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Abstract: The development of two boundary element algorithms for solving 3-D, frictional, and linear 

elastostatic contact problems is reported in this paper. The algorithms employ nonconforming discreti-

zations for solving 3-D boundary element models, which provide much needed flexibility in the bound-

ary element modeling for 3-D contact problems. These algorithms are implemented in a new 3-D 

boundary element code and verified using several examples. For the numerical examples studied, the 

results using the new boundary element algorithms match very well with the results using a commercial 

finite element code, and clearly demonstrate the feasibility of the new boundary element approach for 

3-D contact analysis. 
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Introduction 

The boundary element method (BEM) has a distinctive 
advantage in contact mechanics analysis over other 
numerical methods, because of its higher accuracy in 
stress analysis, easier meshing due to the reduction of 
dimensions of the model and smaller data files for pre- 
and post-processing.  However, it seems that there 
has been no appropriate commercial BEM package or 
research code for the 3-D contact stress analysis, which 
can handle complicated 3-D models with some flexi-
bilities in meshing. This prompted the research re-
ported in this paper, which is aimed to develop a new 
BEM to solve 3-D contact mechanics problems with 
nonconforming discretizations, in which the two 
meshes on two contact patches do not need to match 
element by element. This can make the discretization 
and analysis of a contact problem by the BEM much 
easier for users. 

Anderson and Allan-Persson’s work[1] seems to be 
the first published paper on the BEM for 2-D contact 
problems. Some of the other papers on the BEM for 2-
D contact problems can be found in Refs. [2-7]. The 
common characteristics in these BEM works are that 
they all adopt a direct technique with which contact 
constraints are directly imposed without using the pen-
alty parameter or Lagrangian multiplier. Even though 
there were research results using different approaches 
like the flexibility matrix method[8], or the gap element 
method[9] in the BEM, it seems that the direct 
constraint approach is more suitable for the BEM than 
for the finite element method (FEM) because tractions 
are direct output of the BEM solution. The Lagrangian 
multiplier or the penalty parameter which are the 
methods to impose contact constraints in the displace-
ment-based FEM may not be beneficial for the BEM, 
though it may be possible to use those approaches in 
the BEM[10]. Like the FEM, the mathematical pro-
gramming approach based on variational inequality 
form has also been used for the BEM[11]. Another in-
teresting approach is to try to combine the advantages 
of the FEM and BEM. Landenberger and El-Zafrany’s 
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work[9] adapted the BEM for bodies and the FEM for 
contact areas. On the contrary, Guyot et al.[12] used the 
FEM for bodies and the BEM for contact areas. Man’s 
monograph[13] is a good starting point for applications 
of the BEM to contact problems even though it is for 
2-D problems. 

Dandekar and Conant’s work[2] is valuable in under-
standing the BEM contact program for solving 2-D 
conformingly meshed problems. For nonconforming 
discretizations, Blazquez et al.[14] pioneered the initial 
work in 1992. Similar work can be found in Refs. [4,6]. 
Paris et al.[15] suggested using linear discontinuous 
elements for frictionless problems when using noncon-
forming discretizations. 

The works mentioned above are all for 2-D prob-
lems and use the shape function approach in the con-
tact search algorithm. In 1998, Blazquez et al. com-
pared the approaches using shape functions and inves-
tigated the problems of this approach[16]. Blazquez et 
al.[17] proposed a new approach to remedy the problem 
arising from using the shape function approach. In 
1992, Chen and Chen[18] proposed the transformation 
matrix method for 2-D contact problems with friction. 
They claimed that the method was highly efficient. In 
1998, Martin and Aliabadi[19] published a new ap-
proach for nonconforming mesh for 2-D contact prob-
lems. They utilized the fact that inside the element 
which is a smooth curve, an additional equation for the 
traction can be obtained by a singularity removal tech-
nique. In 1999, Iban et al.[20] proposed a new approach. 
They developed a variable shape function, in which the 
center node of the quadratic line element can move. 
The moving center node matches the node of the other 
body. By this method, the node-on-point situation be-
came the node-to-node situation. 

For 3-D problems, Garrido et al.[21] did the first 
work for the frictional contact analysis in 1994. Their 
formulation was based on an incremental form and 
used a triangular constant element. Yamazaki et al.[10] 
published in 1994 a penalty parameter-based method 
using 8-node quadratic elements. Segond and Ta-
freshi[7] used linear triangular elements for the fric-
tionless problem in 1998. The advantage of Segond’s 
work is that there exists analytical integration for the 
linear triangular element. In 1998, Ghaderi-Panah and 
Fenner[22] published the work on the quadratic element 
method for the frictionless problem. Their formulation 

was based on the relatively simple contact condition of 
the frictionless problem and used the 9-node Lagran-
gian element to model the contact region. Leahy and 
Becker’s work[23] was based on localized contact vari-
ables. They used 8-node quadratic elements and aimed 
at frictional problems.  

