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Abstract

Carbon nanotubes (CNTs) exhibit extremely high stiffness and strength, and are regarded as perfect reinforcing

fibers for developing a new class of nanocomposites. The use of atomistic or molecular dynamics (MD) simulations

is inevitable for the analysis of such nanomaterials in order to study the local load transfers, interface properties, or

failure modes at the nanoscale. Meanwhile, continuum models based on micromechanics have been shown in several

recent studies to be useful in the global analysis for characterizing such nanomaterials at the micro- or macro-scale.

In this paper, a new continuum model of the CNT-based composites is developed for large-scale analysis at the

micro-scale in order to characterize such composites. In this new approach, CNTs are treated as rigid fibers in the elastic

matrix, due to its high stiffness that are at least two orders higher than those of most polymer matrices. A recently devel-

oped fast multipole boundary element method (BEM) is employed to solve the boundary integral equations governing

this rigid-inclusion problem. Numerical examples of CNT composites, with the number of CNT fibers considered reach-

ing 16,000 and total degrees of freedom above 28.8 millions, are solved successfully by the fast multipole BEM. Effective

elastic moduli of the CNT-composite models are evaluated and compared favorably with other reported data based on

an MD and multiscale approach. The developed BEM is demonstrated to be a very promising first-order tool for large-

scale modeling and characterizations of CNT-based composites.
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1. Introduction

Carbon nanotubes possess extremely high

stiffness, strength and resilience, and are
ed.
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considered by many to be the ideal reinforcing fi-

bers for an entirely new class of composite materi-

als [1–5]. There has been tremendous interest in the

modeling and simulations of the CNT composites

in order to characterize their mechanical proper-
ties for potential engineering applications. Both

molecular dynamics, continuum mechanics, and

combinations of both, have been attempted for

this purpose. MD approach is necessary in the

study of nanocomposites, especially for investiga-

tions of the local interactions of CNTs with matrix

materials, interface properties, or failure modes.

However, MD simulations at present are limited
to small length and time scales, due to the limita-

tions of the current computing power. For exam-

ple, all current MD simulation results of CNT

composites have been limited to models with only

a single CNT in a matrix. CNT fibers in a real

composite are likely to have different shapes and

sizes. They can be straight or curved, short or long,

aligned or oriented arbitrarily, and distributed
randomly. All these factors make the estimates of

the mechanical properties of CNT composites very

difficult using only the MD approach, if not

impossible. Large-scale representative volume ele-

ments (RVEs) with hundreds or thousands of

CNT fibers may deemed necessary in characteriz-

ing CNT composites. Continuum mechanics ap-

proaches can fill this gap and results from such
approaches have been shown to be surprisingly

close to those of the MD-based simulations in

modeling CNT composites.

Continuum mechanics approaches have been

applied successfully for simulations of the

mechanical responses of individual CNTs which

are treated as beams, thin shells or solids in cylin-

drical shapes [6–11]. Although efficient in com-
puting and able to handle models at larger

length scales, simulation results obtained using

the continuum mechanics approaches should be

interpreted correctly. Attentions should be paid

to the overall deformations or load transfer mech-

anisms, rather than to local properties, such as

those at the interface between CNTs and a ma-

trix, where the physics should be addressed by
MD simulations. Characterization of a CNT

composite requires only the knowledge of its glo-

bal responses, such as the displacement and stress
fields at the boundaries of an RVE. Thus the con-

tinuum mechanics approaches may be adequate

and sufficient in modeling CNT composites in this

regard. Some research results along this line have

demonstrated the usefulness of the continuum
approaches.

Pipes and Hubert�s work [12] seems to be the

first among others in characterizing CNT compos-

ites using a continuum mechanics approach.

Applying the traditional textile-mechanics ap-

proach and anisotropic elasticity theory, they stud-

ied the behavior of a CNT composite wherein the

fibers are layered cylinders with layers containing
arrays of CNTs arranged to form a hexagonal

cross-section and following a helical curve. Stress

distributions and effective elastic properties are

evaluated in [12] using the two continuum mechan-

ics approaches. Liu and Chen [13–15] applied the

finite element and boundary element methods

(FEM/BEM) for the study of CNT composite

models, where RVEs containing one or multiple
CNTs are modeled as thin elastic layer in the shape

of a capsule (for short CNT) or an open cylinder

(for long CNT). Effective elastic properties of the

CNT composites are evaluated and compared with

the rules of mixtures (including an extended rule of

mixture derived for short-fiber composites). The

detailed FEM models in [14,15] reveal that the

‘‘stress’’ gradient cross the interface of the CNT
and matrix is very high and the number of ele-

ments can become prohibitively large for the

FEM in large-scale modeling of CNT composites,

if the continuum models can be used. Fisher et al.

