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Abstract The boundary integral equation (BIE) method
is applied for the thermal analysis of fiber-reinforced
composites, particularly the carbon-nanotube (CNT)
composites, based on a rigid-line inclusion model. The
steady state heat conduction equation is solved using the
BIE in a two-dimensional infinite domain containing
line inclusions which are assumed to have a much higher
thermal conductivity (like CNTs) than that of the host
medium. Thus the temperature along the length of a line
inclusion can be assumed constant. In this way, each
inclusion can be regarded as a ‘‘rigid line’’ (the opposite
of a crack) in the medium. It is shown that, like the crack
case, the hypersingular (derivative) BIE can be applied
to model these rigid lines. The boundary element
method (BEM), accelerated with the fast multipole
method, is used to solve the established hypersingular
BIE. Numerical examples with up to 10,000 rigid lines
(with 1,000,000 equations), are successfully solved by the
BEM code on a laptop computer. Effective thermal
conductivity of fiber-reinforced composites are evalu-
ated using the computed temperature and heat flux
fields. These numerical results are compared with the
analytical solution for a single inclusion case and with
the experimental one reported in the literature for car-
bon-nanotube composites for multiple inclusion cases.
Good agreements are observed in both situations, which
clearly demonstrates the potential of the developed
approach in large-scale modeling of fiber-reinforced

composites, particularly that of the emerging carbon-
nanotube composites.

Keywords Thermal conductivity � Boundary integral
equation � Carbon nanotube composites

1 Introduction

Modeling of rigid-line inclusions can find important
applications in the analysis of composite materials. For
example, the stress distribution and interaction of fibers
in a fiber-reinforced composite can be investigated
by treating the fibers as rigid-line inclusions. The
effective material properties of such composites can also
be evaluated using rigid-line models. This rigid-line
approximation is valid when the fibers have much higher
values of stiffness and/or thermal conductivity compared
with those of the matrix. This approximation can sig-
nificantly reduce the modeling complexity in the analysis
without losing much accuracy. In the case of carbon
nanotube (CNT)-based composites, the CNTs are in
general in a slender shape with very large aspect ratios
and have values of both stiffness and thermal conduc-
tivity several orders higher than those of a matrix
material. For example, the Young’s modulus of CNTs is
in general greater than 1 TPa, while the thermal con-
ductivity is in the range of 2000–6000 W/m-K at the
room temperature (see, e.g., Refs. [1–10]). Thus, the
rigid-line approach seems to be especially suitable and
promising for large scale modeling and analysis of CNT-
based composites using the continuum approach, when
the overall (not local) mechanical properties of the
composites are to be investigated [11–13].

In the case of the stress analysis of rigid-line inclu-
sions (also called anti-cracks) in an elastic solid, many
research results have been reported in the literature. In
this analysis, the rigid-line inclusions, representing, for
example, fibers in a matrix, are assumed to have no
elastic deformations and only have rigid-body motions,
that is, three degrees of freedom in two dimensions (2-D)
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and six degrees of freedom in three dimensions (3-D).
Boundary integral equation (BIE) methods have been
found especially suitable for the analysis of rigid-line
inclusions, since the counter part of rigid lines, cracks,
have been studied intensively by using the BIEs. Many
of the results for crack analysis can be extended readily
to the analysis of rigid-line inclusions. In the early of
1990’s, the group of Hu, Chandra and Huang made
considerable contributions to the study of rigid-line
inclusions in a matrix using the boundary integral
equation method. Some of their work can be found in
Refs. [14–18]. In these works, the rigid lines are repre-
sented by distributions of tractions along the rigid lines
(as compared to distributions of dislocations for cracks)
and integral equations are established using the Green’s
functions. The interactions of rigid lines with cracks and
the effects of rigid lines on the effective elastic material
properties of a composite were successfully studied using
this approach for 2-D models by Hu, Chandra and
Huang. Extensive review of the earlier theoretical work
on the elasticity study of rigid-line inclusions in a solid
can also be found in their papers [14–18]. Recently, there
seems to be a renewed interest in the study of rigid-line
inclusions using the BIEs. In Ref. [19], Leite, Coda and
Venturini reported a 2-D boundary integral equation
method coupled with the finite elements that are used to
model the elastic bar inclusions in a matrix. These bar
inclusions, representing fibers in a matrix, are assumed
to be rigid within any cross section of a bar, but can
deform along the axial direction of the bar in their
models. The displacement and stress fields near the bar
inclusions are studied by this approach. In Ref. [20],
Dong, Lo and Cheung developed a hypersingular BIE
approach for the analysis of interactions of rigid-line
inclusions with cracks in a 2-D elastic medium. Stress
intensity factors at the two ends of rigid lines are com-
puted with this hypersingular BIE approach and com-
pared with analytical solutions. In all the work
mentioned above, only 2-D models with a small number
(less than 10) of rigid-line inclusions are considered.

