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Abstract

Some recent developments in the modeling of composite materials using the boundary element method (BEM) are presented in this paper.

The boundary integral equation for 3D multi-domain elasticity problems is reviewed. Difficulties in dealing with nearly-singular integrals,

which arise in the BEM modeling of composite materials with closely packed fillers or of thin films, are discussed. New and improved

techniques to deal with the nearly-singular integrals in the 3D elasticity BEM are presented. Numerical examples of layered thin films and

composites with randomly distributed particles and fibers are studied. The advantages and limitations of the BEM approach in modeling

advanced composites are also discussed. The developed BEM with multi-domain and thin-body capabilities is demonstrated to be a

promising tool for simulations and characterization of various composite materials.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Composites have been studied for decades. The aniso-

tropic nature and the configurations in which they are

fabricated allow for better design of structures with tailored

material properties to meet demanding conditions. Two

major categories of composites are available, namely the

reinforced composites and the structural composites.

Reinforced composites have been ideal material candidates

for defense, aerospace and consumer goods industries.

Especially, the discontinuously reinforced composites with

short fibers or particles are popular since they can be molded

into arbitrary shapes by conventional manufacturing

techniques [1–3]. Structural composites, traditionally used

in aircraft structures, have found recent applications in

semiconductor devices and microtransducer systems. Inno-

vations in thin-film deposition techniques result in desirable

film qualities and cost-effective volume production of thin

films [4–6]. This leads to strong interest in utilizing thin
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films type of structural composites for the state-of-art

applications at the macro and micro-scales. With numerous

potential applications, composites are attracting more and

more research attentions and their performance are

constantly improved to meet the growing challenges.

Characterization of composites thus becomes increas-

ingly important. It is a critical step in understanding new

materials before they can be used to build structures. With

the increasing complexity in composites being developed,

new characterization tools are needed that can analyze, for

example, complicated load transfer mechanisms or stress

distributions in composite materials. Characterization based

on computer simulations has gained increasing interests.

Through a representative volume element (RVE), a

statistically representative microstructure of a composite,

effective material constants can be extracted based on a

constitutive model and some well-designed simulations.

The advantages of the simulation-based characterization are

obvious. For example, it can save the experimental efforts

and costs by simply using computer programs to perform

repetitive studies.

Numerical methods, primarily the finite element method

(FEM) and the boundary element method (BEM), have been

used in structural simulation and characterization of
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composite materials for several decades. In the early FEM

studies, random microstructures in reinforced composites

are simplified into periodic spatial arrangement of

inclusions by enforcing periodic boundary conditions. For

example, in Refs. [7–9], RVEs with multiple inclusions are

studied using the FEM. It is shown in Ref. [8] that FEM

simulations are performed on sliced thin portions of random

microstructure RVE models due to computational limi-

tations. Refs. [10,11] give some 3D FEM examples of thin

films or thin laminated composites. Extremely dense meshes

are created near thin material regions involved in these

studies, requiring intensive computation. Generally speak-

ing, the domain-based FEM faces many challenges in

material simulation. Composite materials often contain

arbitrarily thin regions or randomly dispersed inclusions of

different size and shapes, yet FEM imposes strict require-

ment on the element quality such as aspect ratios, skewness

and so on in order to ensure the solution accuracy. In order

to describe the detailed configuration as well as to have

smooth transition at interfaces among different materials,

FEM requires extremely fine meshes near these regions,

resulting in a large computational model to solve.

It has been shown that the BEM has many distinctive

advantages over the FEM for modeling many material

related problems [12–19], regarding, e.g. the mesh gener-

ation, treatment of thin regions, and accuracy. Among the

challenges for the BEM are the issues of singular and

nearly-singular integrals, possible domain discretization in

nonlinear analysis, and the solution efficiency. However,

considerable progresses in these areas have been made for

the BEM in recent years. The day when the computational

advantages of the BEM over some domain based methods in

some applications become too attractive for end users to

ignore may not be far away [20].

In this paper, an advanced multi-domain BEM with thin-

body capabilities is presented for 3D analyses of various

composite materials based on the elasticity theory. Related

issues to the BEM in these applications, such as nearly-

singular integrals, which are crucial to the successful

applications of the BEM to thin shapes, are discussed.

