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Abstract The high solution costs and non-uniqueness
difficulties in the boundary element method (BEM)
based on the conventional boundary integral equation
(CBIE) formulation are two main weaknesses in the
BEM for solving exterior acoustic wave problems. To
tackle these two weaknesses, an adaptive fast multi-
pole boundary element method (FMBEM) based on
the Burton–Miller formulation for 3-D acoustics is
presented in this paper. In this adaptive FMBEM, the
Burton–Miller formulation using a linear combination
of the CBIE and hypersingular BIE (HBIE) is applied to
overcome the non-uniqueness difficulties. The iterative
solver generalized minimal residual (GMRES) and fast
multipole method (FMM) are adopted to improve the
overall computational efficiency. This adaptive FMBEM
for acoustics is an extension of the adaptive FMBEM
for 3-D potential problems developed by the authors
recently. Several examples on large-scale acoustic radi-
ation and scattering problems are presented in this paper
which show that the developed adaptive FMBEM can
be several times faster than the non-adaptive FMBEM
while maintaining the accuracies of the BEM.
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1 Introduction

The boundary element method (BEM) (See, e.g., [1,2])
is a numerical approach for solving field problems based
on the boundary integral equation (BIE) formulations.
The BEM has been used to solve exterior acoustic prob-
lems for many years (See, e.g., [3–7]), because of its
boundary only discretization and automatically satisfac-
tion of the radiation condition at infinity. The BEM,
however, has some drawbacks. The most troublesome
one is that the BEM leads to systems of equations with
dense, non-symmetrical and sometimes ill-conditioned
coefficient matrices. Solving the BEM system of equa-
tions needs O(N3) operations with N being the num-
ber of unknowns, when direct solvers, such as the Gauss
elimination method [8], are used. As a result, the BEM is
prohibitively expensive when it is used to solve
large-scale engineering problems.

Improving the overall solution efficiency has been
the main task in the implementation of the BEM. Much
work has been devoted to finding efficient solvers for
BEM systems of equations. Iterative solvers, such as
the generalized minimum residue (GMRES) method
[9] and the conjugate gradient squared (CGS) method
[10] have been proved to be beneficial. Iterative solvers
perform matrix-vector multiplication in each iteration,
which needs O(N2) operations in the conventional way.
Consequently, the total number of operation counts for
the BEM with iterative solver is reduced from O(N3)

to O(N2).
To further improve the efficiency of the BEM with

iterative solvers, various techniques have been proposed
to accelerate the matrix–vector multiplication. These
techniques include the wavelet basis [11], the H-matrices
[12], the fast Fourier transform [13] and the fast
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multipole method [14,15]. Among all the methods
mentioned above, the fast multipole method (FMM)
seems to be the most widely accepted method in fast
BEM implementations.

The FMM was first proposed by Greengard and
Rokhlin [14,15] to accelerate the evaluation of interac-
tions of large ensembles of particles governed by Laplace
equation. The key idea behind the FMM is a multipole
expansion of the kernel in which the connection between
the collocation point and the source point is separated.
Many research works have been published since then
to improve and extend the applicability of the FMM
[16–20]. Employing the FMM for the matrix–vector mul-
tiplications in iterative solvers, the computing cost can
be reduced from O(N2) to O(N). The FMM was later
extended to Helmholtz equation (See, e.g., [21–39]).
Rokhlin [23] and Lu and Chew [25] proposed diago-
nal form of the translation matrices for high frequency
Helmholtz. Wagner and Chew [26] used ray propagation
approach to further accelerate the FMM for high fre-
quency range. Greengard et al. [33] suggested diagonal
translation for low frequency range. Gumerov and Du-
raiswami [36] extended recurrence relations reported in
Chew’s paper [40] to develop a general recursive method
for obtaining the translation matrices. For a comprehen-
sive review on the fast multipole method, a state-of-the-
art review paper was given by Nishimura [41].

With the FMM and iterative solver, we are able to
construct fast multipole boundary element method
(FMBEM) that is based on the conventional BIE. How-
ever, there is a defect; the conventional BIE fails to
yield unique solutions for exterior acoustic problems at
the eigen-frequencies associated with the correspond-
ing interior problems. For mathematical explanation of
the eigen-frequencies associated with the CBIE, please
see [5] and a comprehensive review paper by Chen and
Hong [42].