In the case of thermal analysis of rigid-line inclusions
in a matrix, there seems to be no research work pub-
lished for this very important study. For the thermal
analysis, a rigid-line inclusion means a one-dimensional
line model of a thin, slender inclusion having a constant-
temperature distribution (c.f., a rigid-body motion of a
rigid line in the elasticity case), assuming that the ther-
mal conductivity (c.f., the stiffness) of the line inclusion
is much higher than that of the hosting matrix. In a
recent related work, Zhang, Tanaka and Matsumoto
[21] studied the heat conduction problem of carbon
nanotube composites using 3-D unit-cell models. The
boundary node method was employed in which the
CNTs are represented by capsule-like voids in the matrix
with constant temperature distributions being described
on the voids. The boundary node equations are sup-
plemented with additional equations representing the
balance of the heat flux for each CNT. Up to two CNTs
in a unit cell were studied and good agreement was

observed between the simplified model and the full
model where the CNTs were modeled as another thin-
layer domain. The effectiveness of the CNT in increasing
the effective thermal conductivity of the CNT composite
is evident from their simulations based on the simplified
models.

With the advances of new composites, especially
those employing carbon nanotubes as the reinforcing
fibers, new modeling approaches that can handle models
with large numbers of slender inclusions need to be
developed. The rigid-line approach seems to be one of
the few feasible approaches with the current computing
hardware capabilities. The BIE method (also referred to
as boundary element method) based on the Green’s
functions is a natural way to model the rigid-line
inclusions, due to its reduction of the dimension of a
problem domain and the high accuracy the integral
approach offers. With the development of the fast mul-
tipole methods (see, e.g., a recent review [22] and Refs.
[23–28]) for solving boundary integral equations, large
models with several millions of degrees of freedom can
be solved readily on a desktop computer. All these needs
in materials research and progresses in numerical
methods suggest that the BIE approach for modeling
rigid-line inclusions may play a significant role in the
analysis of fiber-reinforced composites, such as the
CNT-based nanocomposites.

In this paper, a BIE method is developed for the
thermal analysis of rigid-line inclusions in a 2-D
medium. This mathematical model can represent, for
example, composite thin films with long fibers as the
reinforcing material. A hypersingular BIE formulation
is established that can handle line inclusions with con-
stant temperature distributions. The boundary element
method accelerated with the fast multipole method is
used to solve the hypersingular BIE. Numerical exam-
ples with up to 10,000 rigid lines (with 1,000,000 equa-
tions), are successfully solved by the developed BEM
code on a laptop computer. Effective thermal conduc-
tivity of the composites are evaluated using the com-
puted temperature and heat flux fields. The developed
method and code are validated by comparisons with the
analytical solution for the case using a single rigid-line
inclusion, and with experiments for CNT-based com-
posites for the case using many rigid-line inclusions.
Good agreement is observed regarding the trends and
values of these results, which clearly demonstrates the
potential of the developed BIE approach in the large-
scale modeling of fiber-reinforced composites, particu-
larly that of the CNT-based composites.

2 Hypersingular BIE formulation for rigid-line inclusions

The hypersingular BIE for the thermal analysis of a
medium containing rigid-line inclusions is derived in this
section. Consider the following Laplace equation gov-
erning the steady-state heat conduction in a 2-D infinite
medium embedded with rigid-line inclusions (Fig. 1):
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r2/ðyÞ ¼ 0; 8y 2 R2nS ; ð1Þ
under the boundary and regularity conditions:

/ðyÞ ¼ /i; 8y 2 Si; i ¼ 1; 2; . . . ; ð2ÞZ

Sþi
S

S�i

o/
on
ðyÞdSðyÞ ¼ 0; i ¼ 1; 2; . . . ; ð3Þ

/ðyÞ ¼ /1ðyÞ; as jðyÞj ! 1 ; ð4Þ
where R2 is the full 2-D space, / the temperature (poten-
tial) field, Sþi

S
S�i the boundary of the i-th rigid line,

S ¼
S

i Sþi
S

S�i
� �

; n the outward normal, /i an unknown
constant temperature value, and /1the undisturbed field
(the solution when the rigid-line inclusions are not pres-
ent).