Numerical examples using the BEM, including thin films,

short-fiber and particle reinforced composites, are presented

to demonstrate the effectiveness and potential of the

developed 3D multi-domain BEM in modeling and

characterization of composite materials.
2. Boundary integral equation formulation and nearly-

singular integrals

Composite materials are inhomogeneous and anisotropic

in nature, although their constituents, such as the matrix and

fibers, can be considered homogeneous, isotropic and

linearly elastic. Based on these assumptions and at the

constituent level, the following conventional boundary

integral equation (BIE) for 3D elastostatic problems can
be applied

ð
S

T ðbÞ
ij ðP;P0Þ½u

ðbÞ
j ðPÞKuðbÞ

j ðP0Þ�dSðPÞ

Z

ð
S

UðbÞ
ij ðP;P0Þt

ðbÞ
j ðPÞdSðPÞ; cP0 2S; (1)

in which superscript b denotes any single domain of n

domains; uðbÞ
i and tðbÞi are the displacement and traction fields

in that domain, respectively; UðbÞ
ij ðP;P0Þ and T ðbÞ

ij ðP;P0Þ the

displacement and traction kernels (Kelvin’s solution); P the

field point (integration point); P0 the source point (colloca-

tion point); and S the domain boundary. BIE (1) is in a

weakly-singular form of the conventional BIE and does not

involve computations of any singular integrals in the

discretization [21,22].

BIE (1) can be applied safely for materials of complex

configuration, as long as the nearly-singular integrals, which

occurs when the source point P0 is close to (e.g. the distance

to element length ratio is less than 0.1) but not on the surface

of integration, can be computed accurately and efficiently.

In modeling composite materials, the nearly-singular

integrals arise quite often due to the many thin regions

present. They must be dealt with accurately to avoid any

degradation of simulation results. Earlier efforts for both 3D

and 2D BEM have resulted in significant improvements in

the accuracy of evaluating nearly-singular integrals. Details

of how to handle the nearly-singular integrals in the BEM

can be found in Refs. [17,23–29]. Among these research

work, the line integral approach [17,27,28] is found to be

very efficient. The main idea of this approach is to avoid

evaluating the nearly-singular integrals numerically.

Instead, the integrals are transformed into line integrals to

be evaluated on the contour boundary of a surface element

for 3D cases [27,28], or into direct function evaluations for

2D cases [17].

In the line integral approach [27,28], the integral with the

traction kernel function in BIE (1) is treated as follows

ð
DS

TijðP;P0ÞujðPÞdSðPÞ Z

ð
DS

TijðP;P0Þ½ujðPÞKujðP
0
0Þ�dSðPÞ

CujðP
0
0Þ

ð
DS

TijðP;P0ÞdSðPÞ; ð2Þ

where P0
0 (an image point) is the projection of P0 (source

point) on DS (a surface element, see Fig. 1).

The essence of the above treatment is that the last term in

Eq. (2) can then be transformed into line integrals using the

Stokes’ theorem and properties of the solid angle integral

(see details in Ref. [28]), and that the remaining term in

the right-hand side of the equation is at most nearly-weakly-

singular. To explain further, consider a polar coordinate

transformation dSZr 0 dr 0 dq, where r 0Z jPP0
0j and

rZjPP0j (Fig. 1). The integral on the left-hand side of
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Fig. 2. Subdivision for surface elements in the intrinsic coordinate system.
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Eq. (2) is of O(r 0/r2). Such integrals become nearly-singular

as P approaches P0
0 when P0 is near DS, which is often the

case we will encounter in BEM simulation involving thin

shapes. However, owning to the fact that ujðPÞKujðP
0
0Þ is of

O(r 0) from Taylor expansion, the first integral on the right

hand side of (2) is now reduced to the order of Oðr 02=r2Þ,

which is at most nearly-weakly-singular as r 0/0 and

r/ jP0P0
0j. Similarly, we notice that the order of integralÐ

DS UijðP;P0ÞtjðPÞdSðPÞ in BIE (1) is O(r 0/r), which is also

nearly-weakly-singular in the worst-case scenario. These

nearly-weakly-singular integrals can introduce significant

errors when they are evaluated using standard quadrature

rules, although these errors are in general smaller than those

produced by the nearly-singular integrals in the BEM.