All the above-mentioned work for 3-D elastostatic 
contact problems employed conforming meshes in the 
BEM. There has been no reported work on the devel-
opment of 3-D BEM with nonconforming discretiza-
tions, according to the best knowledge of the authors. 

In this paper, new BEM algorithms employing non-
conforming discretizations for solving 3-D frictional 
contact problems are presented, which will facilitate 
easier BEM modeling of 3-D contact analysis. These 
algorithms are implemented in a new 3-D BEM code 
and verified using several numerical examples. These 
numerical studies are carried out using both the devel-
oped BEM code and a commercial FEM code. The re-
sults using the new BEM algorithms with nonconform-
ing discretizations match well with the FEM results, 
and clearly demonstrate the feasibility and flexibility 
of the new BEM approach for 3-D contact analysis. 

1 Basic Equations and Approaches 
for Contact Analysis 

1.1  Basic equations 

The main governing equations for contact mechanics 
analysis in static cases are: 

+ = 0ij ibσ     (1)  

where ijσ is the stress and bi the body force. In addi-

tion to Eq. (1), stress-strain and strain-displacement 
equations are necessary as in other elasticity problems. 
However, constraint equations from contact phenom-
ena should be observed uniquely for contact problems. 
These constraint conditions are: 

c( ) 0,g X         X Γ= ∈       (2) 

n 0t⋅ = ≤t n        (3) 

n  t ntµ− =t n       (4) 

in which ( )g X  is the distance between the two bodies 
for a point set X, Γc the boundary where contact occurs, 
t the traction vector, and n the outward normal vector. 

Equation (2) means that there should be no penetration 
between the two bodies engaged in contact. Equation 
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(3) means that normal traction should be of the 
pressure type, i.e., in a direction opposite to the normal 
vector of the surface. Equation (4) represents the 
relationship between the tangential traction and the 
normal traction. The coefficient µ is the friction 
constant for the Coulomb friction model. 

Solving contact problems requires calculation of the 
following variables: 1) contact area; 2) magnitude and 
distribution of normal and tangential tractions; 3) contact 
state (stick and slip); and 4) global displacement and 
stress fields. The characteristics of the stress solution 
for a point exhibit abrupt changes depending on 
whether the point is in the contacted region or non-
contacted region and whether it is in the stick region or 
the slip region. This fact makes the contact problem 
one of the most difficult nonlinear mechanics problems. 

Hertz’s work was the first analytical approach to 
find the solution of contact problems. He simplified the 
problem based on five assumptions, with which he pre-
sented solutions for some contact problems with sim-
ple geometries[24]. When any of the Hertz’s assump-
tions is not satisfied, the problem is called non-
Hertzian. Though many efforts of extending the 
Hertz’s approach have been made[25] in the past, ana-
lytical solutions are still limited to simple cases. The 
work of Johnson[25] and Gladwell[26] can be referred to 
for more details in this regard. Numerical methods, 
such as the finite element and boundary element meth-
ods, are therefore the only practical methods for solv-
ing large-scale contact problems involving arbitrary 
geometric and load conditions. 

1.2 Conforming and nonconforming contact 
problems 

Conforming contact problems means that apparent area 
of contact is known a priori. A good example of con-
forming contact problems is the flat punch problem. 
For a nonconforming contact problem, the apparent 
area of contact is not known a priori. Initially, the con-
tact of a nonconforming problem is a line or point con-
tact. The cylinder on cylinder problem is a case of 
nonconforming contact problems. 

1.3 Conforming and nonconforming 
discretizations 

To use numerical methods, such as the FEM and BEM, 
the geometric model must be discretized as elements 

and corresponding nodes. Conforming discretization 
uses the same number of elements for each contacting 
patch on the two related bodies. The size and pattern of 
the elements on the two matching patches should also 
be close to each other as much as possible to reduce 
the error. Conforming mesh is required when the gap 
element approach or node-to-node approach in contact 
analysis is used. Therefore, a conforming mesh with 
gap elements or node pairs is more appropriate for 
solving the conforming contact problem. For the 
nonconforming contact problem, conforming mesh 
with gap elements or node pairs can still be used, but it 
is inherently limited to linear elastic problems because 
the size of element length cannot be matched exactly 
for large deformation cases. 

Nonconforming discretization uses a different num-
ber of elements on the two contact patches and thus is 
easier for the discretization. The nonconforming mesh 
requires a different algorithm to solve contact prob-
lems. The approaches are usually based on node-to-
surface, surface-to-surface, or node-to-point algorithms. 
Each of these approaches has many variations and 
these approaches are developed later historically than 
the node-to-node or gap element approaches. In gen-
eral, node-to-point, node-on-point, node-to-surface, 
and node-on-surface can be regarded as synonyms in a 
broad sense though their meanings may be different in 
different articles. In this paper, these terms will be used 
to refer to the same meaning—nonconforming discre-
tization. 