[16,17] employed the FEM to study the effect of

the waviness of CNT fibers in a CNT composite.

Their FEM model predicts that even slight curva-

ture of the CNTs can result in significant decrease
of the effective stiffness of the CNT composites,

which is consistent with experimental observa-

tions. Due to the large size of the FEM model

for detailed 3-D studies, the RVE used in [16,17]

contains only a segment of a CNT with the sur-

rounding matrix material. All the above men-

tioned investigations based on the continuum

approaches suggest that micromechanics is still rel-
evant and useful in the study of CNT composites

for characterizations based on the global responses

of CNT composites. The results of MD-based
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multiscale and full MD approaches for character-

izing CNT composites also support this claim.

Odegard, Gates, and others published the most

comprehensive results in Ref. [18] on evaluations

of effective elastic properties of CNT composites
using an MD-based multiscale approach. They

combined the MD simulation with the microme-

chanics approach using the equivalent-continuum

model they developed earlier [19]. In their ap-

proach, the MD is employed to calculate the prop-

erties of an effective fiber that contains a CNT

surrounded by the polymer in a cylindrical shape.

This effective fiber is then used in the microme-
chanics homogenization model for evaluations of

the effective properties of the CNT composites.

Results of computed effective Young�s moduli

and shear moduli using this approach are pre-

sented for different CNT lengths and volume frac-

tions. Direct comparison of the computed results

with the available experimental data is also pro-

vided and good agreement is shown in Ref. [18].
Interestingly, this multiscale approach is also com-

pared with the continuum approach developed by

Pipes and Hubert in Ref. [12] in a recent paper

[20]. Overlap of the results of the two different

models is shown for a large range of CNT volume

fractions for a CNT-polymer composite with the

CNT fiber length equal to 500 nm. It is also stated

in Ref. [20] that results obtained by the two meth-
ods are in general about 15% lower than those pre-

dicted by the classical rule of mixtures. This paper,

Ref. [20], seems to be a direct validation of the

micromechanics approach for characterizing the

CNT composites.

Most recently, Griebel and Hamaekers [21] car-

ried out a detailed study on evaluating the effective

properties of CNT-polymer composites using the
molecular dynamics approach. Two MD models

of the CNT composites were considered, one with

a short single-walled carbon nanotube (of 6 nm in

length) in the polymer, and the other with an infi-

nitely long one. To reduce the computational com-

plexity, a united-atom potential is also proposed

for modeling the polymer, besides the full Brenner

potential [21]. Their MD models predict that along
the CNT direction, the effective elastic modulus is

about two times of the polymer modulus for the

short CNT case (with a CNT volume fraction of
2.8%), and about thirty times higher for the long

CNT case (with a CNT volume fraction of

6.5%). They also compared their MD results with

those using the rules of mixtures. Surprisingly,

the MD predictions are found to be within the
range of those by using the rules of mixtures, with

the largest decrease being 15% for the long CNT

case and the largest increase being 25% for the

short CNT case, compared with the results using

the rules of mixtures [21]. The MD models and

rules of mixtures are two drastically different mod-

els in the two theories covering two different length

scales and their close correlations need further
attention. All the above mentioned results from

MD and MD-based equivalent continuum ap-

proaches again suggest that the continuum ap-

proaches may be within the range of accuracy

for engineering applications in characterizing

CNT composites at the micro- or macro-scales.

If the continuum approaches are adequate for

characterizing the CNT composites, a natural
question will be: what is the most appropriate con-

tinuum model for large-scale modeling of such

composites that can capture the overall mechanical

behaviors while without exhausting the current

computing resources? Based on the extremely high

stiffness of the CNTs, one simple choice will be to

treat them as rigid slender inclusions in a relatively

soft matrix material, such as polymers which are
the main matrix materials now for developing

CNT composites. Study of the feasibilities of this

seemingly naı̈ve rigid-fiber approach in modeling

CNT composites is the main subject of this paper.

