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Abstract

In this paper, a new cohesive interface model is applied to characterize carbon nanotube (CNT) composites using the boundary

element method (BEM). In the previous BEM models of CNT composites, a rigid-inclusion model was employed to represent the CNTs

in a polymer matrix due to their extremely high stiffness as compared with the polymer. Perfect bonding interface conditions between the

CNT fibers and matrix were used in these earlier models. Very good BEM results for the effective moduli were obtained as compared

with other multi-scale models based on molecular dynamics (MD) and continuum mechanics. However, these simulation results yield

much higher estimates of the effective Young’s moduli of CNT/polymer composites than those observed in experiments of such

composites. This discrepancy is largely due to the interfaces in CNT composites which have been found to be weakly, rather than

strongly bonded. In this work, a new cohesive interface model has been developed by using MD simulations and employed in the BEM

models to replace the perfect bonding interface models. The parameters in the cohesive interface model are obtained by conducting CNT

pull-out simulations with MD and these parameters are subsequently used in the BEM models of the CNT/polymer composites. Marked

decreases of the estimated effective Young’s moduli are observed using the new BEM models with the cohesive interface conditions. The

developed BEM models combined with the MD can be a very useful tool for studying the interface effects in CNT composites and for

large-scale characterizations of such nanocomposites.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Carbon nanotubes (CNT) have been found to have very
high elastic moduli along their axial directions, with an
averaged value around 1TPa, which are ideal for making a
new class of nanocomposites [1–9]. To characterize these
CNT composites using computational methods in order to
extract their effective mechanical properties, various
approaches have been proposed in recent years, including
molecular dynamics [10], continuum mechanics with finite
element method (FEM) and boundary element method
(BEM) [11–16], and multi-scale approaches combining MD
e front matter r 2007 Elsevier Ltd. All rights reserved.
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and continuum models [17,18]. However, these simulation
results in general yield overestimated properties of the
CNT composites, such as higher effective Young’s moduli,
than those observed in experiments [1,19–21]. This may be
due to the fact that in these simulation models, idealized
conditions are often assumed, especially the perfect
bonding conditions at the interfaces between the CNTs
and matrix.
Interface is one of the key factors for load transfer in

CNT composites, besides alignment and dispersion of the
CNTs in a matrix. It is observed in experiments that the
load transfer mechanism in CNT composites is weak due to
the difficulties in making strong bond between CNT fibers
and polymer matrix [1,19–21]. CNTs often interact with the
molecules of the polymer matrix through mainly van der
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Fig. 1. A 3-D infinite elastic domain V embedded with rigid inclusions.
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Waals forces. Therefore, perfect bonding or any other
strong bond interface conditions in various MD or
continuum models of CNT composites will result in
overestimated effective stiffness for the composites. New
interface models, that can account for the weak interac-
tions between CNTs and their host matrix, need to be
developed. In addition, large-scale models that can account
for random alignment and dispersions of the CNT fibers
in a matrix are also needed. These improved models of
the CNT composites will improve the correlation of the
simulation results with the experimental ones. The im-
proved interface models can also be employed to study the
effects of different interface parameters and hence help to
design better CNT composites.

Continuum models have been found to be very close to
MD models and thus adequate for studying the overall
mechanical properties of the CNT composites (see, e.g.,
Refs. [10,22]). Among the continuum models, the FEM
and BEM approaches have been applied. A fast multipole
BEM for large-scale modeling of CNT composites using a
rigid-inclusion approach was developed recently [16]. In
this BEM approach to modeling CNT composites, a rigid-
inclusion model was employed to represent the CNTs in an
elastic polymer matrix due to the high stiffness of the
CNTs. The perfect bonding conditions between the CNT
fibers and matrix were used in these BEM models. Very
large 3-D representative volume elements (RVEs) contain-
ing up to 16,000 CNT fibers and with the total DOFs above
28 millions were successfully solved by using this fast
multipole BEM. Although the rigid-inclusion model may
be sufficient for modeling the CNTs, the perfect bonding
conditions for the interfaces may not be adequate. In this
paper, a new cohesive interface model is presented to
improve the BEM models in Ref. [16] for modeling CNT
composites. This cohesive interface model is developed
with the help of MD simulations of CNT pull-outs from a
polymer matrix under several load conditions. Numerical
results show that the cohesive interface model has a
significant impact to the estimated effective Young’s
moduli of the CNT/polymer composites. Lower effective
Young’s moduli are obtained with the new interface model,
as compared with those based on perfect bonding
conditions. These new results are closer to those observed
in experiments and believed to be more realistic.