Usually, a conforming contact problem is easier to 
discretize with a conforming mesh and a nonconform-
ing contact problem is easier to discretize with a non-
conforming mesh. Figure 1 shows examples of con-
forming and nonconforming meshes. For a noncon-
forming discretization, a docking point is defined as 
shown in Fig.1b. A node and its corresponding dock-
ing point are called a control pair. 

The reasons for using nonconforming discretizations 
include: 1) For problems that result in large deforma-
tion or large displacement, even an initially conform-
ingly discretized mesh can become a nonconforming 
mesh as the load is applied. 2) For some problems, the 
geometry is so complex that it is difficult or impossible 
to discretize using a conforming mesh. 3) The analyst 
may want a quick and easy mesh because the accuracy 
of the result is relatively less important or the result 
with a nonconforming mesh is believed to be 
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sufficiently accurate compared to the result with a con-
forming mesh. In short, the ability to solve a contact 
problem with nonconforming mesh is the first step to 
solve more advanced or realistic problems. 

 
Fig. 1 Examples of conforming and nonconforming 
contact and discretizations 

2 BEM Formulation for Contact 
Analysis 

The boundary integral equation (BIE) for 3-D linear 
and elastostatic problems can be written as 

( ) ( , ) ( )d ( )ij j ij jC u P T P Q u Q S Q
Γ

+ ∫ =  

( , ) ( )d ( )ij jU P Q t Q S Q
Γ∫      (5) 

where Tij is the traction kernel (from the fundamental 
solution), Uij the displacement kernel, Cij the coef-
ficients which vary depending on the smoothness of 
the boundary Γ, and P and Q are the source point and 
field point, respectively. Derivation of Eq. (5) and re-
lated theory can be found in many BEM textbooks (see, 
e.g., Refs. [27-29]). 

To apply the BEM to solve the BIE (Eq. (5)), it is 
necessary that the boundary variables be interpolated 
on all the boundary elements used to discretize the 
boundary Γ. For example, the interpolated variables on 

a typical element can be expressed as: 
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where Xi, Ui, and Ti are nodal values of the Cartesian 
coordinates xi, displacement, and traction, respectively; 
Nc shape functions with ),( ηξ  being the natural coor-
dinates and ne the number of nodes on the element. For 
convenience, the shape functions for surface 3-, 4-, 8-, 
and 9-node elements used in this paper are listed in the 
Appendix. 

With the chosen interpolation, the discretized BIE 
(Eq. (5)) for a source point  at a boundary node 

can be written as 
kP
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in which M is the total number of elements, the H 
submatrices are obtained from integrating the  

kernel, while the G submatrices from the  kernel, 

on the elements. The final form of the discretized BIE 
can be represented as a linear algebraic system as fol-
lows by assembling the equations at all the nodes and 
imposing the boundary conditions (see, e.g., Ref. [30]):  

ijT

ijU

Ad = f     (10) 
where A is the coefficient matrix, d the vector of un-
known boundary variables, and f  the known right-
hand side vector. Because the values of the given 
boundary conditions at many nodes are zero, integra-
tions for the element having zero boundary conditions 
can be skipped. This can save some CPU time in the 
matrix formation. 
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Because multiple bodies are involved in contact me-
chanics, the main issue in the contact BEM analysis is 
that the formation of the system matrix for each body 
is needed first. Then, the system matrix of each body 
will be combined to form the system matrix for the 
whole contact system. Incremental form combined 
with iterations is necessary to solve nonlinear contact 
problems using linearized system matrices. 
 First, a new total external force is represented as 

mjmjmj FFF ,1,, ∆+= −     (11) 

where  is the increment of the load at step m, 

with m = 1, 2, …, total number of load steps. The trac-
tion and displacement corresponding to the increment 
of load (11) are: 

mjF ,∆

, , 1 , ,j m j m j mu u u−= + ∆  

, , 1 ,j m j m j mt t t−= + ∆      (12) 

When Eqs. (12) are inserted into Eq. (1), we can obtain 
the following incremental form of the BIE: 

, ,( , ) d ( )ij j m ij j mC u T P Q u S Q
Γ

∆ + ∆∫ =  

,( , ) d ( )ij j mU P Q t S Q
Γ

∆∫       (13) 

In Eq. (13), the boundary for each body is divided as 
follows (Fig. 2): 

t u pc ,Γ Γ Γ Γ= + +  

pc nc rc ,Γ Γ Γ= +  

rc st slΓ Γ Γ= +      (14) 