The line integral approach has been proved successful for

many BEM material/structure simulation involving thin

shapes. Satisfactory results were obtained using this

approach when the distance (between the source point

and the surface of integration) to element length ratio is

around 0.01 for 3D cases [28] and below 1!10K6 for 2D

cases [17].

However, to tackle more challenging modeling tasks,

improvements in the line integral approach are needed to

further regularize the still existing nearly-weakly-singular

integrals, which were not treated in the previous works

reported in Refs. [27,28] for 3D problems. In this paper, an

improved method with better treatment of nearly-weakly-

singular integrals for 3D elastostatic problems is presented

and its effectiveness is demonstrated by using examples with

the distance to element length ratio as small as 1!10K6.

In this improved approach for 3D cases, a nonlinear

coordinate transformation is applied on the element of

integration with the source point near by, in combination

with the original line integral approach [27,28]. With this

improved approach, composite materials involving arbitrary

thin shapes can be modeled and characterized more

accurately with much coarser BEM meshes. In the following,

related regularization techniques for better treatment of

nearly-weakly-singular integrals in 3D BEM are reported.
b

Gaussian points 

Pole 

Fig. 3. A triangular subdivision in the polar coordinate system.
3. New treatment of the nearly-weakly-singular integrals

for 3D BEM

When arbitrary thin shape region is involved in BEM

material simulation, accurate evaluation of the resulting

nearly-weakly-singular integrals remains a challenge.
In order to further improve the accuracy in the evaluation

of these integrals, an efficient regularization technique is

presented here. A simple nonlinear-coordinate transform-

ation, which has been employed in the 2D BEM

implementation [17], is applied in the 3D BEM to further

‘regularize’ the nearly-weakly-singular integrals. Details of

the implementations can be found in Ref. [30].

To briefly describe the problem, let us denote TijðP;P0Þ

ujðPÞKujðP
0
0Þ

� �
as F and reexamine Eq. (2). Note that in

order to make use of the polar coordinate transformation, a

square element in the intrinsic coordinate system can be

divided into two or three triangular subdivisions, depending

on where the image point P0
0 is located (corner or middle

node) (Fig. 2). Hence, the nearly-weakly-singular term (the

first term on the right-hand side of Eq. (2)) can be expressed

as

ð
DS

F dS Z

ð1

K1

ð1

K1
Fðx1; x2ÞJ1ðx1; x2Þdx1 dx2

Z
X2 or 3

lZ1

ð
ql

bCDql

ql
b

ðDrl

0
Fðr; qÞJ1ðr; qÞr dr dq; (3)

where J1 is the Jacobian of transformation from dS to

dx1 dx2; Dr the line segment connecting the pole and the

Gaussian points in a subdivision; qb the starting angle of

integration and Dq the subdivision angle at the pole,

respectively (Fig. 3). Superscript l in Dr, qb and Dq

indicates the lth subdivision.

To use Gaussian quadrature, the following transform-

ation is applied to map a triangular subdivision in Eq. (3)

into a standard square (superscript l is omitted for

simplicity)

dr Z
Dr

2
dh1 and dq Z

Dq

2
dh2; (4)
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Fig. 4. The integrands before and after the nonlinear coordinate

transformation.
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where h1 and h2 represent the new coordinates for the

mapped square.

