¼ � 1

2p
ða13I31 þ b13I11Þ;
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U121 ¼ U211;

U221 ¼
1

2p
ða22I41 þ b22I21 þ c22I01Þ;

U321 ¼ � 1

2p
ða23I41 þ b23I21 þ c23I01Þ;

U131 ¼
1

2p
ða13I31 þ b13I11Þ;

U231 ¼
1

2p
ða23I41 þ b23I21 þ c23I01Þ;

U331 ¼ � 1

2p
ða33I41 þ b33I21 þ c33I01Þ;

U112 ¼
1

2p
ða11I42 þ b11I22 þ c11I02Þ;

U212 ¼
1

2p
ða12I32 þ b12I12Þ;

U312 ¼ � 1

2p
ða13I32 þ b13I12Þ;

U122 ¼ U212;

U222 ¼
1

2p
ða22I42 þ b22I22 þ c22I02Þ;

U322 ¼ � 1

2p
ða23I42 þ b23I22 þ c23I02Þ;

U132 ¼
1

2p
ða13I32 þ b13I12Þ;

U232 ¼
1

2p
ða23I42 þ b23I22 þ c23I02Þ;

U332 ¼ � 1

2p
ða33I42 þ b33I22 þ c33I02Þ;

ðA:6Þ

then the T-components in the 2-D piezoelectric fundamental solution can be written as

T11 ¼ ðc11U111 þ c12U122 þ e21U132Þn1 þ ðc33ðU112 þ U121Þ þ e13U131Þn2;
T21 ¼ ðc11U211 þ c12U222 þ e21U232Þn1 þ ðc33ðU212 þ U221Þ þ e13U231Þn2;
T31 ¼ ðc11U311 þ c12U322 þ e21U332Þn1 þ ðc33ðU312 þ U321Þ þ e13U331Þn2;
T12 ¼ ðc12U111 þ c22U122 þ e22U132Þn2 þ ðc33ðU112 þ U121Þ þ e13U131Þn1;
T22 ¼ ðc12U211 þ c22U222 þ e22U232Þn2 þ ðc33ðU212 þ U221Þ þ e13U231Þn1;
T32 ¼ ðc12U311 þ c22U322 þ e22U332Þn2 þ ðc33ðU312 þ U321Þ þ e13U331Þn1;
T13 ¼ �ðe13ðU112 þ U121Þ � e11U131Þn1 � ðe21U111 þ e22U122 � e22U132Þn2;
T23 ¼ �ðe13ðU212 þ U221Þ � e11U231Þn1 � ðe21U211 þ e22U222 � e22U232Þn2;
T33 ¼ �ðe13ðU312 þ U321Þ � e11U331Þn1 � ðe21U311 þ e22U322 � e22U332Þn2;

ðA:7Þ

where the material constants c11; c12; . . . ; e22 are as defined in Refs. [5–7], and n1 and n2 are the directional
cosines of the normal n.
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