First representation of Eqs. (14) means that the bound-
ary for each body (Γ) is divided into three types: the 
boundary where traction is given (Γ t), the boundary 
where displacement is given (Γ u), and the assigned 
boundary where contact is possible to occur (Γ pc). The 
second representation of Eqs. (14) means that the con-
tact occurs at some part of the assigned contact area. 
This fact requires that the first iteration loop at each 
load step should be used to distinguish the possible 
contact area (Γ pc) as the region where contact occurs 
(Γ rc) and the region where contact does not occur 
(Γ nc). The last representation of Eqs. (14) means that 
there are two regions inside the contact area. The sec-
ond iteration loop at each load step is therefore used to 
divide the contact area (Γ rc) into two different 
regions—stick region (Γ st) and slip region (Γ sl). Note 
that for the possible contact region (Γ pc), both 
displacement and traction are unknown variables. 

Therefore, the system matrix is underdetermined at the 
current step. 

 
Fig. 2 Schematic diagram — Point a or b is either a 
node or a point on body A or body B 

3 Contact Modes and Algorithms 

For each iteration, the contact status is checked to see 
if the compatibility or equilibrium is violated or not. 
After the contact mode is determined, the correspond-
ing contact constraint equations are added to the un-
derdetermined systems in the BEM. This iteration con-
tinues until the compatibility and equilibrium are satis-
fied. Then, the load step is increased and the procedure 
is repeated for the next load step. 

As anticipated, the more the nodes are in the possi-
ble contact region, the slower the calculation because 
more iterations are needed. However, in order to obtain 
reasonable results, a minimum number of elements 
should be employed in the contact region. 

In the stick mode, the constraint equations are: 
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( ) ( ) ( ) ( )n n n n
0 01 1a b a bm m m m

u u g u u
− −

⎡ ⎤∆ + ∆ = − + ≡⎣ ⎦ ,mg (15) 

where g is the distance between points a and b (Fig. 2). 
The super scripts n, t1, and t2 mean the normal direc-
tion and two tangential directions, respectively. 
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In the slip mode, the constraint equations are: 
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⎡ ⎤∆ + ∆ = − + ≡⎣ ⎦ ,mg (16) 

And in the separation mode, the constraint equations are: 
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The equations used to check and change the contact 
status from separate to contact and vice versa are: 

n n
0, 1( )a b m mu u g −∆ + ∆ ≥  

n n
1 0m mt t− + ∆ <          (18) 

The equations used to check and change the contact 
status from slip to stick and vice versa are: 

t t n n
1 1( )m m m mt t t tµ− −+ ∆ ≥ + ∆ ,

0

 
n n t n

1( ) ( )m m b a b mt t u u− + ∆ ∆ + ∆ ≤      (19) 

4 Methods to Solve Contact Problem 
with Nonconforming Meshes 

For the node-to-node approach, a and b in Fig. 2 
represent nodal values in each body. However, for the 
node-to-point approach, one of the variables, for 
example b, represents a point which is inside an 
element in the contact area. This situation occurs when 
nonconforming meshes are employed and algorithms 
to represent the variables at the point b are needed. In 
this section, explanations about the differences in some 
node-to-point algorithms will be given in order to 
understand the advantages and disadvantages of each 
algorithm. It must be pointed out that none of these 

algorithms are implemented for 3-D BEM in the 
literature. 

4.1 Shape-function approach 

This approach is the simplest one. The displacement 
and traction inside an element at point b can be repre-
sented as: 

e

,
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One advantage of this approach is that it is simple con-
ceptually and easy to implement. This algorithm is also 
applicable to 3-D problems. When applying this ap-
proach to 3-D problems with quadratic element, 9-
node Lagrange element may be better because it has 
complete second-order shape functions. 

4.2 Variable shape-function approach 

In this approach, the shape functions for a 3-node line 
element with a moving middle node for 2-D problems 
are: 

1

2
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( 1)( 1)( ) ,
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3
( 1)( )( )
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N ξ ξ κξ

κ
+ −

=
−

   (21) 

where κ  is the natural coordinate of the center node. 
The advantage of this approach is its accuracy due to 
the fact that the node-to-point problem is changed to a 
node-to-node problem. However, it is complicated to 
implement (the center node should be checked and 
moved as the node pair is in stick or slip mode) and 
cannot be easily extended to 3-D problems. 

4.3  BIE approach 

This idea is based on the fact that a boundary element 
is always a smooth curve (2-D) or smooth surface (3-
D). Thus, the displacement and traction at any point b 
on an element can be evaluated using the displacement 
BIE (Eq. (5)) and traction BIE (derivative of Eq. (5)), 
respectively. 