This paper is organized as follows: In Section 2, the
boundary integral equation (BIE) formulation and the new
cohesive interface model are presented. In Section 3, the
ways to determine the parameters in the cohesive interface
model using the MD simulations are described. In Section
4, numerical results are presented to show the effects of the
new interface model. Sections 5 and 6 are discussions and
conclusions, respectively, to conclude this paper.

2. The boundary integral equation formulation

We first develop the BIE formulation for the problem
and then discuss the interface conditions to be employed
for this study. Consider a 3-D infinite elastic domain V

embedded with n CNTs (or rigid inclusions, Fig. 1). The
domain V is loaded with a remote stress or displacement
field. The BIE for this problem in domain V can be written
as (see, e.g., Refs. [23–25]):

1

2
uðxÞ ¼

Z
S

Uðx; yÞtðyÞ � Tðx; yÞuðyÞ½ �dSðyÞ þ u1ðxÞ; 8x 2 S,

(1)

where u and t are the displacement and traction vectors,
respectively; S ¼ [

a
Sa with Sa being the boundary

(assumed to be smooth) of the ath inclusion (Fig. 1); and
uN the undisturbed displacement field due to the remote
stress or displacement field. For a finite (interior) domain,
this term will not present in Eq. (1). The two kernel
functions U(x, y) and T(x, y) in Eq. (1) are the displacement
and traction components of the fundamental solution
(Kelvin’s solution), respectively, which can be found in
any references on the BEM (e.g., Refs. [23–25]). All
the variables in BIE (1) are associated with the matrix
domain V.
If we assume that the CNTs can be modeled as rigid

inclusions, then the displacement at any point y on the
CNT enclosed by Sa can be described by rigid-body
motions as follows:

uðCNTÞðyÞ ¼ dþ x� pðyÞ, (2)

where d is the rigid-body translational displacement vector,
x the rotation vector and p a position vector for point y
measured from a reference point (such as the center of the
CNT).
We now propose an interface model for the cohesive

interfaces between the CNTs and matrix (Fig. 2). In this
cohesive interface model, the difference of the displacement
fields u(CNT) in the CNT and u in the matrix is related to the
traction t at the interface (from the matrix domain) in the
following form:

uðCNTÞðyÞ � uðyÞ ¼ CðyÞtðyÞ; 8y 2 Sa, (3)
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where C is a ‘‘compliance’’ matrix to be determined by the
MD simulations (see Section 3).

Considering the BIE for the rigid inclusion (CNT) itself
in the domain enclosed by Sa and the equilibrium of the
tractions at the interface, and using the interface condition
given in Eq. (3), it can be shown that BIE (1) is reduced to

uðCNTÞðxÞ � 1
2
CðxÞtðxÞ

¼

Z
S

Uðx; yÞ þ Tðx; yÞCðyÞ½ �tðyÞdSðyÞ

þ u1ðxÞ; 8x 2 S, ð4Þ

for all CNTs (S ¼ [
a

Sa). This new BIE can be used to solve
for the unknown tractions at the interfaces between the
CNTs and matrix. For perfect bonding interface conditions
(infinitely large stiffness), C ¼ 0 in Eq. (3), and the above
BIE is simplified to

uðxÞ ¼

Z
S

Uðx; yÞtðyÞdSðyÞ þ u1ðxÞ; 8x 2 S, (5)

which is the BIE used in Ref. [16]. More details in deriving
Eq. (5) can be found in Ref. [26].