Substituting Eq. (4) into (3) gives

ð
DS

F dS Z
X2 or 3

lZ1

ð1

K1

ð1

K1
Gðh1;h2ÞJ1ðh1; h2ÞJ2ðh1; h2Þdh1 dh2;

(5)

where GZFr and

J2 Z

vr

vh1

vr

vh2
vq

vh1

vq

vh2

��������

��������
:

Introducing the following nonlinear coordinate transform-

ation

zm
1 Z

1

2
ðh1 C1Þ or h1 Z 2zm

1 K1; (6)

with m being the order of nonlinearity for the coordinate

transformation, Eq. (5) becomes:ð
DS

F dS

Z
X2 or 3

lZ1

ð1

K1

ð1

0
Gðz1;z2ÞJ1ðz1;z2ÞJ2ðz1;z2Þ2mzmK1

1 dz1 dz2;

ð7Þ

Adjusting the interval of integration for z1 from [0, 1] to

[K1, 1], it finally gives:

ð
DS

Fðr;qÞdS Z
X2 or 3

lZ1

ð1

K1

ð1

�1
Gðz1;z2ÞJ1ðz1;z2ÞJ2ðz1;z2Þm

!
z1 C1

2

� �mK1

dz1 dz2: ð8Þ

Through the above transformations, a somewhat uniform

distribution of Gaussian points in the radial direction

becomes non-uniform, with more points being shifted

towards the pole. This allows for greatly improved accuracy

in the evaluation of nearly-weakly-singular integrals using

the ordinary quadrature. Fig. 4 clearly shows the regular-

ization effect of integrand when jP0
0P0jZ10K5. The drastic

change of the irregular integrand near the coordinate origin

is smoothed out after the new transformation. It is also

shown in Fig. 4 that a higher-order nonlinear transformation

provides better regularization effect.

Very good results have been obtained using this

improved line integral approach, in which the distance to

element length ratio can further go down to 1!10K6 in 3D

examples. This is sufficient to deal with any thin domains in

the simulation of material problems efficiently without

having to use many smaller elements. A multi-domain BEM

code, which can handle thin shapes and a large number of

domains, has been developed based on this approach for the

study of composite materials. The details of the BEM
implementation can be found in Ref. [30]. Preliminary

studies of thin films and fiber and particle-reinforced

composites using the developed 3D multi-domain BEM

code have been carried out. Next, the formulas for

extracting the effective material constants of reinforced

composites are reviewed, before the numerical results are

reported in Section 5.
4. Formulas for extracting the effective material

constants

For completeness, some formulas for extracting the

effective material constants for a fiber-reinforced compo-

sites are listed in this section. Complete derivations of these

formulas can be obtained by referring to Refs. [31,32].

The simulation-based material characterization is

achieved through the assumption of a constitutive model

that correctly describes the stress–strain relations of a

composite. For reinforced composites such as aligned fiber

or particle reinforced composites, a transversely isotropic

constitutive model can be safely employed. A transversely

isotropic material has the simplest form of anisotropy,

where the transverse plane is assumed to be the plane of

isotropy. This reduces the number of independent elastic

constants to five (Young’s moduli Ex and Ez, Poisson’s

ratios nxy and nzx, and shear modulus Gxz, with z in the

direction of the fibers). To characterize a composite,

consider a homogenized elastic material model correspond-

ing to the representative volume element of the composite

sample. This homogenized elastic model is filled with a

single, transversely isotropic material with the five effective

material constants to be determined. The general 3D stress–

strain relation relating the normal stresses (sx, sy, sz) and

strains (3x, 3y, 3z) for a transversely isotropic material are
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as follows [31]:

3x

3y

3z

8<
:

9=
; Z

1

Ex

K
nxy

Ex

K
nzx

Ez

K
nxy

Ex

1

Ex

K
nzx

Ez

K
nzx

Ez

K
nzx

Ez

1

Ez

2
6666664

3
7777775

sx

sy

sz

8<
:

9=
;: (9)

Consider the dimensions of the RVE to be of length L (in the

z-direction) and cross-sectional area 2a!2a (in the x- and

y-directions). Three loading cases can be devised to provide

five equations based on the elasticity theory to determine the

five unknown constants (Young’s moduli Ex and Ez,

Poisson’s ratios nxy and nzx, and shear modulus Gxz), as in

Ref. [32]. For example, to determine the longitudinal

Young’s modulus Ez, the RVE is stretched by DL in the

z-direction to provide

Ez Z
save

3z

Z
L

DL
save; (10)

where L is the length of the RVE in the z-direction, A the

cross-sectional area of the RVE, and save the averaged stress

in the z-direction which can be calculated from the BEM

results by:

save Z
1

A

ð
A

szðx; y;L=2Þdx dy: (11)

With the same loading condition, one obtains an expression

for the Poisson’s ratio

nzx ZK
Da

a

� ��
DL

L

� �
; (12)

in which, Da is the change in a when the RVE is stretched in

the z-direction.