The advantages of this approach are that the dis-
placement and traction calculated from the BIEs are 
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more accurate theoretically. The system is also more 
stable compared to the shape-function approach be-
cause the equations from this approach are global con-
trary to the equations from shape functions which are 
local. The disadvantages are that, for each node in the 
contact region, numerical integrations need to be per-
formed, such that the CPU time to build the system 
matrix for each iteration is increased compared to the 
shape-function approach. Also, the traction BIE has 
hypersingular integrals and special treatments need to 
be employed to either remove or compute the 
hypersingular integrals. 

5 Two BEM Algorithms for 3-D 
Contact Analysis 

In this paper, two new algorithms that adapt the BIE 
approach to 3-D contact problems with nonconforming 
meshes are developed, because of advantages that the 
BIE approach offers. The main idea and difficulties in 
extending the 2-D concept to 3-D problems are de-
scribed in this section. The new algorithms will pro-
vide the contact constraint equations that can be added 
to the underdetermined linear system of equations. 

5.1 The first method 

The main idea of the first new algorithm is to extend 
the BIE approach to 3-D problems. The concept of this 
approach is depicted in Fig. 3. Even though it seems 
simple to extend the 2-D idea to 3-D, there are many 
technical difficulties to overcome. Some of the diffi-
culties are from the BEM itself (singularities of kernels, 
especially in the traction kernel) and some of them are 
from the complications of programming for contact 
problems. These may be part of the reasons why there 
has been no published work regarding 3-D BEM for 
contact problems with nonconforming discretizations.  

The first difficulty is the singularities of the inte-
grand of BIEs. The singularity occurs for each docking 
point when the integration on the element where the 
docking point locates is performed. In this approach, 
the traction BIE is not employed for evaluating the 
traction at the docking point, since the cost of comput-
ing the system matrix will become too high and the 
difficulties will exist in dealing with the singular inte-
grals. Thus, for the surface of one of the bodies in con-
tact (let it be called slave surface), the shape function 

approach is used to evaluate the traction at point b in-
stead in order to form the system matrix. 

 
Fig. 3 Concept of the first algorithm: if a docking 
point is inside the hatched area of an element in the 
contact zone, the shape function approach is used. The 
BIE approach is used otherwise. (□) Indicates a dock-
ing point. 

However, the displacement BIE is employed to 
evaluate the displacement at the docking point. 
Transformation of the variable method is used to deal 
with the singular kernels in the displacement BIE. For 
example, the variables on an element will be changed 
using: 

3

1

( , ) ,c c
c

Nξ ξ η ξ
=

= ∑  

3

1

( , )c c
c

Nη ξ η η
=

= ∑         (22) 

where 

1
1 (1 )(1 ),
4

N ξ η= + −  

2
1 (1 )(1 ),
4

N ξ η= + +  

3
1 (1 )
2

N ξ= −         (23) 

which are linear interpolations. And 

J ξ η η ξ
ξ η ξ η

∂ ∂ ∂ ∂
= −

∂ ∂ ∂ ∂
       (24) 

Since the new Jacobian in Eq. (24) is of order O(r), 
one order of the singularity is removed from the new 
integrand. Therefore, the displacement kernel becomes 
regular and the traction kernel becomes weakly singu-
lar for the displacement BIE. Some work about inte-
grating strongly singular kernels in 3-D BEM was pub-
lished earlier [31-33]. The method used here for dealing 
with the strongly-singular integrals in this paper is 
from the work of Doblare and Gracia[32]. 

After the integration is computed, displacement BIE 
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provides linear algebraic equations like 

),...,,...,( 1, Nibj dddfu =       (25) 

where  is an unknown degree of freedom. id
When the docking point is near the edge of an 

element, the integration on the neighboring element 
becomes nearly singular and it is difficult to integrate 
accurately. Theoretically, we can use adaptive 
integration where the element to be integrated is 
subdivided or the line integral approach[34], in which 
the integral is converted to line integrals. A simpler 
approach is employed in this research in order to 
increase the efficiency. In this approach, if the distance 
between the docking point and the edge of the element 
is less than a predetermined value, the shape function 
approach is used instead of using the displacement BIE 
(Fig. 3). The decision of the critical distance by which 
whether the shape function approach or BIE approach 
will be used is a trade-off between accuracy and 
efficiency. 

5.2 The second method 

The main idea of the second approach is shown in 
Fig. 4. In this approach, displacement BIE is used for 
the center point of each element, i.e., at (ξ,η) = (0,0), 
and the result is saved as 

),...,,...,( 1
00

Nij dddfu =     (26) 

When the docking point on the element is determined, 
the equation for the displacement or traction is 
formulated using a new set of shape functions 
employing the value at the center point. The new shape 
functions are different from the element shape 
functions. They are used to generate constraint 
equations by algebraic operation and will not add 
computational overhead. Depending on the original 
shape functions used for integrating the BIE, the new 
shape functions to use will be decided. 