To deal with the non-uniqueness difficulties, several
methods have been proposed in the last several decades.
Combined Helmholtz integral equation formulation
(CHIEF) proposed by Schenck [4] can successfully
remove the non-uniqueness by adding some additional
Helmholtz integral relations in the interior domain,
which leads to an over-determined system of equations.
The CHIEF method suffers from the difficulty that there
are no methods so far to analytically determine the num-
ber of interior points and their locations. As the wave
number increases, the number of eigen-frequencies is
more likely to increase, and more interior points are
required to maintain accuracy, leading to the loss of
efficiency.

An alternative way to overcome the non-uniqueness
difficulties is the Burton–Miller formulation [5]. It uses a

linear combination of the conventional BIE (CBIE) and
the normal derivative of the conventional BIE (HBIE)
to circumvent this problem. It has been proved [5] that
the combined BIE (CHBIE) yields unique solutions in
all frequency range for exterior acoustic problems. The
downside of this approach is that the number of inte-
grations doubles. Even worse, it requires the evaluation
of the hypersingular integral with a kernel of double
normal derivatives of the Green’s function. Several
methods have been suggested to evaluate the hyper-
singular integral, including the direct evaluation in the
Hadamard-finite-part sense [43], regularization with
Taylor series expansions [44,45] or Fourier–Legendre
series [46], transformation into integrals with kernel of
tangential derivatives or double surface integrals [5] and
indirect evaluations [6]. Although hypersingular inte-
gral evaluation is no longer a big challenge and iterative
solvers can accelerate the Burton–Miller based BEM as
well, a total of four integral evaluations for each pair of
elements is still an expansive task with the conventional
BEM approach, which further restricts the use of the
Burton–Miller based BEM.

Applying the FMM in the iterative solver for the
Burton–Miller based BEM will improve this situation.
The advantages of combining the Burton–Miller BIE
with the FMBEM are twofold. First, the non-uniqueness
difficulty is resolved by using Burton–Miller formula-
tion. Second, the overall solution efficiency is improved
by adopting the FMM within the iterative solver. In this
study, an adaptive algorithm extended from the one re-
ported in [47] is developed that can further improve the
efficiency of the Burton–Miller based FMBEM.

The paper is organized as follows: the basic FMBEM
formulation is reviewed in Sect. 2. The new adaptive
FMBEM algorithm is presented in Sect. 3. In Sect. 4,
the applicability of the adaptive Burton–Miller based
FMBEM is investigated with several radiation and scat-
tering problems. Section 5 concludes the paper with
further discussions.

2 Formulations

2.1 Conventional BEM formulation

The propagation of time-harmonic acoustic waves in a
homogeneous isotropic acoustic medium E (which can
be either finite or infinite) is described by the Helmholtz
equation:

∇2ϕ(x) + k2ϕ(x) = 0 ∀ x ∈ E, (1)
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where ϕ is the velocity potential, k = ω/c the
wavenumber, ω the angular frequency, and c the wave
speed in the acoustic medium E.

The boundary conditions for Helmholtz equation
take the following form:

ϕ(x) = ϕ̄(x), ∀ x ∈ S1;

q(x) = q̄(x), ∀ x ∈ S2;
(2)

where q(x) is the normal derivative of ϕ at point x,
S = S1 ∪ S2 is the boundary of E, and the barred quan-
tities indicate given values on the boundary.

The integral representation of the solution to
Helmholtz equation is:

ϕ(x) =
∫

S

[
G(x, y)q(y) − ∂G(x, y)

∂n(y)
ϕ(y)

]

dS(y) + ϕI(x) ∀ x ∈ E, (3)

where x is the collocation point, y the source point.
The free-space Green’s function G for 3-D problems
is given by:

G(x, y) = eikr

4πr
, with r = ∣∣x − y

∣∣, (4)

where i = √−1 and n(y) the outward normal at y.
The incident wave ϕI(x) in Eq. (3) will not present for
radiation problems.