In this paper, a new continuum model of the

CNT-based composites is developed for large-scale

analysis at the micro-scale in order to characterize

such nanocomposites. In this new approach,
CNTs are treated as rigid fibers in the elastic ma-

trix, due to its high stiffness that are at least two

orders higher than those of most polymer matri-

ces. A recently developed fast multipole boundary

element method is employed to solve the boundary

integral equations governing this rigid-inclusion

problem. Numerical examples of CNT composites,

with the number of CNTs considered reaching
16,000 and total degrees of freedom above 28.8

millions, are successfully solved by the fast

multipole BEM. Effective elastic moduli of the
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CNT-composite models are evaluated and com-

pared with other reported data based on a multi-

scale approach. Good agreement of the results

from the fast multipole BEM and the multiscale

approach is observed. The developed fast multi-
pole BEM is demonstrated to be a very promising

tool for large-scale analysis of CNT-based com-

posites for their characterizations.

The rest of this paper is organized as follows: In

Section 2, the justification of why CNTs might be

treated as rigid inclusions in an elastic matrix

material is attempted and related papers in the lit-

erature are reviewed. In Section 3, the boundary
integral equation (BIE) governing the elastic fields

of an elastic domain embedded with rigid inclu-

sions is presented. The fast multipole BEM used

to solve the BIE is also introduced in Section 3.

Numerical examples of modeling CNT composites

are presented in Section 4. Advantages, limitations

and potential applications of the developed fast

multipole BEM approach are offered in Section
5. The paper concludes with Section 6.
2. The rigid-inclusion model of CNT composites

Carbon nanotubes, either single-walled or

multi-walled, have been found to have very large

elastic moduli along their axis direction, with an
averaged value around 1 TPa, as reported in the

literature [2,3,6,22–25]. This high elastic modulus
Fig. 1. An MD simulation of the pullout of a CNT from a polymer m

polymer matrix (see Ref. [26] for more details).
is at least two orders of magnitude higher than

those of most polymers whose elastic moduli are

around 4 GPa. Therefore, it is safe to assume the

stiffness of the CNT is infinitely large relative to

that of the polymer matrix when studying the
CNT-polymer composite properties, from the

mathematical point of view. Even for other matrix

materials with larger Young�s moduli, this can also

be a first approximation. Limited experimental re-

sults and MD simulations also revealed this phe-

nomenon and suggested this assumption. Fig. 1

shows a recent MD simulation of a CNT fiber

pullout from a polymer. Picture on the left is the
initial configuration of the CNT with surrounding

polymer molecules. Picture on the right is a snap-

shot after the pullout of the CNT from the poly-

mer. The fiber is a (10,10) single-walled CNT

with a diameter of 13.56 Å and a length of about

53 Å. Details on the applied potentials, boundary

conditions, time step, numerical integration

scheme, and others can be found in Ref. [26]. It
is observed from Fig. 1 that the CNT experiences

little or no deformation at all during the pullout

simulation and behaves like a rigid ‘‘rod’’, while

the polymer deforms significantly in the process

(a recent study in Ref. [27] also shows a similar

phenomenon). It is true that CNTs are very flexi-

ble in the lateral direction when they are under

bending. Will the rigid-inclusion model still be va-
lid? The answer is ‘‘yes’’, if structures made of

CNT composites are under consideration. Even
atrix, which reveals little deformation of the CNT relative to the
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Fig. 2. A structural block made of CNT composite under a

bending load M: the relatively small and straight CNTs are

likely either in tension or compression along their axial
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Fig. 3. A 3-D infinite elastic medium V embedded with rigid

fibers.
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when a structure at the micro- or macro-scales sus-

tains bending loads, each CNT, like a fiber or tiny

material point in the structure, is likely to be in

tension or compression only. This is illustrated in

Fig. 2. However, if the CNTs are curved, cautions

should be used in the rigid-inclusion model and
further studies are needed. This paper will address

straight CNT fibers only at present, which is also

the target of the CNT-composite development

due to the maximum enhancement that straight

CNT fibers can deliver.

Rigid-inclusion problems have been studied for

some time in applied mechanics using the integral

equation approaches [28]. In the case of stress
analysis of rigid-line inclusions, also called anti-

cracks in a 2-D elastic domain [29], many research

results have been reported in the literature. Hu

et al. [30–34] carried out extensive studies of ri-

gid-line inclusions in a matrix using the integral

equation methods for 2-D cases. The interactions

of rigid lines with cracks and the effects of rigid

lines on the effective elastic material properties of
composites were successfully studied using this ap-

proach for 2-D models [30–34]. Recently, Leite

et al. [35] reported a 2-D BEM coupled with finite

elements that are used to model the bar inclusions

in a matrix. The displacement and stress fields near

the line inclusions are studied by this approach. In

another recent work [36], Dong et al. developed a

hypersingular BIE approach for the analysis of
interactions of rigid-line inclusions with cracks in