5.2.1 For linear elements 
The shape functions for linear triangular elements can 
be used for this case, in which the original element is 
divided into triangular cells with the center point being 
one of the vertices. Then, for the docking point b, a 
new equation is formed as: 

 

Fig. 4 Concept of the second algorithm: the new ap-
proximation (dashdotted line) is more accurate than 
the original approximation (bold solid line) because of 
the additional point b. 

' ' '
, 1 1 2 2 3( ) ( )j b j j ju N u N u N u0= + + =  

1'( ,..., ,..., )i Nf d d d      (27) 

where  are the triangular shape functions which 
can be found in the Appendix. 

'
iN

The new equation is added to the system matrix with 
needed manipulations such as coordinate transforma-
tion and imposing boundary conditions and contact 
constraints. 

5.2.2 For 8-node quadratic elements 
The same procedure is necessary to produce the equa-
tions for the docking point except that 9-node Lagran-
gian interpolation is used. We have 

' ' '
, 1 1 2 2 3 3

' ' '
4 4 5 5 6 6

' ' ' 0
7 7 8 8 9

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

j b j j j

j j j

j j j

u N u N u N u

N u N u N u

N u N u N u

= + + +

+ + +

+ + =

 

1'( ,..., ,..., )i Nf d d d       (28) 

where the 9-node shape functions can be found in the 
Appendix. 

5.3 Formation of the system matrix 

Once all the necessary equations are obtained as de-
scribed above, the next step is to form the system ma-
trix. There are many ways to assemble the system ma-
trix. Whatever partitioning is selected, the tracking of 
the locations of the columns should be recorded care-
fully. In this study, the system matrix is partitioned as 
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nc
A

u t nc
nc c c B 1

u t u
2nc c c A

u1 2 3 4
3BA A A A

t1 2
4AB B

t
B

⎧ ⎫
⎪ ⎪

⎡ ⎤ ⎪ ⎪ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭⎣ ⎦ ⎪ ⎪
⎪ ⎪⎩ ⎭

0  0   0

 0  0   0  

 0  0  

 0   0    0    0  

d
A A A d f

fB B B d
fdC C C C
fdC C

d

  (29) 

Subscripts A and B refer to bodies A and B. Subscripts 
and superscripts nc and c mean non-contact and con-
tact regions. Subscripts and superscripts u and t show 
the relationship to displacement and traction. Subma-
trices A and B are formulated from bodies A and B, 
and C is formulated from contact constraints. 

Because only part of the system matrix changes as 
the load increases, static condensation or other 
schemes can be employed to save the time in inverting 
the whole system matrix for each iteration. In addition, 
iterative solvers, such as generalized minimal RESid-
ual (GMRES) or conjugate gradient (CG)[35]

, can be 
utilized more effectively for this system than solving a 
fully populated system because this system is in some 
way banded as shown in Eq. (29). 

Though each of the two algorithms can be imple-
mented with both bilinear and quadratic elements, the 
first algorithm is implemented with bilinear elements 
and the second algorithm is implemented with quad-
ratic elements in this paper. The reason is that the sec-
ond algorithm can utilize 9-node Lagrangian shape 
functions when 8-node serendipity elements are used 
for the discretizations. The effectiveness and efficiency 
of the developed BEM code (in C++) with the pro-
posed algorithms for 3-D contact analysis will be dem-
onstrated in the next section with two test problems. 

6 Numerical Examples 

To test the developed 3-D BEM schemes for contact 
mechanics analysis, two examples are studied. The ex-
ample problems are two typical 3-D contact problems 
with frictional contact. 

To investigate whether the solution for a contact 
problem is accurate enough or not is a straightforward 
task. Solving 3-D contact problems and validating the 
results are still difficult tasks. Analytical solutions for 
contact problems are often limited to simple cases. 
Proving the existence and uniqueness of the solution 
for a contact problem in the general setting is still not 

available[36]. These two limitations make it difficult to 
verify numerical methods including FEM and BEM for 
contact problems. 

Even though the mathematically rigorous verifica-
tion is almost impossible and how the model for a spe-
cific problem behaves as parameters change is still not 
understood well, FEM has been utilized to solve the 
real world problems and has turned out to be very 
successful in most of the applications. In this context, 
the FEM solutions are used in this study for 
comparison because the proposed BEM algorithms are 
supposed to be equivalent to the FEM regarding the 
accuracy, if not better. The developed BEM code has 
been verified using several stress analysis (non contact) 
problems before it is applied to solve the contact 
problems. In this study, the entire bodies in contact are meshed 
in both FEM (ANSYS) and BEM cases. The mesh for 
the BEM model is the same as the surface nodes and 
elements in the corresponding FEM mesh. The results 
of the BEM incorporating the proposed algorithms are 
compared with the ANSYS FEM results, although one 
to one comparison has limitations because many pa-
rameters, like values of the chosen penalty parameter 
(ANSYS only), are different and thus affect the FEM 
and BEM results. 