The solution to the boundary value problem described
by Eqs. (1–4) can be written as the following represen-
tation integral (see, e.g., Refs. [29–31]):

/ðxÞ ¼
Z

S

Gðx; yÞ o/
on
ðyÞ � oGðx; yÞ

on
/ðyÞ

� �
dSðyÞ

þ /1ðxÞ; 8x 2 R2nS ; ð5Þ
where Gðx; yÞ is the Green’s function given by:

Gðx; yÞ ¼ 1

2p
ln

1

r

� �
; ð6Þ

with r being the distance between the source point x and
field point y.

Let Sþi ! S�i ð� SiÞ (Fig. 1) for each line inclusion,
one has from Eq. (5):

/ðxÞ ¼
X

i

Z

Si

Gðx; yÞDqðyÞdSðyÞ

þ /1ðxÞ; 8x 2 R2n
[

i

Si ; ð7Þ

in which condition (2) has been applied and:

DqðyÞ ¼ � o/ðyþÞ
on

þ o/ðy�Þ
@n

; with n ¼ n� : ð8Þ

Letting the source point x approach the surface Si from
either side of the surface, one obtains the following same
equation:

/i ¼
X

i

Z

Si

Gðx; yÞDqðyÞdSðyÞ

þ /1ðxÞ; 8x 2 U
i

Si ; ð9Þ

in which no jump terms arise from the limiting process
due to the weak singularity of the kernel. Equation (9) is
a weakly-singular BIE for the rigid-line inclusion prob-
lems. One can employ this equation to determine DqðyÞ
on each rigid line first and then apply Eq. (7) to compute
the /ðxÞ inside the domain. To solve Eq. (9), additional
equations are needed, since the constant temperature /i
(one value) for each rigid line (on the left-hand side of
(Eq. (9)) is also unknown. These additional equations
can be obtained by applying Eq. (3) for each rigid line.
This approach is feasible (contrary to the crack case
where there are not enough equations from Eq. (5)).
However, it is difficult to represent DqðyÞ accurately on
each rigid line using the boundary elements, since DqðyÞ
(corresponding to stresses in the elasticity case) has
singularity at the two ends of a rigid line (just like the
crack case). In addition, in the present work, the fast
multipole method will be employed. BIE (9) does not
have the diagonal dominance due to the weak singu-
larity of the kernel, which may pose problems for the
iterative solvers with the fast multipole method. There-
fore, it will be advantageous (as in the crack case) to
employ a hypersingular BIE that involves a variable
with no singularity over the rigid line, that can satisfy
the conditions (1–3) automatically without introducing
additional equations, and that can have the diagonal
dominance to suite the fast multipole method.

To derive the hypersingular BIE, introduce a ‘‘tan-
gential potential’’ wðyÞ such that:

DqðyÞ ¼ ow
ot
ðyÞ; on Si; and wðe1Þ ¼ wðe2Þ ¼ 0 ;

ð10Þ
where e1 and e2 are the two end points of the inclusion Si
(see Fig. 2 for the orientation of tangent t with respect to
normal n). Then condition (3) is satisfied automatically.
Substitution of (10) into Eq. (7) yields:

/ðxÞ ¼
X

i

Z

Si

Gðx; yÞ ow
ot
ðyÞdSðyÞ

þ /1ðxÞ; 8x 2 R2n
[

i

Si ;

Applying integration by parts and the conditions in (10)
in the above result, one obtains:

/ðxÞ ¼ �
X

i

Z

Si

oGðx; yÞ
otðyÞ wðyÞdSðyÞ

þ /1ðxÞ; 8x 2 R2n
[

i

Si ; ð11Þ

Fig. 1 A 2-D infinite medium embedded with rigid-line inclusions
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Equation (11) can be applied to compute the tempera-
ture field / at any point in the domain once the function
w is determined on all the line inclusions.