Now, consider another loading case with a pressure load

p on the two lateral surfaces normal to y-direction and

displacement constraint in z-direction on both ends of the

RVE, one obtains [32]:

Ex Z Ey Z
1

Dy
pa

C n2
zx

Ez

; (13)

nxy ZK
Dx

pa
C

n2
zx

Ez

� ��
Dy

pa
C

n2
zx

Ez

� �
; (14)

where Dx (!0) and Dy (O0) are the changes of dimensions

in the x- and y-direction, respectively, in this load case.

Another simple torsion loading case can be employed to

determine the last effective constant Gxz. Examples in

characterizing composites using the developed BEM and

the above-mentioned formulas for both aligned short fiber

and particle reinforced composites are given in Section 5.
5. Numerical results

Numerical results for the study of composite materials

based on the developed 3D multi-domain BEM simulation

are presented in this section. Examples of thin films/coat-

ings and reinforced composite with randomly distributed

short fibers or particles are given to demonstrate the

efficiency and accuracy of the developed BEM in material

characterization. Surface quadratic triangular and quadri-

lateral elements are used in this study.

5.1. Thin films and coatings

The developed BEM is first tested on a single-layer thin

film to demonstrate its capability in handling thin shapes

(Fig. 5). Fig. 6 shows a test on the computation of nearly-

singular integrals in BIE (1) using the new improved

approach. A thin film of dimension L!L!h is roller-

supported (constrained in the normal direction) on the

bottom and loaded with the normal traction on the top

(Fig. 5). The results in Fig. 6 show the lateral displacements

at a corner point, for which the analytical solution can be

found readily. It is shown that the BEM results for the

displacements deteriorate and eventually go out of the range

of the plot if the nearly-singular integrals are not computed

with any special schemes as the thickness h is decreased

(Regular BEM, Fig. 6). However, results can stay with



Fig. 7. BEM mesh for a double-layer thin film.

Table 1

Comparison of stress values (in the thickness direction) at center and corner

locations on the top surface between the BEM and analytical solutions

Normal stress in thickness

direction

BEM

(GPa)

Analytical

(GPa)

At center point 1.0 1.0

At corner point 0.966 1.0
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the analytical solution even as the thickness ratio is reduced

to 1!10K6 if the new approach is used for computing the

nearly-singular integrals (Developed BEM, Fig. 6). Notice

that only six elements are used in this case, one on each

surface of the thin film (plate). This example demonstrates

that the developed 3D BEM code can handle nearly-singular

integrals very accurately, without the need to increase the

number of elements in an analysis. This will be very

beneficial for the modeling of composite materials, for

which any reduction of the number of elements will help

improve the efficiency of the modeling. This example also

suggests that the so called needle-like elements on the edges

do not pose any problem to the BEM, once the nearly-

singular integrals are completely removed.

Next, the accuracy in multi-domain applications of the

developed BEM is verified through a layered thin film

example. A double-layered thin film, with dimension

1!1!0.01 m3 for the upper layer and 1!1!0.1 m3 for

the lower layer, is loaded similarly as in the previous

example. The BEM mesh is shown in Fig. 7, with needle-

like elements (element aspect ratio equal to 25:1) being

used. This type of needle elements needs to be avoided

in regular BEM implementations. The same material (EZ
1 GPa, nZ0.3) is used for both layers in order to avoid stress

singularity issues. Fig. 8 shows the deformation results
Fig. 8. Vertical deformation of the double-layer thin film from BEM.
obtained from the developed BEM, which is exactly

the same as the analytical prediction. Comparisons are

also made for stress values in the thickness direction at two

different locations on the top surface between the BEM and

analytical solutions (Table 1). The stress values obtained

have the largest error of 3% compared with the analytical

solution, even with the presence of needle elements in the

mesh.