a 2-D elastic medium. Stress intensity factors at

the tips of rigid lines are computed and compared

with analytical solutions. In all the results men-

tioned above, only 2-D models with a few (less

than 10) rigid-line inclusions were considered.
In the context of modeling fiber-reinforced

composites using 3-D rigid-inclusion models, Ing-

ber and Papathanasiou�s work [37,38] seems to

be the first reported one using the BEM. The full

conventional BIE for Navier�s equation governing
an incompressible medium containing rigid fibers is

solved in [37,38] in order to determine the effective

moduli of composites with different fiber volume

fractions and aspect ratios. Constant boundary

elements were employed to discretize the BIE

which contains the singular as well as weakly-sin-

gular kernels. Up to 200 short, aligned rigid fibers,

with the total degrees of freedom (DOFs) of about
12,000, were successfully solved by the developed

BEM approach in [38]. Very good agreement of

the evaluated effective moduli using their BEM ap-

proach and analytical results is reported in [38],

which demonstrates that the rigid-fiber model is

very promising and the BEM is very efficient for

characterizations of fiber-reinforced composites.
3. The BEM for rigid-inclusion problems

Consider a 3-D infinite elastic domain V embed-

ded with n rigid inclusions (Fig. 3). Perfect bond-

ing conditions are assumed between the rigid

inclusions and elastic matrix. The matrix is loaded

with a remote stress or displacement field. The dis-
placement at a point inside the domain V is given
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by the following representation integral (see, e.g.,

[39–41]):

uðxÞ ¼
Z
S
½Uðx; yÞtðyÞ � Tðx; yÞuðyÞ�dSðyÞ þ u1ðxÞ;

8x 2 V ; ð1Þ

where u and t are the displacement and traction
vectors, respectively; S ¼ [aSa with Sa being the

boundary of the a-th rigid inclusion (Fig. 3); and

u1 the undisturbed displacement field due to the

remote stress or displacement field. For a finite

(interior) domain, this term will not present in

Eq. (1). The two kernel functions U(x,y) and

T(x,y) in Eq. (1) are the displacement and traction

components of the fundamental solution (Kelvin�s
solution), respectively, which can be found in any

references on the BEM (see, e.g., [39–41]).

For a rigid inclusion enclosed by Sa, the dis-

placement at any point y can be described by the

rigid-body motions as:

uðyÞ ¼ dþ x� pðyÞ; ð2Þ
where d is the rigid-body translational displace-

ment vector, x the rotation vector and p a position

vector for point y measured from a reference point

(such as the center of the inclusion). Considering

the BIE for the rigid inclusion itself in the domain

enclosed by Sa and equilibrium of the tractions at

the interface, and assuming perfect bonding be-

tween the inclusions and matrix, it can be shown
that the second integral in Eq. (1) containing the

traction kernel vanishes for rigid inclusions [42].

Therefore, Eq. (1) reduces to:

uðxÞ ¼
Z
S
Uðx; yÞtðyÞdSðyÞ þ u1ðxÞ; 8x 2 V ;

ð3Þ

for all rigid inclusions ðS ¼ [aSaÞ. This integral is
applied to evaluate the displacement field at any
point inside the domain V, once the tractions on

the surfaces of the rigid inclusions are obtained.

The stress field at any point in the domain can also

be evaluated by taking derivatives of expression (3)

and applying the Hook�s law (see, e.g., [39–41]).

By letting the source point x approach the

boundary S in Eq. (3), one arrives at the following

boundary integral equation:
uðxÞ ¼
Z
S
Uðx; yÞtðyÞdSðyÞ þ u1ðxÞ;

8x 2 S ¼ [aSa; ð4Þ

which is used to solve for the unknown tractions at

the interfaces between the inclusion and matrix.
This BIE for rigid-inclusion problems is extremely

compact and simple, in which only the weakly-sin-

gular kernel needs to be handled. More details in

deriving this equation can be found in a recent

related work [42].

There are additional unknowns in Eq. (4), that

is, the rigid-body motions of each inclusion, ex-

pressed by Eq. (2) that contains six unknowns (d
and x vectors) for each inclusion. Additional

equations are needed to supplement BIE (4). These

equations can be obtained by considering equilib-

rium of each inclusion, that is, the following six

scalar equations:

Z
Sa

tðyÞdSðyÞ ¼ 0; ð5Þ

Z
Sa

pðyÞ � tðyÞdSðyÞ ¼ 0; ð6Þ

for a = 1,2, . . . ,n. Eq. (5) represents the equilib-

rium of the forces, while expression (6) that of

the moments, for each rigid inclusion. BIE (4)
and Eqs. (2), (5) and (6) are simultaneously solved

to obtain the unknown rigid-body motions d and

x, and traction t for all the inclusions.