Placing x on a rigid line and taking derivative of the
above expression with respect to the tangent t at the
source point x (see Fig. 2), one has:

0 ¼ �
X

i

f.p.

Z

Si

o2Gðx; y
otðxÞotðyÞwðyÞdSðyÞ

þ o/1ðxÞ
otðxÞ ; 8x 2

[
i

Si ; ð12Þ

where condition in (2) has been applied again and the
integral is a hypersingular one that must be interpreted
in the sense of Hadamard finite part (f.p.). It is easy to
verify that:

o2G x; yð Þ
ot xð Þot yð Þ ¼ �

o2G x; yð Þ
on xð Þon yð Þ ;

Thus, Eq. (11) can be rewritten as:

0 ¼
X

i

f.p.

Z

si

o2G x; yð Þ
on xð Þon yð Þw yð ÞdS yð Þ

þ o/1 xð Þ
ot xð Þ ; 8x 2

[
i

Si : ð13Þ

This equation is exactly the same hypersingular BIE
(except for a different free term) used for crack problems
in the potential case (where the normal derivative of / is
given, while the difference of / on the two surfaces of a
crack is not). The treatment of the hypersingular integral
in Eq. (13), which is similar to the 3-D case, can be
found in Refs. [26, 28].

The hypersingular BIE (13) is employed to determine
the values of the tangential potential w. The temperature
field / and its derivatives at any (data collection) point x
can be determined by Eq. (11) and its derivatives once w
is known. In this paper, constant boundary elements are
used to discretize the hypersingular BIE (13), where one

node is placed on each element and the field is assumed
to be constant over each element. All the integrals
involved are evaluated analytically. This avoids the use
of numerical integration and hence guarantees the
accuracy in the evaluation of all the integrals when the
source point x is very close to an element of integration
(which happens when many inclusions are to be packed
closely in a model).

The fast multipole method [22, 26, 28] is employed to
accelerate the solution of the boundary element method
for solving Eq. (13). In recent years, the fast multipole
BEM has been found to be especially good for the
analysis of problems with large numbers of cracks and
inclusions in both 2-D and 3-D cases (see, e.g., Refs. [23–
28]). Using the fast multipole method for the BEM, the
solution time of a problem is reduced to order O(N),
instead of O(N2) in the traditional approach (with N
being the number of equations). The memory require-
ment is also reduced since the iterative solver (such as
GMRES) does not need to store the entire matrix in the
memory. Thus, large models that had to be solved on a
supercomputer in the past can now be solved on a laptop
computer, as demonstrated in the examples presented in
the next section.

3 Numerical examples

The developed BIE code for the analysis of rigid-line
inclusions is first validated using a simple test case with
one rigid line. Then, the code is applied to study the
effects of rigid-line inclusions on the effective thermal
conductivity of the resulting composites (or composite
thin films in this 2-D situation). All the computations
reported in this section were carried out on a laptop PC
with a 2.4 GHz CPU, 512 Mb RAM and a 40 Gb hard
drive. The largest model with one million equations run
for about 4,000 CPU seconds on this PC.

To estimate the effective thermal conductivity of a
composite, the temperature and heat flux distributions at
some locations, to be called data-collection points (Fig.
3), are computed using Eq. (11) and its derivatives, after
the tangential potential w is determined on each rigid
line. The effective thermal conductivity of the composite
is estimated using the temperature and heat flux results
at these data-collection points by the following formula:

k1ðeffÞ ¼ �
q1ðaveÞL

D/ð ÞðaveÞ
; ð14Þ

where k1ðeffÞis the effective thermal conductivity in the x1
direction, and the averaged fields are obtained by:

D/ð ÞðaveÞ ¼ / x1 ¼ Lð Þð ÞðaveÞ � / x1 ¼ 0ð Þð ÞðaveÞ ; ð15Þ

q1ðaveÞ ¼ b q1 x1 ¼ 0ð Þð ÞðaveÞ þ q1 x1 ¼ Lð Þð ÞðaveÞc=2 ; ð16Þ

at the data-collection points, and

q1 ¼ �k0
o/
ox1

; ð17Þ

Fig. 2 The normal n and tangent t at the source point x and field
point y
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with k0 being the thermal conductivity of the matrix
material (assumed to be isotropic).