Finally, a double-layered spherical shell with a hollow

steel inner layer and titanium coating under external

pressure is studied, for which the analytical solution is

provided in Appendix. The boundary condition is applied

so that the spherical shell is free to contract/expand

without any rigid body motion or extra-constrains. For

simplicity, the inner radius of the steel shell is given as

1.0 m; the pressure is 1.0 GPa; and both layers are assumed

to have the same thickness. Material properties are:

EAZ110 GPa, nAZ0.34 for titanium and EBZ200 GPa,

nBZ0.3 for steel. A BEM mesh is given in Fig. 9. The

radial displacement values at the interface from the BEM

and analytical solution (see Appendix) are plotted in

Fig. 10. The BEM solution with mZ6 accurately describes

the rapid change of the radial displacement as the coating

thickness varies from 10K2 to 10K4 m. The above

examples successfully demonstrate the capabilities of the

developed multi-domain 3D BEM in thin film and coating

applications.
Fig. 9. BEM mesh for a coated spherical shell.
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5.2. Short-fiber-reinforced composites and particle-

reinforced composites

Numerical studies for 3D RVEs with randomly dis-

tributed, but aligned (for short fibers), inclusions are

presented in this section using the developed multi-domain

BEM. Due to the complex configurations and arbitrarily

close distances between inclusions, such models cannot be

analyzed by regular BEM without using a large number of

elements. However, very coarse meshes can be used with

the improved BEM to study such problems.

A square RVE with 12 randomly distributed, yet aligned,

short fibers is studied first. A polymer material with EmZ
4.6 GPa and nmZ0.36 is used for the matrix; and aluminum

alloy with EfZ4.6 GPa and nfZ0.3 for the fibers. The RVEs

are roller supported on one end and applied with a uniform

normal displacement (DLZ1.0) on the other end. The side

surfaces are allowed for free expansion or contraction.

Fig. 11 shows the BEM mesh. Converged BEM results of

the total displacement, maximum principal stress and

maximum shear stress are shown in Figs. 12–14, respect-

ively. The advantage of the BEM in the meshing step is

obvious, with very coarse surface mesh built for the

boundaries and interfaces. The stresses in the matrix are
Fig. 11. BEM mesh for the short-fiber reinforced composite.
significantly lower than the stresses in the fibers. This

predicts that the fibers carry most of the load in the material

sample, which is expected since fibers are much stiffer than

the matrix material. The results also show the interfacial

load transfer mechanism that the load is transferred from the

matrix to the fibers through the interfacial shear stress.

Similar simulation is performed on a square RVE with
Fig. 14. Maximum shear stress plot from BEM results.



Fig. 15. BEM mesh for the particle-reinforced composite.

Fig. 17. Maximum principal stress plot from BEM results.
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16 randomly distributed spherical particles. BEM mesh,

converged total displacement, maximum principal stress

and maximum shear stress are shown in Figs. 15–18,

respectively.

Effective material properties can be readily extracted

from these BEM simulations. Given an RVE dimension of

10.5!1!1 m3 for the short fiber composite and 3.2!1.6!
1.6 m3 for the particle composite, our computed average

stresses save from the BEM results are 0.57 and 1.39 GPa,

respectively. Plugging these values (including DLZ1.0)

into Eq. (10), the effective longitudinal Young’s moduli

from BEM results are EzZ6.0 GPa for the short fiber

composite and EzZ4.5 GPa for the particle composite,

respectively.

The above characterization results are compared with

other theoretical predictions such as the Halpin–Tsai

estimation [33] for further verification (see Table 2).
Fig. 16. Total displacement plot from BEM results.
The empirical Halpin–Tsai equation gives

EzZEmðð1CxhfÞ=ð1KhfÞÞ. Here x is the inclusion aspect

ratio (Zl/r, with l being the length and r the radius of the

inclusions); h is a constant (hZ ðaK1Þ=ðaCxÞ and aZEf/

Em); Em, Ef the Young’s moduli of the matrix and inclusion

materials, respectively; and f the volume fraction of the

inclusions. For our short fiber-reinforced composite model

with a 4% fiber volume fraction, the Halpin–Tsai equation

gives an estimate of EzZ6.2 GPa. Similarly, for the

particle-reinforced composite model with a 0.8% volume

fraction, the Halpin–Tsai equation estimates EzZ4.7 GPa.