The boundary element method is employed to

discretize and solve the system of equations (2)

and (4)–(6) in this study. The BEM is a natural

way to solve the BIE, due to its reduction of the

dimension of the problem domain and high accu-
racy. With the development of the fast multipole

methods (FMM) (see a recent review in Ref. [43])

for solving boundary integral equations, large

models with several million degrees of freedom

can be solved readily on a desktop computer.

The main idea of the fast multipole methods is that

elements of integration are grouped into clusters

(cells) according to the distance of the elements
to the source point. The integrations on elements

in one cluster are computed together using multi-

pole expansions. Thus, the number of integrations

is reduced and hence the computing time. In addi-



Y.J. Liu et al. / Computational Materials Science 34 (2005) 173–187 179
tion, with the use of iterative solvers (such as

GMRES), the full BEM matrix is never formed

explicitly in the fast multipole methods and thus

the required memory is also much less for the mul-

tipole BEM. Using the FMM for the BEM, the
solution time of a problem is reduced to order

O(N), instead of O(N2) as in the traditional BEM

(with N here being the number of equations). In re-

cent years, the FMM has also been demonstrated

to be especially good for solving problems with

large numbers of cracks and inclusions in both 2-

D and 3-D cases. Some of the work on solving

inclusion problems using the FMM BIE/BEM
can be found in Refs. [44–48]. The details of the

FMM BEM formulation and implementation used

in this study, including the choice of precondition-

ers and other parameters used in the FMM, can be

found in Refs. [42,43,49,50].
4. Numerical examples

The representative volume elements used in this

study are discussed first. Then the fast multipole

BEM developed is used to study an example of
Fig. 4. A representative volume element for
short-fiber composites and the results are com-

pared with the theoretical prediction for verifica-

tions. Results in modeling CNT composites using

the developed fast multipole BEM based on the ri-

gid-inclusion model are presented in the last sub-
section. These BEM results are compared against

those using the MD-based multiscale equivalent-

continuum approach reported in Ref. [18], because

the latter have been verified with the experimental

data [18] and also shown to be consistent with

those by using other continuum mechanics based

models in Ref. [20].

4.1. The representative volume elements (RVEs)

used

The representative volume elements considered

in this work are embedded in the infinite domain

filled with the same material as that of the matrix

(Fig. 4). The CNT fibers are dispersed within the

RVEs which are of finite sizes. In this way, an exte-
rior problem can be solved using the fast multipole

BEM, where boundary elements are only needed

at the interfaces of the fibers and the matrix.

Although the fast multipole BEM can also solve
studying fiber-reinforced composites.
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interior-type of problems, it converges much

slower than in the case of an exterior problem.

Thus, we choose to study the exterior problem

first. Data-collection surfaces will either coincide

with the surfaces of the RVE or be inside the
RVEs (Fig. 4). The displacement and stresses will

be calculated on these data-collection surfaces.

Then, the values of these displacements and stres-

ses will be employed to evaluate the effective prop-

erties of the composites.

A far-field uniaxial tensile stress r1 is applied

to the infinite domain V only in the fiber direction

(the x-direction, Fig. 4). The effective modulus of
the composite in the fiber direction is estimated

using the displacement and stress results at two

data-collection surfaces normal to the x-axis by

the following formula:

Eeff ¼
ðrxÞðaveÞL
ðDuxÞðaveÞ

; ð7Þ

where Eeff is the estimated effective modulus of the

composite in the x-direction, (Dux)(ave) and (rx)(ave)
are the averaged elongation and stress of the RVE,

respectively, evaluated at the two data-collection

surfaces normal to the x-directions (Fig. 4), and
L is the distance between the two data-collection

surfaces. More discussions on the RVEs used in

this work can be found in Ref. [42].

Triangular constant boundary elements are em-

ployed in the discretization of the interfaces be-

tween the fibers and the matrix. Three corner

nodes are used to define the geometry of a triangu-

lar element. However, the field over the element is
only represented by its value at the center for each

element. Thus, each element will have three de-

grees of freedom (unknown traction components

in this case) for constant elements. All the integrals

are integrated analytically so that accurate results

are ensured even when fibers are packed tightly

and surfaces are very close to each other.
Fig. 5. A boundary element mesh used for the short fiber

(length = 8, radius = 1, with 312 elements).
4.2. Study of short-fiber composites