There are additional unknowns in Eq. (4), that is, the
rigid-body motions of each CNT, expressed by Eq. (2) that
contains six unknowns (d and x vectors) for each CNT.
Thus, additional equations are needed to supplement BIE
(4). These equations can be obtained by considering
equilibrium of each CNT in the form of the following
two equations [26]:Z

Sa

tðyÞdSðyÞ ¼ 0 (6)

Z
Sa

pðyÞ � tðyÞdSðyÞ ¼ 0 (7)

for a ¼ 1, 2, y, n. Eq. (6) represents the equilibrium of the
forces, while Eq. (7) that of the moments, for each CNT.
BIE (4) and Eqs. (2), (6) and (7) are solved simultaneously
to obtain the unknown traction t, and rigid-body motions d
and x for all the CNTs. Once these variables are obtained,
integral representations for the displacement and stress
fields at any point inside the matrix domain V can be
readily evaluated that can applied to evaluate the effective
elastic properties of the CNT composites [26].
The BEM is employed to discretize and solve the BIE
derived above. With the development of the fast multipole
methods (a recent review can be found in Ref. [27]) for
solving BEM equations, large models with several million
DOFs can be solved readily on a desktop computer. The
main idea of the fast multipole methods is that elements of
integration are grouped into clusters (cells) according to
the distance of the elements to the source point. The
integrations on elements in one cluster are computed
together using multipole expansions. Thus, the number of
integrations is reduced and hence the computing time. In
addition, with the use of iterative solvers (such as
GMRES), the full BEM matrix is never formed explicitly
in the fast multipole methods and thus the required
memory is also much less for the multipole BEM. Using
the fast multipole BEM, the solution time of a problem is
reduced to order O(N), instead of O(N3) as in the
traditional BEM with direct solvers (with N here being
the number of equations). In recent years, the fast
multipole BEM has also been demonstrated to be
especially good for solving problems with large numbers
of cracks and inclusions in both 2-D and 3-D cases.
Some of the work on solving inclusion problems using
the fast multipole BEM can be found in Refs. [28–32].
The details of the FMM BEM formulation and imple-
mentation used in this study, including the choice of
preconditioners and other parameters used, can be found
in Refs. [16,26,27].

3. CNT pull-out simulations using MD and the cohesive

interface model

To determine the compliance matrix C in Eq. (3) or
Eq. (4) for the cohesive interface model, detailed molecular
dynamics simulations were carried out using models of a
CNT with surrounding polymer chains. For load condi-
tions, the CNT is pulled out of the polymer in the axial
z-direction or rotated relative to the polymer in the
circumferential y-direction, or the entire model is com-
pressed in the radial r-direction (Fig. 3). With these three
load conditions, the components of the compliance matrix
in the local (z, r, y) coordinates can be determined.
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The models of polyethylene (PE) systems with both
amorphous and crystalline polymer chains are used in the
molecular dynamics simulations. In both cases, neither
cross-link chemical bonds nor coatings are assumed to be
present. The CNT is modeled by the Tersoff–Brenner
potential [33,34]. The interactions between the CNT and
polymer matrix are governed by the Lennard–Jones pair
potential with the 6–12 functional dependence. The PE
system is modeled by the united atom potential [35], which
considers bond stretching, dihedral and torsional effects. In
the case of amorphous polymer chains, the CNT chosen is
a (10, 0) single-walled CNT, 40 Å long, 3.85 Å radius and
with 380 atoms. The system is located in a cell of
40� 40� 40 Å3 and has 4100–4300 atoms, depending on
Fig. 4. CNT pull-out test with amorphous polymer chains: (a) i
the CNT–polymer spacing. The system is simulated using
the MD approach. A representative configuration with
amorphous polymer chains is shown in Fig. 4(a). A
uniform velocity of 5 Å/ps is applied to the boundary
atoms of the CNT, so that it pulls out the CNT from the
matrix (Fig. 4(b)).
Fig. 5(a) shows the CNT embedded in a crystalline

polymer matrix. After the initial configuration is relaxed,
the cohesive forces between the CNT and polymer by either
pulling it out along the axial direction (Fig. 5(b)), or
rotating it with respect to its own axis, are examined.
Plotted in Fig. 6(a) and (b) are the cohesive forces per unit
length versus the axial displacement and rotation angle,
respectively. It is found that the nature of these curves
nitial and (b) final configurations of the CNT pull-out test.
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Fig. 5. CNT pull-out test with crystalline polymer chains: (a) initial and (b) final configurations of the CNT pull-out test.
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Fig. 6. (a) The axial cohesive force between the CNT and polymer as a function of the displacement and (b) the circumferential cohesive force as a

function of the rotation angle [36].

