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Abstract A new fast multipole formulation for the
hypersingular BIE (HBIE) for 2D elasticity is presented in
this paper based on a complex-variable representation of the
kernels, similar to the formulation developed earlier for the
conventional BIE (CBIE). A dual BIE formulation using
a linear combination of the developed CBIE and HBIE is
applied to analyze multi-domain problems with thin inclu-
sions or open cracks. Two pre-conditioners for the fast multi-
pole boundary element method (BEM) are devised and their
effectiveness and efficiencies in solving large-scale problems
are discussed. Several numerical examples are presented to
study the accuracy and efficiency of the developed fast mul-
tipole BEM using the dual BIE formulation. The numerical
results clearly demonstrate the potentials of the fast multi-
pole BEM for solving large-scale 2D multi-domain elastic-
ity problems. The method can be applied to study composite
materials, functionally-graded materials, and micro-electro-
mechanical-systems with coupled fields, all of which often
involve thin shapes or thin inclusions.

Keywords Boundary element method · Fast multipole
method · 2D elasticity · Multiple domains

1 Introduction

In the mid of 1980s, Rokhlin and Greengard [1–3] pioneered
the innovative fast multipole method (FMM) that can be
used to accelerate the solutions of boundary integral equa-
tion/boundary element method (BIE/BEM) by several folds,
reducing both the CPU time and memory requirement in
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FMM accelerated BEM to O(N ). Some of the early research
on fast multipole BEM in applied mechanics can be found
in [4–8], which demonstrate great promises of the fast mul-
tipole BEM for solving large-scale engineering problems.
A comprehensive review of the fast multipole accelerated
BIE/BEM in applied mechanics and the research work up to
2002 can be found in [9].

For 2D elasticity problems, there are several fast multipole
BEM approaches developed so far. Greengard et al. [10,11]
developed a fast multipole formulation for directly solving
the biharmonic equations in 2D elasticity. They applied Sher-
man’s complex variable formulation to solve the biharmonic
equation and presented several interesting large-scale prob-
lems. Peirce and Napier [4] developed a spectral multipole
approach, that shares some common features with the fast
multipole methods. In their approach, a set of background
grids are generated and Taylor series expansions of the ker-
nels are used to compute the integrals at the grid points. Inter-
polations of these values give the values at the collocation
points. This approach is of order O(N log N ) in computa-
tional complexity. Richardson et al. [12] proposed a simi-
lar spectral method using both 2D conventional and traction
BIEs in the regularized form. Fukui [13,14] studied both
the conventional BIE (CBIE) for 2D stress analysis and hy-
persingular BIE (HBIE) for large-scale crack problems. In
his work, he first applied the complex variable representa-
tion of the kernels and then employed the multipole expan-
sions in complex variables as originally used for 2D potential
problems [3,15]. Liu [16] further studied Fukui’s approach
and proposed a new set of moments for 2D elasticity CBIE,
which yields a very compact and efficient formulation with
all the translations being symmetrical regarding the two sets
of moments. Large-scale 2D elasticity problems with the total
numbers of equations above one million were solved on a lap-
top computer with 1 GB memory using this new formulation
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[16]. Wang and Yao [17] also studied crack problems using
a dual BIE approach with the CBIE collocating on one sur-
face of a crack and HBIE on the other. They expanded the
kernel functions in their original forms using complex Tay-
lor series in an auxiliary way following the approach in [18].
In [19], the authors further studied 2D multi-domain elastic-
ity problems using the CBIE alone for modeling composite
materials. In another related work using complex variables
[20], Wang et al. presented a fast and accurate algorithm
for solving elastostatic problems involving numerous straight
cracks and circular inhomogeneities in an infinite plane. To
the author’s best knowledge, the fast multipole BEM based
on a dual BIE formulation has not been applied to solve 2D
multi-domain elasticity problems with regular as well as thin
inclusions.

In the study of the fast multipole BEM for 2D problems,
it has been recognized that the approaches based on expan-
sions of the kernels in complex variables [3,10,15,16] are
much more efficient than approaches based on expansions
of kernels in real variables. This is because each term in a
series of complex variables is an analytic function, and its
real and imaginary parts are harmonic functions, which are
solutions of linear elastostatic problems. Thus, faster con-
vergence can be achieved with fewer expansion terms in the
fast multipole BEM using the complex BIE formulations [3,
10,15,16]. The complex variable approach is extended in
this paper to develop a fast multipole BEM for 2D multi-
domain elasticity problems based on a dual BIE formula-
tion where a linear combination of the CBIE and HBIE is
employed.