From the above comparisons, we see that the Halpin–

Tsai estimations are very close to our BEM calculated

effective longitudinal Young’s moduli. Both Halpin–Tsai

and the BEM calculations predict a 30% increase in the

longitudinal modulus of the aluminum short-fiber polymer

matrix composite if short fibers are dispersed in an aligned

random manner at a volume fraction of 4%. Both also

estimate that by randomly adding aluminum particles at a

volume fraction of 0.8%, there is negligible impact on the

longitudinal modulus of the polymer matrix composite.

These results show that the BEM-based material character-

izations are efficient and effective. Similar studies can be

performed for composites with different compositions and

configurations. They can also be readily extended to
Fig. 18. Maximum shear stress plot from BEM results.



Table 2

Comparison of the effective longitudinal Young’s moduli between the

BEM-based characterization and the Halpin–Tsai estimation

BEM

(GPa)

Halpin–Tsai

(GPa)

Short-fiber composite

(4% fiber volume fraction)

6.0 6.2

Particle composite

(0.8% particle volume fraction)

4.5 4.7

Matrix Young’s modulus EmZ4.6 GPa and filler Young’s modulus

EfZ70 GPa.
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the characterization of other mechanical properties such as

the transverse moduli, shear moduli and Poisson’s ratios or

other physical properties such as the thermal and electrical

conductivities.
 c

z

0
p

b 
6. Discussion

The developed multi-domain 3D BEM code has demon-

strated to be very effective and accurate for material

simulation involving thin films and complex configuration.

These simulations could be prohibitively challenging for the

domain-based FEM. However, there is still much to do

before the developed BEM code can be applied to solve

realistic material modeling problems that are likely to

involve large scales and multiphysics.

The new developed BEM, which is based on the

conventional BEM approach using direct solvers, can only

handle models of a few thousand elements and is limited to

composite models with only several tens of fibers or

particles with a desktop computer. The efficiency of the

BEM code needs to be improved with the fast multipole

methods, which have demonstrated superior efficiency in

solving large BEM models (with the DOF’s above several

millions) [34,35]. Indeed, very large BEM models of RVEs

containing several thousands of fibers with the total DOF’s

above 10 millions have been solved successfully with the

fast multipole accelerated BEM using a rigid-inclusion

model and constant elements [36]. These large-scale models

are necessary when the composites contain randomly

distributed and oriented fillers that cannot be modeled

accurately with small to moderate-scale RVE models. The

current multi-domain BEM using quadratic elements and

capable of computing all nearly-singular integrals accu-

rately has paved the way for large-scale modeling of

composites with even higher efficiency.
y

x

O
 a

Fig. A1. A coated spherical shell (double shell) under external pressure p0.
7. Conclusion

A robust 3D multi-domain BEM code, which can handle

thin shapes in a domain and a large number of domains, has

been developed for the study of composite materials. In this

improved BEM implementation, a nonlinear coordinate
transformation is applied on the element of integration with

the source point near by, in combination with the line

integral approach. Significant improvements in the accuracy

of evaluating nearly-singular integrals have been obtained

even when the distance (between the source point and the

surface of integration) to element length ratio approaches to

1!10K6. This is sufficient to deal with any thin domains in

the simulation of material problems efficiently without

having to use many smaller elements. Convincing results of

the BEM simulation for thin films and fiber-reinforced

composites demonstrate that the developed BEM can be an

effective tool in composite material modeling and simu-

lation. The developed BEM can be further accelerated by

the fast multipole method to tackle more challenging

material problems, such as large-scale modeling of nano-

fiber or nano-particle reinforced composites.
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Appendix. Analytical solution for a coated spherical
shell under a pressure load

The analytical solution of a coated shell (Fig. A1)

under an external pressure load is derived in this section.

This solution has been used to verify the BEM results in

Section 5.