3.1 Infinite space with one rigid-line inclusion

The case of a single rigid line, or many well-separated
rigid lines, in a 2-D infinite medium is studied first. A
far-field (or undisturbed) temperature distribution:

/1 x1; x2ð Þ ¼ T0x1=L ; ð18Þ

is imposed to the model, where T0 is a constant and L
a length dimension (Fig. 3). For a straight rigid-line
inclusion along the x1 axis and centered at the origin, the
analytical solution of the tangential potential w is given
by (c.f., the crack opening displacement of a crack):

w x1; 0ð Þ ¼ � 2T0

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x21

q
; ð19Þ

in which a is the half length of the rigid line. Notice that
w is dependent on the half length a.

Figure 4 shows the computed tangential potential w
for a single rigid-line inclusion aligned with the x1 axis,
with a ¼ 1, T0 ¼ 1, and L ¼ 1. The numbers of elements
are increased from 20, 40, 60 to 100, and the results are
compared with the analytical solution given in Eq. (19).
Good agreement is achieved. The errors are 3.3% for
using 20 elements, 1.7% for 40 elements, 1.1% for 60
elements, and 0.7% for 100 elements. This remaining
error may be due to the tip singularity of the field (see,
e.g., Refs. [14–16, 20] and the references therein) which
can not be represented analytically by the constant ele-
ments used in this work. However, this small error is
acceptable in the study of estimating the effective ther-
mal conductivity of the medium since the field quantities
off the rigid lines (boundaries) will be evaluated by the
integral expression (11) and averaged over many data-
collection points. Figure 4 suggests that 40 elements per
rigid line will be sufficient if the rigid lines are well
separated in a model, while 100 elements per rigid line
will be needed if many rigid lines are packed closely in a
model (see examples in Sect. 3.3). It is also worthwhile to
point out that the derivative of w along the rigid-line axis
has singularities at the two end points of the rigid line,
as shown in Fig. 4. This can cause serious numerical
problems should the difference of the flux Dqð¼ ow=otÞ

Fig. 4 The computed tangential potential
for a single rigid-line inclusion

Fig. 3 The infinite domain with rigid lines and the data-collection
points
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across a rigid line be used directly in the BIE (i.e., BIE
(9)).

3.2 A medium with multiple rigid-line inclusions

An array of 100 (10� 10) rigid lines in a medium as
arranged in Fig. 3 is studied next. The temperature
distribution at 400 data-collection points (which forms a
box, starting at x1 ¼ 0 and along the x1 axis) are com-
puted for different lengths ð2aÞ of the rigid lines, under
the same far-field temperature distribution given in Eq.
(18). The rigid lines are aligned in the x1 direction and
uniformly distributed within a unit square ðL ¼ 1, Fig.
3). Fourty boundary elements are used for each rigid
line, with a total DOF (degrees of freedom) = 4000 for
the whole model. A convergence study showed that little
improvement in the results can be achieved using more
than 40 elements per rigid line in this model.

Figure 5 shows the distribution of the computed
relative temperature (the temperature relative to that at
x1 ¼ x2 ¼ 0) along the edges of the box formed by the
data-collection points shown in Fig. 3. As the length of
the rigid lines increases, the temperature drops along the
line at x1 ¼ L (with data-collection point numbers
ranging from 100 to 200). The effectiveness of the rigid
lines on enhancing the heat conduction in the medium is
obvious. In addition, longer rigid lines are better for the
heat conduction in the medium, as expected.

3.3 Estimates of the effective thermal conductivity
of composite materials

The effective thermal conductivity of composite materi-
als are estimated next using Eqs. (14–17) and the BIE
code developed. In a fiber-reinforced composite

material, the fibers can be dispersed randomly in both
orientations and distributions, and can be curved and
with different lengths. In the models studied here, only
the cases with straight, aligned fibers of the same length
are considered, which are close to the desired design of a
composite. However, the spatial distributions of the
fibers are allowed to change randomly, but within their
own ‘‘territories’’ (rectangles) to avoid overlapping of
the fibers (a ‘‘controlled’’ random distribution).