To verify the developed BEM approach for

analyzing fiber-reinforced composites, we first

study the models of short-fiber reinforced compos-

ites, for which theoretical predictions, using, e.g.,
the Halpin–Tsai equation, are available. This is

the same approach adopted in Ingber and Papa-

thanasiou�s work [37,38]. In the limit as the ratio

of the fiber stiffness to matrix stiffness tends to

infinity (thus a rigid-fiber case), the Halpin–Tsai
equation can be written as (see, e.g., Refs. [37,38]):

Ecomposite

Ematrix

¼ 1þ 2n/
1� /

; ð8Þ

where Ecomposite and Ematrix are the longitudinal

modulus of the composite and matrix, respectively;

n = l/2r is fiber aspect ratio (with l being the length

and r the radius of the fiber); and / is the volume

fraction of the fibers in the composite. Eq. (8) will

be used to verify the BEM estimates of the effective

longitudinal modulus.

An array of 10 · m · m short fibers (capsule-
like) with l = 8 and r = 1 are placed in a cubical

RVE of a fixed dimension 100 · 100 · 100. The

cases studied include m = 5, 10, 14, 18, 22, 24,

26, 28, 30, 32, 34, and 36, for which the corre-

sponding volume fractions of the fibers change

from 0.58%, 2.30%, . . . , 29.86%. The fibers are

aligned in the x-direction and distributed in the

RVE either uniformly (aligned uniform case) or
‘‘randomly’’ (aligned ‘‘random’’ case), with the

restriction that each fiber can move only within

its own ‘‘box’’ so that no contact of fibers will oc-

cur. Each fiber is discretized using 312 constant

elements (Fig. 5), which have been found to be suf-

ficient for obtaining converged BEM results. Each

element or node has three degrees of freedom and

each fiber has six unknown rigid-body motions.
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Thus, the largest BEM model in this example, with

10 · 36 · 36 fibers, has a total degrees of freedom

of 12,208,320 (10 · 36 · 36 · (312 · 3 + 6)).

Fig. 6 shows the RVE in the aligned ‘‘random’’

case with 10 · 10 · 10 fibers and the contour stres-
ses at the fiber–matrix interfaces. Again, the

remote load (r1) is applied in the x-direction only.

High stress on the interface occurs when two fibers

are closer to each other, indicating stronger inter-

actions between the two fibers. Within each fiber,

the high stress areas are at the two ends of the fi-

ber. Fig. 7 gives the estimated effective longitudinal

moduli of the composite models using Eq. (7), with
the two data-collection surfaces being placed one-

fiber inside the RVE in order to reduce the bound-

ary effects. The BEM results are compared with

the ones using Halpin–Tsai equation (Eq. (8))

and good agreement is observed, especially for

lower fiber volume fractions. The results for the

aligned ‘‘random’’ case is slightly lower than those
Fig. 6. Study of short-fiber composites with cubical RVEs containin

RVE with m = 10 in the aligned ‘‘random’’ case (with fiber volume fr
for the aligned uniform case, although this differ-

ence vanishes at higher fiber volume fractions.

Halpin–Tsai equation has been found to depart

from the BEM results reported in Refs. [37,38]

for higher fiber volume fractions and aspect ratios,
which also occurs in Fig. 7. Revised Halpin–Tsai

equations for such cases and more discussions on

the applicability of the original Halpin–Tsai equa-

tion can be found in Refs. [37,38].

This short-fiber composite example demon-

strates that the developed fast multipole BEM is

correct and the RVE models employed are ade-

quate (another verification of the developed
BEM approach using analytical solutions for a

rigid-sphere inclusion can be found in Ref. [42]).

4.3. Study of CNT composites

In this example, we study the effects of the CNT

volume fractions on the effective moduli of the
g 10 · m · m fibers: stress contour plot (·r1) is shown for the

action = 2.30%).
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Fig. 7. Effective longitudinal moduli for the short-fiber composites predicted by the fast BEM.

Fig. 8. A boundary element mesh used for the CNT (with 600

elements).
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CNT composites. The length of the CNT fibers is

fixed at 50 nm, the radius of the CNT is 0.7 nm

and the CNT thickness is 0.34 nm. The volume

of the CNT is calculated by considering it as a hol-
low cylinder with the outer radius equal to 0.7 nm.

For the matrix material, the NASA LaRC-SI poly-

mer is used, with a Young�s modulus of 3.8 GPa

and Poisson�s ratio of 0.4. All the above parame-

ters are chosen from Ref. [18] for the comparison.