Y.J. Liu et al. / Engineering Analysis with Boundary Elements 32 (2008) 299–308 303
show periodicities that match those of the CNT in the axial
and circumferential directions. This indicates that such
cohesive force can be well characterized in a form similar to
the Mohr–Columb model used in continuum mechanics,
although additional considerations of the periodicity are
needed. Finally, the variations in the slopes of the cohesive
force curves are found to be extremely small which
are subsequently used to determine the coefficients in the
compliance matrix C.

With the molecular simulation results using the above
mentioned models for the CNT in crystalline polymer and
under the three load conditions, the compliance matrix
that relate the traction t and displacement u at the
CNT/polymer interface can be written in the following
form:

Duz

Dur

Duy

8><
>:

9>=
>; ¼

Cz 0 0

0 Cr 0

0 0 Cy

2
64

3
75

tz

tr

ty

8><
>:

9>=
>;, (8)

where Du is the relative displacement of the CNT to the
polymer, and the coupling effects (off-diagonal terms in C)
are ignored in this preliminary study for simplicity. Details
of the molecular simulations can be found in Refs. [36,37].
The compliance matrix in Eq. (8) will be applied at each
node on the interface in the local (z, r, y) coordinates first,
and then transformed to the global coordinate system to
impose the interface model (Eq. (3)) to the BIE (Eq. (4)).

4. Numerical examples

We first verify the BIE (4) with the cohesive interface
model on a problem that has the analytical solution and
then show the effect of the cohesive interface model on the
effective properties of CNT/polymer composites, as com-
pared with earlier models using the perfect bonding
interface model. All the jobs for the numerical examples
were run on a FUJITSU PRIMEPOWER HPC2500
supercomputer at the Academic Center of Computing
and Media Studies of Kyoto University.

4.1. A rigid sphere embedded in elastic medium with the

cohesive interface condition

To validate the BIE for inclusions with cohesive
interfaces, we consider a rigid sphere of radius a in an
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Fig. 7. A rigid sphere in an elastic medium and with cohesive interface

conditions.
Fig. 8. BEM results for the radial displacement ur(a) as a function of C.

Fig. 9. BEM results for the radial traction tr(a) as a function of C.

Table 1

Relative errors in the BEM results for the sphere model versus the

compliance C

C Error in ur(a) (%)

0.1 0.11

0.5 0.54

1.0 0.79

5.0 1.20

10.0 1.28

25.0 1.33

50.0 1.35

100.0 1.36
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infinite elastic medium (Fig. 7) with Poisson’s ratio n,
and Young’s modulus E (an appropriate non-dimensiona-
lization has been applied). The system is subjected to a
remote uniform tri-axial tension sN. We set Cij ¼ Cdij in
the interface condition (3) between the rigid sphere and the
elastic medium. The analytical solution for this problem is
found to be

urðrÞ ¼
s1

3lþ 2m
1�

a� ð3lþ 2mÞC
aþ 4mC

a3

r3

� �
r, (9)

srðrÞ ¼
s1

3lþ 2m
ð3lþ 2mÞ þ 4m

a� ð3lþ 2mÞC
aþ 4mC

a3

r3

� �
, (10)

where ur(r) and sr(r) are the radial displacement and stress
component, respectively; and l and m are the Lamé
constants. The solution in Eqs. (9) and (10) returns to the
solution for the perfect bonding case [26] when C

approaches zero, and yields the solution for a void [38]
when C approaches infinity.

Values of the solution in Eqs. (9) and (10) on the
interface (r=a) are used to verify the BEM solution with
various values of the compliance parameter C. For
convenience, we choose a=1m, sN=1Pa, n=0.3, and
E=1Pa. The number of boundary elements used on the
sphere is 1800. Figs. 8 and 9 show the computed radial
displacement and traction on the interface using the BEM
and compared with the analytical solution given in Eqs. (9)
and (10) for different values of the compliance parameter
C. Very good agreements are obtained as seen in these
figures for all values of the compliance parameter C.
Table 1 shows the relative errors in the interface radial
displacement values obtained by using the developed BEM.
We see that the errors remain less than 1.5% even when C

is large. We also notice that the accuracies for smaller Cs
(closer to the perfect bonding interface case) are higher
than those for larger Cs (closer to the void case). This
example demonstrates that the developed BEM with the
cohesive interface model is valid and accurate for analyzing
such problems.
4.2. Effective Young’s moduli of CNT/polymer composites