Letting point x approach the boundary leads to the
following conventional boundary integral equation
(CBIE):

C(x)ϕ(x) =
∫

S

[
G(x, y)q(y) − ∂G(x, y)

∂n(y)
ϕ(y)

]

dS(y) + ϕI(x) ∀ x ∈ S, (5)

where the constant C(x) = 1/2, if S is smooth around x.
Taking the derivative of integral representation (3)

with respect to the normal at the collocation point
x (n(x)) and letting x approach S give the following
hypersingular boundary integral equation (HBIE):

C(x)q(x) =
∫

S

[
∂G(x, y)

∂n(x)
q(y) − ∂2G(x, y)

∂n(y)∂n(x)
ϕ(y)

]

dS(y) + qI(x) ∀ x ∈ S, (6)

where C(x) = 1/2 if S is smooth around x. Both CBIE
Eq. (5) and HBIE Eq. (6) describe the behavior of the
acoustic velocity potential on the surface of the body. For
an exterior problem, they have a different set of fictitious
frequencies at which a unique solution for the exterior
problem cannot be obtained. However, Eqs. (5) and (6)
will always have only one solution in common. Given
this fact, the following linear combination of Eqs. (5)

and (6) (CHBIE) should yield a unique solution for all
frequencies [5]:⎡
⎣

∫

S

∂G(x, y)

∂n(y)
ϕ(y)dS(y) + C(x)ϕ(x) − ϕI(x)

⎤
⎦

+α

∫

S

∂2G(x, y)

∂n(y)∂n(x)
ϕ(y)dS(y) =

∫

S

G(x, y)q(y)dS(y)

+α

⎡
⎣

∫

S

∂G(x, y)

∂n(x)
q(y)dS(y) − C(x)q(x) + qI(x)

⎤
⎦

∀ x ∈ S, (7)

where α is a coupling constant that can be chosen as
i/k [48]. This CHBIE formulation is referred to as the
Burton–Miller formulation.

The discretized form of the Burton–Miller formula-
tion can be obtained by discretizing the boundary S using
N (e.g., constant) surface elements:

N∑
j=1

fijϕj =
N∑

j=1

gijqj + �

bi for node i = 1, 2, . . . , N, (8)

where
�

bi is from the incident wave for scattering prob-
lems, and

fijϕj =
∫

�Sj

∂G(x, y)

∂n(y)
ϕjdS(y) + 1

2
δijϕj

+α

∫

�Sj

∂2G(x, y)

∂n(y)∂n(x)
ϕjdS(y),

gijqj =
∫

�Sj

G(x, y)qjdS(y)

+α

⎡
⎢⎣

∫

�Sj

∂G(x, y)

∂n(x)
qjdS(y) − 1

2
δijqj

⎤
⎥⎦,

(9)

with δij being the Kronecker δ-symbol and �Sj repre-
senting element j. Equation (9) implies that for each
pair of elements (i, j), there are a total of four integrals
that need to be evaluated.

Rearranging each term in Eq. (8), that is, moving the
unknown terms to the left-hand side and known terms
to the right-hand side, gives the following system of
equations:
⎡
⎢⎢⎢⎣

a11 a12 . . . a1N
a21 a22 · · · a2N

...
...

. . .
...

aN1 aN2 · · · aNN

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ1
λ2
...

λN

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b1
b2
...

bN

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, or

Aλ = b, (10)
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where A is the system matrix, λ the unknown vector,
and b the known vector.

The singular and hypersingular integrations in Eq. (9)
are evaluated using the singularity subtraction approach
(See, e.g., [44,45]). In this approach, the singularity in
the singular or hypersingular integral is regularized first
using a one-term or two-term subtraction, respectively.
Then the added back term (with static Green’s function)
is evaluated analytically, which is possible with the use
of constant elements. The analytical integration has the
benefit of accuracy and efficiency and is well suited for
integration with the FMBEM.

2.2 The fast multipole method

The fast multipole method is employed to solve the
Burton–Miller BIE, or CHBIE Eq. (7), for which
iterative solver GMRES will be used and the system
of equations (10) will not be formed explicitly. Several
expansions and translations are needed in the FMM and
most of these formulas for Helmholtz equation are well
documented in [27,49]. They are listed in this section for
completeness in order to discuss the developed adaptive
algorithm in the following section.