A boundary element mesh for the CNT fiber is

shown in Fig. 8. Smaller elements are concentrated

near the two ends of the tube since it has been
shown that high stresses will occur near the tips

of slender or line inclusions [29,42]. There are

600 triangular constant elements for one CNT in

this mesh, which yields 1806 degrees of freedom

per CNT fiber (600 · 3 plus 6 unknown rigid-body

motions). This mesh was found to be sufficient for

obtaining converged results for the estimated effec-

tive moduli. Two different distributions of the fi-
bers in the RVE are considered, all arranged in

arrays denoted by mx, my and mz being the number

of CNTs in the x-, y-, and z-direction, respectively.

The first case is a uniform distribution of aligned

fibers, to be called the aligned uniform case. Arrays

of mx · my · mz CNT fibers are distributed evenly
inside the RVE. However, positions of the CNTs

in the x-direction are shifted, for every other
CNT, a distance equal to half of the CNT length

plus the gap between the CNTs in the x-direction.

In this way, no weak regions (gaps) will exist in the

RVE along the CNT direction. The second case is

a ‘‘random’’ distribution of aligned CNT fibers,

where the fibers are still aligned in the x-direction,

but their locations are shifted randomly in the x-,

y- and z-directions within certain ranges so that
each fiber remains in its own ‘‘box’’ to avoid con-

tact of the fibers. This case will be called the

aligned random case. In both cases, the number
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of CNTs in the x-direction, mx is fixed, while the

number of CNTs in the y- and z-directions,

my = mz is increased in order to increase the vol-

ume fractions of the CNTs in the composites.

The dimensions of the RVEs first studied in this
case are 300 · 60 · 60 nm3, which are referred to

as small RVE cases. Larger RVEs of the dimen-

sions 600 · 120 · 120 nm3 are also studied, which

will be referred to as large RVE cases.

Fig. 9 shows a contour plot of interface stress rx
in the matrix for a small RVE containing 605

(5 · 11 · 11) aligned random CNT fibers, which

can help to understand the load-transfer mecha-
nism in the CNT composites. For each fiber, high

stresses occur around the two ends of the fiber,

which is consistent with the theory which predicts

that in the limit as the slender inclusion becomes a

rigid line, singularity of stresses exists at the two

tips [29]. Values of these stresses are even higher

when two CNTs are close to each other, suggesting

closer interactions of the CNT fibers. The largest
value of the stress is about 22 times of that of

the applied stress r1 in the far field. This stress
Fig. 9. Load transfer in the CNT composite model: contour plot of

distributed and aligned CNT fibers (with length = 50 nm, volume fra

fibers come closer.).
plot is typical among all the studied RVEs, with

CNTs being arranged in 5 · m · m arrays, with

m = 2,4,6,8,9,10,11,12,13, . . . , 20, in the small

RVE cases. The small RVE with 2000 ‘‘random’’

CNTs is shown in Fig. 10. The large RVE models
are obtained by simply repeating (once) the small

RVE in the x-, y-, and z-direction, hence produc-

ing RVE models which are eight times the sizes

of the corresponding small RVEs.

The estimated effective longitudinal Young�s
moduli (Eeff) of the CNT composites against the

CNT volume fractions are plotted in Fig. 11, and

compared with the data in Ref. [18] (Fig. 7 in
Ref. [18], with CNT length = 50 nm). The BEM re-

sults were obtained for CNT volume fractions up

to 10.48% due to the limitations on model sizes.

All the results obtained by using the developed

BEM approach based on the rigid-inclusion mod-

els are close to the results in Ref. [18] which are

based on the MD and a multiscale approach.

For the small RVE cases, the results for the
aligned random and uniform cases are very close,

possibly due to the fact that the random cases
surface stresses (·r1) for a small RVE with 605 ‘‘randomly’’

ction = 3.17%. The insert shows the high stress areas when two



Fig. 10. A small RVE containing 2000 CNT fibers with the total DOF = 3,612,000 (with CNT length = 50 nm, volume

fraction = 10.48%. The insert shows a close-up of the tubes with the boundary element mesh.).
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are only slight perturbations of the corresponding

uniform ones. The results in the large RVE show

significant improvement (half way closer to the

curve from Ref. [18]). The curve by Halpin–Tsai

equation is also shown in the figure for reference.
The departure of Halpin–Tsai curve with the oth-

ers may be due to the larger aspect ratios of the

CNT fibers in this case (see, e.g., discussions in

Refs. [37,38]). Because of the lack of means to gen-

erate RVE models with randomly distributed and

randomly oriented fibers without causing contact

of the fibers, such RVEs were not attempted. Bet-

ter RVEs can be made in the future to account for
more realistic arrangements of the CNT fibers in a

composite.