We use the same BEM models to estimate the effective
Young’s moduli of CNT/polymer composites as those in
Ref. [16] where perfect bonding interface conditions are
used. The length of the CNT fibers considered is 50 nm, the
radius of the CNT is 0.7 nm and the CNT thickness is
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0.34 nm. The volume of the CNT is calculated by
considering it as a hollow cylinder with the outer radius
equal to 0.7 nm. For the matrix material, Young’s modulus
of 1GPa and Poisson’s ratio of 0.4 are used here.

Triangular constant boundary elements are employed in
the discretization of the interfaces [16,26]. Each element
has 3 degrees of freedom (unknown traction components in
this case) and each CNT has additional six unknown rigid-
body motions. All the integrals are integrated analytically
so that accurate results are ensured even when fibers are
packed tightly and surfaces are very close to each other. A
boundary element mesh with 600 elements for the CNT
fiber is shown in Fig. 10, which yields 1806 degrees of
freedom per CNT fiber (600� 3 plus 6 unknown rigid-body
motions).

The RVEs used to estimate the effective Young’s moduli
are embedded in the infinite domain filled with the matrix
material [16,26]. The CNT fibers are dispersed within the
RVEs. In this way, an exterior problem can be solved using
Fig. 10. The boundary element mesh used for modeling the CNT (with

600 elements).

Fig. 11. A BEM model con
the fast multipole BEM, where boundary elements are only
needed at the interfaces of the fibers and the matrix. Some
data-collection surfaces are placed coinciding with the
surfaces of the RVE (Fig. 11). The displacement and
stresses are calculated on these data-collection surfaces.
Then, the values of these displacements and stresses are
employed to evaluate the effective properties of the
composites. More discussions on the RVEs used in this
work can be found in Refs. [16,26].
The dimensions of the RVEs studied in this case are

300� 60� 60 nm3. Arrays of 5�m�m CNT fibers, with m

being the number of CNTs in the y- and z-directions, are
distributed evenly inside the RVE. However, positions of
the CNTs in the x-direction (CNT axial direction) are
‘‘staggered’’, with a shift equal to half of the CNT length
plus the interval between the CNTs in the x-direction. The
number of CNTs in the x-direction is fixed to 5, while the
number of CNTs in the y- and z-directions is set to m=2, 4,
5, 6, 8, 10, 11, 12 to increase the volume fractions of the
CNTs in the composites. An RVE with 720 (m=12) CNTs
is shown in Fig. 11. A total of 101� 101 (10,201) internal
points are placed evenly on each of the two data-collection
surfaces.
From the molecular dynamics simulations of CNT pull-

out tests, the axial component in the local z-direction of the
C matrix is found to be Cz ¼ 3.506, and the radial
component Cr ¼ 0.02157 (in the non-dimensionalized
system). There is a large difference between the values of
Cz and Cr (more than 160 times). In the present
investigation, we set the coefficients of C to be Cij ¼ Cdij

for simplicity, and carry out computation with various
choices of C. In the determination of the effective moduli,
the effect of the axial slip of the CNT is considered
important. Therefore, we have to pay attention to the
values of Cz used in the analysis.
taining 720 CNT fibers.
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The following three cases of the interface properties are
considered in determining the effective moduli:
�

Fig

mo

res

Ca
Case 1: C ¼ 0 (no interfacial effects, perfect bonding);

�
 Case 2: C ¼ Cr ¼ 0.02157 (strong interfacial cohesive

force);

�
 Case 3: C ¼ Cz ¼ 3.506 (weak interfacial cohesive

force).