The free-space Green’s function in Eq. (4) can be
expressed as a multipole expansion around an expan-
sion point yc near y (Fig. 1):

G(x, y) = ik
4π

∞∑
n=0

(2n + 1)

n∑
m=−n

Īm
n (k, y, yc)O

m
n (k, x, yc),

for
∣∣y − yc

∣∣ <
∣∣x − yc

∣∣, (11)

where the inner function Im
n is in the form:

Im
n (k, y, yc) = jn(k

∣∣y − yc
∣∣)Ym

n

(
y − yc∣∣y − yc

∣∣
)

, (12)

xc’

xc

L2L

R2

xM2L

yc’ R1

yM2M
yc

Fig. 1 M2M, M2L and L2L translations

with Īm
n being the complex conjugate of Im

n , and the outer
function Om

n is defined by:

Om
n (k, x, yc) = h(1)

n (k
∣∣x − yc

∣∣)Ym
n

(
x − yc∣∣x − yc

∣∣
)

. (13)

In the above Eqs. (11–13), Ym
n are spherical harmon-

ics; jn the nth order spherical Bessel function of the first
kind; hn the nth order spherical Hankel function of the
first kind. For integrals on element j which are far away
from the collocation point x (

∣∣y − yc
∣∣ <

∣∣x − yc
∣∣), the

integrations in Eq. (9) can then be written as the multi-
pole expansions around yc as follows:

∫

�Sj

G(xi, y)qjdS(y)

∫

�Sj

∂G(xi, y)

∂n(y)
ϕjdS(y)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= ik
4π

∞∑
n=0

(2n + 1)

n∑
m=−n

Mm
n,j(k, yc)Om

n (k, xi, yc),

∫

�Sj

∂G(xi, y)

∂n(xi)
qjdS(y)

∫

�Sj

∂2G(xi, y)

∂n(y)∂n(xi)
ϕjdS(y)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= ik
4π

∞∑
n=0

(2n + 1)

n∑
m=−n

Mm
n,j(k, yc)

Om
n (k, xi, yc)

∂n(xi)
,

(14)

where Mm
n,j are called multipole moments defined by:

Mm
n,j(k, yc) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫

�Sj

Īm
n (k, y, yc)qjdS(y), for gijqj;

∫

�Sj

Īm
n (k, y, yc)

∂n(y)
ϕjdS(y), for fijϕj.

(15)

Information of a group of l source points y that are close
to yc can be added up and stored in one set of multipole
moments Mm

n (k, yc) given by:

Mm
n (k, yc) =

∑
l

Mm
n,l(k, yc). (16)

The multipole moment center can be moved from yc

to yc′ using the moment-to-moment (M2M) translation,
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if
∣∣y − yc′

∣∣ <
∣∣x − yc′

∣∣:

Mm
n (k, yc′) =

∞∑
n′=0

n′∑
m′=−n′

n+n′∑
l=|n−n′|

n+n′−l:even

×(2n′ + 1)(−1)m′
Wn,n′,m,m′,lI

−m−m′
l

×(k, yc, yc′)M−m′
n′ (k, yc), (17)

where Wn,n′,m,m′,l can be calculated using the following
formula:

Wn,n′,m,m′,l = (2l + 1)in
′−n+l

(
n n′ l
0 0 0

)

×
(

n n′ l
m m′ −m − m′

)
, (18)

and
(∗ ∗ ∗

∗ ∗ ∗
)

denotes the Wigner 3j symbol.