All the jobs for the examples were run on a FU-

JITSU PRIMEPOWER HPC2500 computer,

which is a shared memory machine having 128

CPUs with 1.5 GHz speed and 512 GB memory,

and located at the Kyoto University. The simula-

tion jobs used 32 CPUs. No serious attempts were
made to parallelize the code except for the use of a

few OpenMP directives and automatic paralleliza-

tion made by the compiler. The largest RVE with

16,000 CNT fibers (eight times larger than the

small RVE shown in Fig. 10) has a total DOF of

28,896,000 (16,000 · (600 · 3 + 6)). The developed

multipole BEM code run smoothly and delivered

the solution of the BIE equations within 34 h
(wall-clock time) for this very large BEM model.
5. Discussions

The BEM results based on the rigid-fiber model

are shown to be very close with the reported data

in Ref. [18] which is based on MD combined with
an equivalent-continuum model. Although sur-

prising, it is also expected based on the results in

Refs. [20,21] that already show strong correlation

of the MD-based multiscale results and the contin-

uum mechanics results. Furthermore, the MD

model for obtaining the properties of the effective

fibers in Ref. [18] assumes a strong bond (using

PmPV molecules) between the CNT and polymer,
which may be close to the perfect bonding assump-

tions used in the current rigid-fiber model.
From the results in this paper and others re-

ported in Refs. [18,20,21], it seems that the

micromechanics models of the CNT composites

are adequate for the evaluations of their overall

mechanical properties, such as the effective moduli
of such composites. Especially in the case of long,

straight CNT fibers, even the traditional rule of

mixtures may be sufficient to be applied as a first

approximation, as have been used in various stud-

ies of the CNT composites [14,15,20,21]. The MD

approach and MD-based multiscale approaches

can be employed in studies focused on the inter-

face properties and potential failure modes of the
CNT-reinforced composites.

The new fast multipole BEM based on the rigid-

inclusion model for the analysis of CNT compos-

ites can find many applications in the studies of

CNT composites where large models are deemed

necessary. For example, interactions of the CNT

fibers, load transfer mechanisms and effective

properties of a composite can be investigated read-
ily using the BEM with different parameters, such

as CNT aspect ratios, volume fractions, distribu-

tions and orientations in the matrix. However,

the rigid-inclusion model has some obvious limita-

tions. For example, the effect of the ratio of the

Young�s modulus of the CNT to that of the matrix

for a composite can not be accounted for in this ri-

gid-inclusion model, which is assumed to be infin-
ity in the rigid-inclusion model for any matrix

material. Another important issue is the effect of

the temperature on the mechanical behaviors of

the CNT composites, which has not been consid-

ered in the developed BEM models. At different

temperatures, especially high temperatures, the

CNT composites will behave differently, such as

nonlinearly with plastic deformations. Presumably
the interface regions may behave differently as

well. How to address the temperature effect in a

continuum or multiscale model will be a challeng-

ing task that needs to be studied in the future.

The developed BEM can be extended readily to

account for more complicated physics or interac-

tions of the CNTs in a matrix. Elasticity of the

CNTs can be introduced in this model to replace
the assumption of rigidity. An effective-fiber model

based on the MD similar to the one developed

in Ref. [18] can also be combined with the fast
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multipole BEM models. With the development in

computing hardware, it is quite possible in the near

future to directly combine the MD model for the

CNTs and the BEM model for the matrix to have

a multiscale method that can handle larger models
and account for more intricate physics in CNT-

reinforced composites, such as more realistic inter-

face properties, debonding or other failure modes,

besides evaluations of their effective properties.
6. Conclusion

A new fast multipole boundary element method

is applied in the modeling of CNT-reinforced com-

posites in this paper. The CNTs are treated as rigid

fibers in this approach due to their exceptionally

high stiffness compared with commonly used poly-

mer matrix materials. Justifications of this seem-

ingly naı̈ve approach is provided and verified

with some preliminary results using the developed
BEM. The estimated effective Young�s moduli

using this rigid-fiber model and the BEM are

found to be very close to those obtained using an

MD-based multiscale approach reported in the lit-

erature. The largest model studied contains 16,000

CNT fibers and has the total degrees of freedom

above 28.8 millions. These results clearly demon-

strate the effectiveness, efficiency and promises of
the developed fast multipole BEM as a fast and

first-order numerical tool for large-scale character-

izations of the carbon-nanotube composites. Elas-

ticity of the CNT fibers and more realistic interface

conditions based on MD simulation results of

CNT composites can be incorporated readily in

this fast multipole BEM.
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