The stress, strain and displacement in the domain of the

coating (outer shell) can be expressed as follows by

considering a spherical shell with outer and inner pressure

loads [37]

sr Z
p0b3ðr3 Ka3ÞCpia

3ðb3 Kr3Þ

r3ða3 Kb3Þ
; (A.1)

sq Z st Z
p0b3ð2r3 Ca3ÞKpia

3ð2r3 Cb3Þ

2r3ða3 Kb3Þ
; (A.2)
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3r Z
vu

vr
Z

1

EA

½sr KnAðsq CstÞ�

Z
1

EA

p0b3ðr3 Ka3ÞCpia
3ðb3 Kr3Þ

r3ða3 Kb3Þ

�

KnA

p0b3ð2r3 Ca3ÞKpia
3ð2r3 Cb3Þ

2r3ða3 Kb3Þ

�
; ðA.3)

ur Z

ð
3r dr Z

ð
1

EA

p0b3ðr3 Ka3ÞCpia
3ðb3 Kr3Þ

r3ða3 Kb3Þ

�

KnA

p0b3ð2r3 Ca3ÞKpia
3ð2r3 Cb3Þ

2r3ða3 Kb3Þ

�
dr

Z
rð2nA K1Þðpia

3 Kp0b3Þ

EAða
3 Kb3Þ

C
ð1 CnAÞa

3b3ðp0 KpiÞ

2EAða
3 Kb3Þr2

;

ðA.4)

where a and b are the radii of the interface and outer

surfaces, respectively (Fig. A.1); r the distance from the

origin to any point inside this domain (a%r%b); p0 and pi

the external pressure and the normal pressure at interface,

respectively; sr, sq, 3r and ur the radial stress, hoop stress,

radial strain and radial displacement, respectively; EA and

nA the Young’s modulus and Poisson’s ratio of the material,

respectively.

The stress, strain and displacement in the inner spherical

shell can be expressed as

sr Z
pia

3ðr3 Kc3Þ

r3ðc3 Ka3Þ
; (A.5)

sq Z st Z
pia

3ð2r3 Cc3Þ

2r3ðc3 Ka3Þ
; (A.6)

3r Z
vu

vr
Z

1

EB

½sr KnBðsq CstÞ�

Z
1

EB

pia
3ðr3 Kc3Þ

r3ðc3 Ka3Þ
KnB

pia
3ð2r3 Cc3Þ

2r3ðc3 Ka3Þ

� �
; (A.7)

ur Z

ð
3r dr Z

ð
1

EB

pia
3ðr3 Kc3Þ

r3ðc3 Ka3Þ
KnB

pia
3ð2r3 Cc3Þ

2r3ðc3 Ka3Þ

� �
dr

Z
rð2nB K1ÞðKpia

3Þ

EBðc
3 Ka3Þ

C
ð1 CnBÞc

3a3pi

2EBðc
3 Ka3Þr2

; ðA.8)

where c is the radius of the inner surface, r the distance from

the origin to any point inside this domain (c%r%a); EB and

nB the Young’s modulus and Poisson’s ratio of the material,

respectively.

At the interface surface, where rZa, the radial

displacement is calculated from the first domain by

Eq. (A.4) is

uðaÞZ
K3ab3p0ðnA K1ÞCpi½2a4ð2nA K1ÞKab3ð1CnAÞ�

2EAða
3 Kb3Þ

;

(A.9)
and the radial displacement calculated from the second

domain by Eq. (A.8) is:

uðaÞZ
ð2K4nBÞpia

4 Cð1CnBÞc
3api

2EBðc
3 Ka3Þ

; (A.10)

By equating Eqs. (A.9) and (A.10), we obtain the

relationship between the external pressure p0 and the

interfacial pressure pi as follows

piZ
3ab3ðnAK1Þp0

2EAða
3Kb3Þ Kab3ð1CnAÞC2a4ð2nAK1Þ

2EAða
3Kb3Þ

K2a4ð2nBK1ÞKac3ð1CnBÞ

2EBða
3Kc3Þ

h i ;
(A.11)

By substituting Eq. (A.11) and the prescribed material

properties into Eqs. (A.1)–(A.8), we can obtain the

analytical solution for radial stress, hoop stress, radial strain

and radial displacement at any point in the coated spherical

shell.
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