6.1 Flat punch problem 

This is a problem with conforming contact geometry, 
which is used first to test the developed BEM algo-
rithm. The geometry and mesh of this example are 
shown in Fig. 5. The length, height, and width of the 
upper block are 1 m. The length, height, and width of 
the lower block are 2 m. Though the geometry is con-
forming, nonconforming mesh is used as shown in 
Fig. 5. For testing purposes, the material properties 
used for this test case are: Young modulus E = 1.0 Pa 
and Poisson ratio v = 0.3 for both contact bodies. Pres-
sure of 0.1 Pa is applied for the upper surface of the 
punch (the upper block) and the lower surface of the 
foundation (the lower block) is constrained in all direc-
tions. Friction coefficient used in this example is 0.2. 

For the FEM models, 4700 8-node linear elements 
and 1062 20-node quadratic elements are used. The 
contact parameters (normal stiffness, tangential 
stiffness, pinball radius, etc.) and iteration related 
parameters (total number of iteration, etc.) assigned by 
ANSYS version 5.7 as default are used for the FEM 
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Fig. 5 Geometry and mesh for flat punch problem 

models. For the BEM models, 1950 4-node linear ele-
ments and 702 8-node quadratic elements are used. 

The analytical solution for a rigid punch on an infi-
nite foundation has infinite stress values at the edges, 
which will not occur for elastic punch problem. This 
singularity in stress can cause numerical instability if 
the punch is much harder than the foundation. 

The results for the normal displacement and normal 
pressure on the master surface along the positive X-
axis (from the center of the lower surface of the upper 
block to the edge of the lower surface) are summarized 
in Figs. 6 and 7. Note that the BEM results in all the 
cases are comparable with the FEM results in showing 
the correct trend. However, both the FEM and BEM 
results exhibit some oscillations. The convergence 
from using linear elements to quadratic elements is not 
evident for both FEM and BEM. These discrepancies 

may be due to the numerical difficulties in the nonlin-
ear analysis and the (near) singular behaviors of the 
solution for this problem. Comparing with the 
published results in the literature, although the 
numerical values are not the same, because of the 
differences in geometries, material properties, and 
boundary conditions, the overall shapes of these plots 
(Figs. 6 and 7) show the similar trends as in the results 
published in Ref. [23]. Further study on selecting the 
parameters and using finer meshes can be conducted.  

 
Fig. 6 Displacement in the direction normal to 
contact surface and along the X-axis (block on block) 

 
Fig. 7 Normal traction on contact surface 
(block on block) 

6.2 Cylinder on block problem 

This example is one of the nonconforming contact 
problems. The geometry and mesh for this example are 
shown in Fig. 8. The radius of the partial cylinder is 
1.0 m, and the length along the axial direction is 1.0 m. 
The maximum height (Y-direction) of the partial cylin-
der is 0.5 m. The block has the dimensions of 1.0 m, 
0.5 m, and 1.0 m in the X, Y, and Z directions, 
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respectively. The material properties used are the same 
as those used for the previous example. For testing, a 
pressure of 0.01 Pa is applied to the upper surface of 
the partial cylinder and the lower surface of foundation 
(lower block) is constrained in all directions. The fric-
tion coefficient used in this example is also 0.2. 

 
Fig. 8 Geometry and mesh of the second example 

For the FEM models, 4160 8-node linear elements 
(coarse FEM) and 60 000 8-node linear elements (fine 
FEM) are used. The contact parameters (normal stiff-
ness, tangential stiffness, pinball radius, etc.) and itera-
tion related parameters (total number of iteration, etc.) 
assigned by ANSYS version 5.7 as default values are 
used for the FEM models. For the BEM models, 2192 
4-node linear elements and 2192 8-node quadratic 
elements are used. 

The results are summarized in Figs. 9 and 10. The X 
axis for the graphs starts from the center of the contact 
region and points in the direction shown in Fig. 8. In 
Fig. 9, the normal displacement result is plotted which 
shows good agreement regardless of the mesh density 
and the method used. The results for the normal con-
tact pressure are compared with the Hertz result in Fig. 

10 and show good agreement (Results are normalized 
by the Hertz’ solution with the half width of the con-
tact area a = 0.14 m and the maximum contact pressure 
p0 = 0.0455 Pa), even though the Hertz solution is 
based on an infinitely long rigid cylinder in contact 
with an elastic half space[24]. When we consider the 
rigid cylinder assumption in the Hertz solution, the 
contact area may be larger for an elastic cylinder on an 
elastic foundation as shown in Fig. 10 because the 
elastic cylinder becomes flattened as the load increases. 
Note that the normal contact pressure changes in the Z-
direction for any fixed X coordinate. For the Hertz’s 
solution, this phenomenon does not happen because 
the Hertz solution is for a plane strain half space case. 