Figure 6 is a plot for the computed effective thermal
conductivity for a composite model with 100 (10� 10)
rigid lines with an increasing length and packed in a unit
square, for both uniform distribution (c.f., Fig. 3) and
‘‘controlled’’ random distribution (a fixed arrangement
with varying lengths, c.f., Fig. 7 (a)). The applied far-
field temperature is the same as given in Eq. (18). The
computed temperature and temperature gradients at the
data-collection points on the edges of the square are
used to estimate the effective thermal conductivity. It is
observed from Fig. 6 that the effective thermal conduc-
tivity increases more in the uniform distribution case
than in the random distribution case, as the length of the
rigid lines (thus the volume fraction) increases. This
increase of the effective thermal conductivity follows a
nonlinear curve. This phenomenon is consistent with the
experimental data reported in Ref. [7], that also shows a
nonlinear increase of the thermal conductivity with the
increase of the volume fraction for a CNT-filled com-
posite medium (where the ratio of thermal conductivities
of the CNT to matrix exceeds 13,800).

Figure 7 shows four different arrays of rigid lines
packed in the unit square (where x ¼ x1; y ¼ x2). The
obtained data for the effective thermal conductivity of
the composite models are listed in Table 1, which clearly
demonstrates the increase of the thermal conductivity of
the composites. Even with 100 rigid lines, the effective
thermal conductivity is increased by 57% compared with

Fig. 5 Computed temperature at the data-
collection points for a model with 10� 10
aligned and uniformly distributed rigid
lines (as shown in Fig. 3)
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Fig. 7 A unit square filled with
‘‘randomly’’ distributed rigid
lines with four different
densities

Fig. 6 Estimated eective thermal con-
ductivity for a composite model with 100
rigid lines (40 elements per line)
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that of the matrix. With more rigid lines of the same
length being added, the increase reach 231% for 500
rigid lines, and 343% for 1,000 rigid lines. However,
when the rigid lines are cut into smaller segments (e.g.,
each rigid line in case (c) is divided into ten smaller lines
to obtain case (d)), the effective thermal conductivity is
dropped considerably, with the increase at only 56%
compared with that of the matrix. Again, this suggests
that longer fibers of a high thermal conductivity will
have a better thermal enhancement in a composite, as
expected. More elements (100 per line) are used for cases
(c) and (d), since when more rigid lines are packed in the
same area, interactions among them will intensify and
the fields will change more rapidly.

Figure 8 is an attempt to directly compare the BIE
results of the effective thermal conductivity with the
available experimental data reported in Ref. [7]. The
measured data for effective thermal conductivity of a
medium dispersed with carbon nanotubes for volume
fractions up to 1% are provided by Choi, Zhang, et al.
in Ref. [7]. However, there are many difficulties in this
direct comparison, since the mathematical model based
on the continuum assumptions and used for the BIE
simulation can not account for many physical phe-
nomena, such as the conditions at the interfaces of the
fibers and hosting medium, especially at the nanoscale.
There are technical difficulties as well, because the ri-
gid-line model does not even give a volume fraction

readily. Nevertheless, a comparison is presented here
for discussions and further investigations. To come up
with an equivalent volume fraction for the BIE model,
the diameter of the CNT mentioned in Ref. [7], 25 nm,
is inferred for the rigid lines. A total of 8,000
(20� 400) aligned and uniformly distributed rigid lines
are used in a square model with the edge length of 1
mm. The length (2a) of the rigid lines is increased from
0.005, 0.01, up to 0.05 mm, which is the observed
length of the CNTs for the experiment mentioned in
Ref. [7]. In this way, a volume fraction can be deter-
mined for the BIE model at each length of the rigid
lines, up to 1% volume fraction before the rigid lines
connect with each other along the x direction. As
shown in Fig. 8, the computed effective thermal con-
ductivity follows the experimental data closely up to
volume fraction = 0.4%. Then, the simulation data
depart from the experimental ones and increase at a
much faster rate. There can be many sources for these
differences. First, the BEM model is a 2-D model with
aligned rigid-line inclusions, while the experimental one
is in 3-D and with randomly distributed and oriented
CNTs. Second, the BEM assumes a perfect bonding
interface condition between the rigid lines and matrix,
while for the experimental case there may exist dis-
continuities in the temperature and heat flux across the
interface between the CNTs and matrix. The compar-
ison here is merely intended to show the trends of the

Fig. 8 A direct comparison of the computed
eective thermal conductivity by the BIE with the
experimental data reported in Ref. [7] for a CNT
filled mediu

Table 1 Estimated effective
thermal conductivity for the
four composite models shown
in Fig. 7.