The multipole-to-local (M2L) translation, for the
local expansion with the local expansion coefficients
Lm

n (k, xc), can be expressed as:

Lm
n (k, xc) =

∞∑
n′=0

n′∑
m′=−n′

n+n′∑
l=|n−n′|

n+n′−l:even

×(2n′ + 1)(−1)m′
Wn′,n,m′,m,lÕ

−m−m′
l

×(k, xc, yc)Mm′
n′ (k, yc), (19)

where |x − xc| <
∣∣y − xc

∣∣ and
∣∣y − yc

∣∣ <
∣∣x − yc

∣∣.
The local expansion center xc can be moved to xc′

using local-to-local (L2L) translation, given |x − xc′ | <∣∣y − xc′
∣∣:

Lm
n (k, xc′) =

∞∑
n′=0

n′∑
m′=−n′

n+n′∑
l=|n−n′|

n+n′−l:even

×(2n′ + 1)(−1)mWn′,n,m′,−m,lI
m−m′
l

×(k, xc′ , xc)Lm′
n′ (k, xc′). (20)

M2M, M2L, L2L translations are depicted in Fig. 1.
Finally, for a group of source points yj that are far

away from the collocation point xi, gijqj or fijϕj can
be expressed in terms of the local expansion using the
local expansion coefficients obtained from Eq. (19) or
Eq. (20), which are functions of xc and k only:

gijqj or fijϕj = ik
4π

∞∑
n=0

(2n + 1)

n∑
m=−n

Lm
n (k, xc)

×
[

Īm
n (k, xi, xc) + α

∂ Īm
n (k, xi, xc)

∂n(xi)

]
.

(21)

For elements that are close to the collocation point
xi, the conventional direct evaluation of the integrals
(Eq. 9) will be used.

3 Adaptive FMM Algorithm

The adaptive FMM algorithm is described in the
following subsections. It is a modified version of the
one reported in [47] for 3-D potential problems.

The FMBEM uses the iterative solver GMRES in
which the FMM is used to accelerate the vector λ and
matrix A multiplication (Eq. 10). The adaptive FMM
algorithm consists of the following three sects. 3.1–3.3:

3.1 Initialization

An adaptive hierarchical oct-tree of boxes is constructed
by dividing the level 0 box enclosing the problem bound-
ary into smaller and smaller boxes until the number of
elements contained in each leaf (childless box) is less
than the maximum number allowed in a box. On the
same level, two boxes are said to be colleagues if they
share at least a boundary point (a box is considered a
colleague of itself), otherwise, they are said to be well
separated. Every box b starting from level 2 has an inter-
action list, consisting of the children of colleagues of b’s
parent box, which are well separated from b.

3.2 Upward pass

Starting from the lowest level, the multipole moments
are calculated for each box (Eqs. 15,16) and translated
to the box’s parent’s center using M2M (Eq. 17). Con-
tinue the M2M translations until tree level 2 is reached.
After the upward pass, every box down from level 2
should have a multipole moment set.

3.3 Downward pass

Starting from level 2 to the lowest level, the multipole
moments of each box b at level l are translated, by using
M2L translations (Eq. 19), to:

1. Boxes in the interaction list of b.
2. Level l + 1 boxes that are separated from b (if b is

a leaf) by a level l + 1 box.
3. Level l−1 leafs that are separated from b by a level

l box.

The local coefficients of box b are translated, using
L2L translations (Eq. 20), to b’s child boxes.
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For box b at level l, calculate gijqj and fijϕj for each
element i in b using Eq. (21). Add direct evaluation
results (Eq. 9) for element i in box b and elements j in:

1. Boxes that are colleagues of b (if b is a leaf).
2. Leaves that are not b’s colleages but share at least

a boundary point with b (if b is a leaf).
3. Level l′ (l′ > l + 1) boxes that are separated from

b (if b is a leaf) by a level l′ box.
4. Level l′ (l′ < l − 1) leaves that are separated from

b by a level l box.

After the downward pass, the vectors gijqj and fijϕj
are calculated in the iterative solver.

3.4 Further improvements

Some improvements are made to further enhance the
efficiency of the adaptive FMBEM.

3.4.1 Reuse of the preconditioner

The block diagonal preconditioner [50,51] used in the
iterative solver (GMRES) stores some of the coeffi-
cients (gij, fij in Eq. (9)). In the implementation of the
adaptive FMBEM, we calculate the preconditioner once
and store it for all iterations. This provides an option to
reuse these coefficients in the downward pass. Marked
improvement can be achieved, especially when the
numerical integration requires large numbers of quad-
rature points due to the strong variation of the kernels.