 
Fig. 9 Displacement in the direction normal to 
contact surface (cylinder on block) 

 
Fig. 10 Normal traction on contact surface  
(cylinder on block) 

The results of the proposed BEM algorithms for the 
examples studied show a reasonable match with the 
FEM results (with about 5% −16% differences). The 
efficiency of the BEM in the solution, however, was 
not good for the given meshes. Considering that the 



KEUM Bangyong et al：Analysis of 3-D Frictional Contact Mechanics Problems…… 27

current implementation has a lot of room for improve-
ment and that smaller numbers of BEM elements may 
have been sufficient to obtain results with similar accu-
racy, the efficiency difference may not be that large for 
real problems. In addition, total analysis time which 
includes preprocessing for building geometry and 
meshing can be much shorter with the BEM as com-
pared with the FEM. 

The loads applied for the example problems are 
compression only. The reason why the tangential load 
is not applied is that the possibility of rigid-body mo-
tion exists. Because current implementation is for solv-
ing static problems only, inertia force that can resist 
the rigid-body motion is not incorporated in the pro-
gram. In other words, because at initial increments the 
load is so small that the contact force may not be large 
enough to hold the body without displacement con-
straints, or numerically, an initial gap may exist and 
the system matrix becomes singular or nearly singular. 
To avoid this problem, initial penetration can be im-
posed or temporary damping elements can be used. 
However, the algorithms proposed in this research can 
play an essential role as a foundation for solving dy-
namic contact problems, friction induced vibration 
problems, and large deformation problems. 

7 Conclusions 

Two algorithms for solving 3-D frictional contact 
problems by the BEM with nonconforming discretiz-
ations are proposed and implemented. To the authors’ 
best knowledge, there is no published work dealing 
with the point-on-surface approach for 3-D contact 
problems. The BEM reported in this paper is only a 
preliminary step towards solving 3-D realistic contact 
problems. The developed BEM code for elastostatic 
cases can also be extended to solve contact problems 
with material and geometric nonlinearities and 
dynamic problems. 
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Appendix: Lists of Shape Functions 

The shape functions for 3-, 4-, 8-, and 9-node elements 
to interpolate two-dimensional functions on a surface 
are listed below for references. 

For 3-node triangular element, the natural coordi-
nates used are area coordinates. The shape functions 
for a 3-node linear triangular element are: 

.1
,
,

3

2

1

ηξ
η
ξ

−−=
=
=

N
N
N

 

The natural nodal coordinates for 4-node bilinear 
elements are (−1, −1), (1, −1), (1,1), and (−1,1) for 
node 1, 2, 3, and 4, respectively. The shape functions 
for 4-node bilinear elements are: 

1
1 (1 )(1 ),
4

N ξ η= − −  

2
1 (1 )(1 ),
4

N ξ η= + −  
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3
1 (1 )(1 ),
4

N ξ η= + +  

4
1 (1 )(1 ).
4

N ξ η= − +  

The natural nodal coordinates for 8-node quadratic 
serendipity elements are (−1,−1), (1,−1), (1,1), (−1,1), 
(0,−1), (1,0), (0,1), and (−1,0) for node 1, 2, 3, 4, 5, 6, 
7, and 8, respectively. The shape functions for 8-node 
serendipity elements are: 

1
1 (1 )(1 )( 1 ),
4

N ξ η ξ= − − − − −η  

2
1 (1 )(1 )( 1 ),
4

N ξ η ξ η= + − − + −  

3
1 (1 )(1 )( 1 ),
4

N ξ η ξ η= + + − + +  

4
1 (1 )(1 )( 1 ),
4

N ξ η ξ η= − + − − +  

2
5

1 (1 )(1 ),
2

N ξ η= − −  

2
6

1 (1 )(1 ),
2

N ξ η= + −  

2
7

1 (1 )(1 ),
2

N ξ η= − +  

2
8

1 (1 )(1 ).
2

N ξ η= − −  

The shape functions for 9-node Lagrange elements 
are known as better shape functions for interpolating 
more complex functions than 8-node serendipity shape 
functions. The natural nodal coordinates for 9-node 
quadratic Lagrange elements are (−1,−1), (1,−1), (1,1), 
(−1,1), (0,−1), (1,0), (0,1), (−1,0), and (0,0) for node 1, 
2, 3, 4, 5, 6, 7, 8, and 9, respectively. The ninth shape 
function is called a bubble function due to its shape. 
The shape functions for a 9-node Lagrange element are: 

1
1 (1 )(1 ),
4

N ξη ξ η= − −  
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