Note k0 is the thermal
conductivity of the matrix

Model of composites
(see Fig. 8)

No. of elements/
line, total DOF

Effective
thermal
conductivity
(· k0)

(a) 10 · 10 lines, 2a = 0.08 40 elements/line, DOF = 4,000 1.5747
(b) 10 · 50 lines, 2a = 0.08 40 elements/line, DOF = 20,000 3.3105
(c) 10 · 100 lines, 2a = 0. 08 100 elements/line, DOF = 100,000 4.4378
(d) 100 · 100 lines, 2a = 0.008 100 elements/line, DOF = 1,000,000 1.5493
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two approaches. Further investigations are needed and
improvements to the simulation models, including a
more realistic interface condition, can be made.

4 Discussions

In the convergence tests carried out in this study, it was
found out that 100 elements per rigid line are sufficient
for obtaining converged results for determining the
effective thermal conductivities, even in the case with
densely-packed rigid lines. This is true because the fields
used for estimating the thermal conductivities are inside
the domain, not on the boundaries (rigid lines in this
case). If the heat flux, which is the derivative of the
tangential potential and singular at the two ends of a
rigid line, is to be evaluated right on the rigid lines, then
many more elements will definitely be needed.

Higher-order elements can certainly be employed to
improve the accuracy and efficiency of the developed
BEM code. The constant elements are used in this study
because they are the simplest elements that can satisfy
the C1 continuity requirement (at the collocation point)
on the density function for a hypersingular BIE, while
allowing analytical integrations of all integrals. The
latter is crucial for accuracy in solving a problem with
many closely packed inclusions. Higher-order elements
for hypersingular BIEs are much more involved in either
formulations (e.g., variational ones) or implementations.
However, improved accuracy and efficiency of the code
can be expected from using higher-order elements. A
singular element that can capture the tip singularity of
the rigid line can also be developed readily with higher-
order elements.

The square box, on the four edges of which the data-
collection points are located (Fig. 3), can be moved into
the region containing the rigid lines. This can avoid the
possible boundary effects of the infinite domain model
used in this study. However, it was found that the dif-
ference in the computed values for the effective thermal
conductivity is only about 5% when the box was moved
into the region occupied by the rigid lines.

There are some obvious limitations of the developed
BIE/BEM approach for the thermal analysis of fiber-
reinforced composites, although it has been shown to be
very promising in some special cases. One limitation is
that this rigid-inclusion approach cannot account for the
effect of the ratio of thermal conductivities of the fiber to
matrix, which is assumed as infinity for any matrix
material. It may also be difficult to generalize this
approach to three dimensions, since the boundary integral
equations will be reduced to a line in 3-D space that may
cause some additional singularity problems. A more
general approach that treats the slender rigid inclusions as
ones with finite volumes may be needed in 3-D cases.

Further validations of the rigid-line approach for
analyzing composite materials should be pursued by
comparing with new analytical and experimental results.
If this approach is valid, the hypersingular BIE formu-

lation can be extended readily to handle finite domain
problems, periodic boundary conditions, 3-D thermal
analysis, and 2-D and 3-D elasticity problems.

5 Conclusion

A hypersingular BIE formulation is developed in this
paper for solving heat conduction problems in a 2-D
infinite medium embedded with many rigid-line inclu-
sions that can be treated as having constant tempera-
ture distributions. The hypersingular BIE is solved
using boundary element method and the solution is
accelerated by the fast multipole method. The devel-
oped code is validated by using analytical solutions
for single rigid-line case and by comparing with the
experimental data on carbon nanotube composites for
multiple rigid-line cases. The effective thermal conduc-
tivity results computed by the BEM code at lower
volume fraction ratios follow that of the experimental
one, although the two deviate at higher volume frac-
tions. This deviation may be caused by the interface
conditions and other limitations in the mathematical
model used in the BIE formulation. The developed
code is very efficient and accurate for large scale anal-
ysis of composites reinforced with fibers that have
much higher thermal conductivities. Up to 10,000 rigid
lines (with DOF = 1,000,000) are modeled using the
BEM code on a laptop computer. All these results
clearly demonstrate the potential of the developed BIE
approach in large-scale modeling of fiber-reinforced
composites, including possibly the carbon nanotube
composites.
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