3.4.2 Storing coefficients

For problems with undesirable condition numbers, many
iterations have to be carried out before the residue
decreases below the tolerance. In each iteration, al-
though the direct evaluation (Eq. 9) results are the same,
the downward pass still performs direct evaluations in
each iteration. In the adaptive FMBEM, we store all the
coefficients calculated from Eq. (9) in the downward
pass during the first iteration and use them for all the
subsequent iterations. This leads to further savings in
CPU time as can be seen in the numerical examples to
be discussed next.

4 Numerical examples

The adaptive FMBEM has been implemented in a code
using Fortran 90, and tested on several models of
acoustic wave problems. Constant triangular elements

are used in this study, for which one can use singular-
ity subtraction approach for analytically evaluate the
singular and hypersingular integrals involving the static
kernels.

In all the examples, the maximum number of elements
in a leaf is set to 100. The number of multipole and local
expansion terms is set to 10. The GMRES solver will
stop iterations when the residue is below the tolerance
10−3. All the computations were done on a laptop PC
with an Intel 1.6 GHz Centrino processor and 512 MB
memory.

4.1 Radiation from a pulsating sphere

As the first example, a pulsating sphere with radius
a = 1 m and normal velocity v = 10 m/s is used to verify
the adaptive FMBEM for radiation problems. The nor-
malized wave number ka varies from 1 to 10. The total
number of elements is 1,200. The velocity potentials at
(5a, 0, 0) are plotted in Fig. 2, which shows that the con-
ventional BEM with the CBIE fails to predict the sur-
face velocity potential at the fictitious frequencies. The
conventional BEM with the Burton–Miller (CHBIE)
formulation compares well with the analytical solution
at all wave numbers. The adaptive FMBEM with the
CHBIE yields very close results to the conventional
BEM with the CHBIE, which suggests that the trun-
cation error introduced by fast multipole expansions is
very small for problems with ka ranging from 1 to 10.

4.2 Scattering from a rigid sphere

As the second example, a rigid sphere with radius
a = 1 m centered at (0, 0, 0), is used to test the adaptive
FMBEM for scattering problems. The sphere is meshed
with 1,200 elements and impinged upon by an incident
wave of unit amplitude ϕI = e−ikz, with ka being one
of the characteristic wave numbers, π , traveling along
the negative z axis. Sample field points are evenly dis-
tributed on a circle of r = 5a, centered at (0, 0, 0). The
velocity potential curves plotted in Fig. 3 shows that
the adaptive FMBEM using Burton–Miller formula-
tion successfully overcomes the non-uniqueness difficul-
ties at this fictitious frequency and yields very accurate
results.

4.3 Convergence study and comparison
of the computing efficiencies

In the first two examples, it has been shown that the
adaptive FMBEM can successfully overcome the non-
uniqueness difficulties in the BIE for exterior radiation
and scattering problems. In this subsection, we analyze
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Fig. 2 Frequency sweep plot
for the pulsating sphere
model
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the convergence behavior to further validate the
adaptive FMBEM. Again, the pulsating sphere used in
the first example is used here for which the exact solu-
tion is available. The ka is taken to be 1, and the num-
ber of expansion terms is 6. The sample point is taken
at (5, 0, 0).

As shown in Fig. 4, the adaptive and non-adaptive
FMBEM percentage-error curves are very close to that
of the conventional BEM with the Burton–Miller formu-
lation; and all errors decrease very fast as the number
of elements increases, which further demonstrates the
accuracy of the adaptive FMBEM.

The computational efficiencies of the adaptive
FMBEM as compared with the non-adaptive FMBEM
and the conventional BEM are shown in Fig. 5. It is

seen from this figure that the adaptive FMBEM is faster
than the conventional BEM for models with more than
1,000 elements. The adaptive FMBEM is also several
times faster than the non-adaptive FMBEM. Due to
the relatively small sizes of the models for the simple
geometry, the computational efficiency of the adaptive
FMBEM is not so obvious from Fig. 5. For larger mod-
els, to be shown in the last example, the order O(N)
computational efficiency of the adaptive FMBEM will
be demonstrated.