The estimated effective longitudinal Young’s moduli
(Eeff) of the CNT composites against the CNT volume
fractions are plotted in Fig. 12 for the three cases of C.
Case 1 is based on the perfect bonding interface model used
earlier [16], which has been shown to be very close to the
results using the MD and continuum mechanics model in
Ref. [18] (Fig. 7 in Ref. [18], with CNT length ¼ 50 nm).
Case 2 represents a strong interfacial cohesive force case
and the estimated effective moduli are very closed to those
in Case 1 as shown in Fig. 12. This suggests again that any
interface models based on a strong cohesive force model
will yield results that are close to those based on perfect
bonding interface models. In other words, perfect bonding
models would be sufficient if strong interfaces do exist.
Case 3 in Fig. 12 represents a weak interface between the
CNTs and the matrix, since Cz ¼ 3.506 is the compliance
tangent to the interface and in the axial direction of the
CNTs. In experiments of CNT composites, slip has been
observed in CNT/polymer composite samples [1,19–21].
The estimated effective Young’s moduli in Case 3 are
indeed much smaller than those in Cases 1 and 2, as
expected. About 50% decreases of the values are observed
for all the CNT volume fractions. These lower values for
the effective moduli are believed to be closer to those in
experimental studies (see Ref. [18] for a few limited
experimental data points that are lower than the MD
simulation results with the strong interface model).
. 12. Effects of the cohesive interface parameter C on the effective

duli of the composites: Case 1: C ¼ 0 (perfect bonding, the earlier

ults in Ref. [16]); Case 2: C ¼ Cr ¼ 0.02157 (large interface stiffness);

se 3: C ¼ Cz ¼ 3.506 (small interface stiffness).
However, direct comparisons cannot be made at this time
due to the lack of data from the experiments with the same
parameters. More studies can be made when the experi-
mental data are available.

5. Discussions

The cohesive interface model based on MD simulation
results is only the first step in developing multi-scale
computational models for such composites. The MD
models need to be further investigated and verified against
experimental results when they are available. The MD
simulation results used to develop the cohesive interface
model reported here are preliminary and only meant to
establish the procedure to show the feasibility. More MD
simulations with different parameters are definitely needed
to find the intricate characteristics of the CNT/polymer
interfaces and their theoretical models. The interface
models should be verified with real physical tests, such as
nano-scale CNT pull-out tests. Although these tests are still
extremely difficult to perform with the current technolo-
gies, these experiments will be very important in validations
of the MD simulation results and the developed interface
models.
From the BEM results in this paper, it is clear that the

interface plays an important role in load transfers and thus
the effective properties of the CNT composites. Variations
in the interface stiffness can have a significant impact to the
results of these estimated properties of the CNT compo-
sites. Establishing a valid and effective interface model is a
crucial step in the modeling and simulations of the CNT
composites. The MD approach employed in this study
seems to be a fundamental and effective method for
establishing such interface models. The BEM results using
the cohesive interface model based on the MD simulations
show marked decreases of the effective Young’s moduli
for the CNT/polymer composites, which are closer to
the current experimental observations. More studies are
needed, for example, to verify if the cohesive inter-
face model is scale dependent, and to develop other
more sophisticated interface models (e.g., with nonlinear
properties).
The developed BEM can be extended readily to account

for more complicated physics or interactions of the CNT
fibers in a composite. Elasticity of the CNTs can be
introduced readily in this model to replace the assumption
of rigidity for the CNT fibers. Curved CNT fibers, which
are often the case in current CNT/polymer composite
samples, can also be considered once the rigid-body
assumption for the CNT fibers is replaced. An effective-
fiber model based on the MD and similar to the one
developed in Ref. [18] can also be combined with the BEM
models. With the development in computing hardware, it is
quite possible in the near future to directly combine
the MD model for the CNTs and the BEM model for the
matrix to develop a multi-scale method that can handle
larger models and account for more intricate physics in
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CNT/polymer composites, such as debonding or other failure
modes, besides evaluations of their effective properties.
6. Conclusion

A new boundary element method using a cohesive
interface model for modeling the CNT/polymer composites
is presented in this paper. The CNTs are treated as rigid
fibers due to their exceptionally high stiffness compared
with many polymer matrices. A cohesive interface model is
proposed based on molecular dynamics simulations. The
estimated effective Young’s moduli using this cohesive
interface model and the BEM are found to be very close to
those reported earlier for strong interface cases and show
marked decreases for weak interface cases. These results
clearly demonstrate the usefulness, efficiency and promises
of the developed BEM as a fast numerical tool for large-
scale characterizations of the CNT/polymer composites.
For future work, elasticity of the CNT fibers can be
considered readily in this BEM and a multi-scale approach
solving the MD and the BEM equations simultaneously
can also be developed.
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