4.4 An engine block model

We further explore the large-scale applicability of the
adaptive FMBEM. The radiation of acoustic waves from
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Fig. 4 Relative errors of the
solutions for the pulsating
sphere model
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an engine block is studied first. The engine block has a
overall dimensions of 3.1 × 2.7 × 3.5 in the x, y and z
direction, respectively, and is meshed with 37,482 con-
stant triangular elements (Fig. 6). A monopole is placed
inside each of the six cylinder holes to create the bound-
ary conditions for the engine block. The wave number
k of the monopole is 1. A total of 531 field points are
placed on a semispherical data collection surface with
radius of 10 to determine the velocity potential distribu-
tion. Figure 7 shows the computed velocity potential dis-
tribution on this data collection surface. The total CPU
time used is 4,515 s for this model which has a relatively
complicated geometry.

4.5 Scattering from multiple objects

A multi-scatterer model (Fig. 8) containing 1,000
randomly distributed capsule-like rigid scatterers in a

2 m×2 m×2 m domain is studied next. Each scatterer is
meshed with 200 boundary elements (Fig. 8), with a total
of 200,000 elements for the entire model. The incident
wave is e−ikx with k = 1. Sample points are taken at
an annular data collection surface with inner and outer
radius equal to 5 and 10, respectively. The computed
velocity potential distribution contour is shown in Fig. 9
for this discretization. Total CPU time used to solve this
large model is 3,352 s using the laptop PC. This mesh may
not be fine enough to capture the interactions among the
scatterers. However, this effect may be sufficiently small
for the field away from the scatterers, such as that on the
data collection surface used here. Models with refined
meshes can be studied using a computer with a larger
memory capacity.

To study the computational efficiency of the adaptive
FMBEM for large-scale models, the BEM model is rerun
with an increasing number of scatterers in the model.
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Fig. 6 An engine block
model solved by the adaptive
FMBEM

Fig. 7 Computed velocity
potential for the engine block
model

The numbers of elements are increased from 1,600 to
200,000, corresponding to 8 to 1,000 scatterers in the
model. The total CPU time used to solve these multi-
scatterer problems is shown in Fig. 10, which exhibits
linear behavior and thus suggests the O(N) efficiency of
the developed adaptive FMBEM.

The above examples clearly demonstrate the
potentials of the adaptive FMBEM based on the
Burton–Miller BIE for solving large-scale acoustic wave
problems. Further studies can be carried out to solve

even larger scale industrial application problems using
the developed code on high-end PCs, workstations or
supercomputers.

5 Discussions

An adaptive fast multipole boundary element method
is presented in this paper for solving 3-D acoustic wave
problems. The Burton–Miller BIE formulation is
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Fig. 8 A multi-scatterer
model with 200,000 elements
and the BEM mesh on each
scatterer

Fig. 9 Computed velocity
potential for the multiple
scatterer model

Fig. 10 Total CPU time used
to solve the multi-scatterer
problem
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employed with the adaptive FMBEM so that the
non-uniqueness difficulties associated with the conven-
tional BIE for exterior domain problems are removed.
It is found that the adaptive FMBEM can be several
times faster than the non-adaptive FMBEM. Several
radiation and scattering models including a model with
200,000 elements are solved successfully on a laptop
PC. These examples clearly demonstrate that the adap-
tive FMBEM is ready to be used to solve large-scale
practical problems.

More improvements can be made for the adaptive
FMBEM. The FMM formulation for Helmholtz equa-
tion used in this study has the computational complexity
of O(p5) for the M2M, M2L, L2L translations, where p is
the expansion order. One may take the advantage of the
recursive relations of the translation operators and use
rotation-coaxial translation decomposition of the trans-
lation operators given by Gumerov and Duraiswami [36]
to reduce the computational complexity to O(p3). The
adaptive algorithm is also capable of accelerating this
new FMM formulation. This will be the future work to
improve the FMBEM.

The developed adaptive FMBEM can be extended to
solve many other acoustic problems, for examples, half-
space problems [52] and problems with thin structures.
Furthermore, the adaptive fast multipole algorithm can
be applied to solver other types of problems, such as 3-D
elastostatic and elastodynamic problems.
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