In this paper, a new fast multipole BEM approach is pre-
sented for 2D multi-domain elasticity problems using a dual
BIE formulation based on the work in [16] for 2D single-
domain elasticity with the CBIE. First, the dual BIE formula-
tion is presented that involves the CBIE for the displacement
and HBIE for the traction. Then, the fast multipole formula-
tions for the CBIE and HBIE are presented, where multipole
formulations for the HBIE are derived by taking derivatives
of the local expansions of the CBIE using complex variables.
All the moments and related M2M, M2L and L2L translations
for the HBIE turn out to be identical to those for the CBIE and
thus very compact and efficient fast multipole BEM code can
be developed using this dual BIE formulation. Two pre-con-
ditioners for the linear system of equations for multi-domain
problems are presented and their efficiencies are discussed.
Numerical examples are presented and the results clearly
demonstrate the effectiveness, accuracy and efficiency of the
fast multipole BEM based on the dual BIE formulation for
analyzing large-scale 2D multi-domain elasticity problems.
Finally, discussions are given on possible improvements of
the developed fast multipole BEM for multi-domain prob-
lems using the dual BIE formulation and its extensions to
other applications.
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Fig. 1 Matrix domain V0 and n inclusions

2 Dual BIE formulation for 2D elastostatics

Consider a 2D elastic domain V0 embedded with n elastic
inclusions Vα (Fig. 1). The conventional BIE (CBIE) for
matrix domain V0 is given by [21–25]:

1

2
ui (x) =

∫

S

[
Ui j (x, y)t j (y) − Ti j (x, y)u j (y)

]

d S(y), ∀x ∈ S, (1)

where ui and ti are the displacement and traction, respec-

tively; S = n∪
α=0

Sα is the boundary of domain V0 (Fig. 1)

(assuming that S is smooth around x); and the two kernel
functions Ui j (x, y) and Ti j (x, y) in Eq. (1) are the funda-
mental solution (Kelvin’s solution) given by [21–25]:

Ui j (x, y) = 1

8πµ(1 − ν)[
(3 − 4ν)δi j log

(
1

r

)
+ r,i r, j −1

2
δi j

]
, (2)

Ti j (x, y) = − 1

4π(1 − ν)r{
∂r

∂n

[
(1 − 2ν)δi j + 2r,i r, j

]

−(1 − 2ν)
(
r,i n j − r, j ni

)}
, (3)

for the plane strain case, in which µ is the shear modulus, ν

Poisson’s ratio, r = r(x, y) the distance between the source
point x and field point y, ni component of the outward normal
at y (Fig. 1), and ( ),i = ∂( )/∂yi . The constant term −1/2δi j

in expression (2), which does not affect the BIE solution, is
added for the convenience in the complex variable BIE for-
mulation [16]. In BIE (1), the integral with U kernel is a
weakly-singular integral, while the one with the T kernel is
a Cauchy principal-value (CPV) integral.
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For each inclusion, the conventional BIE can be written
as:

1

2
u(α)

i (x) =
∫

Sα

[
U (α)

i j (x, y)t (α)
j (y) − T (α)

i j (x, y)u(α)
j (y)
]

d S(y), ∀x ∈ Sα, (4)

for α = 1, 2, . . . , n, in which u(α)
i and t (α)

i are the dis-
placement and traction, respectively, for inclusion α; and
U (α)

i j (x, y) and T (α)
i j (x, y) are given by Eqs. (2) and (3),

respectively, with the shear modulus, Poisson’s ratio and out-
ward normal for inclusion α.

Taking derivatives of BIE (1) (with x inside V0), apply-
ing the stress–strain relation, and letting the source point x
approach the boundary of V0 [26,27], one can obtain the trac-
tion (hypersingular) BIE (HBIE) for the matrix domain V0

as follows:

1

2
ti (x) =

∫

S

[
Ki j (x, y)t j (y) − Hi j (x, y)u j (y)

]

d S(y), ∀x ∈ S, (5)

where the two kernels are:

Ki j (x, y) = 1

4π(1 − ν)r

[
(1 − 2ν)(δi j r,k +δ jkr,i −δikr, j )

+2r,i r, j r,k
]

nk(x), (6)

Hi j (x, y) = µ

2π(1 − ν)r2

{
2
∂r

∂n

[
(1 − 2ν)δikr, j

+ν(δi j r,k +δ jkr,i ) − 4r,i r, j r,k
]

+2ν(nir, j r,k +nkr,i r, j ) − (1 − 4ν)δikn j

+(1 − 2ν)
(
2n jr,i r,k +δi j nk + δ jkni

) }
nk(x),

(7)

with ni (x) being the normal at source point x (Fig. 1). In BIE
(5), the integral with kernel K is a CPV integral, while the
one with kernel H is a Hadamard finite-part (HFP) integral
[27,28].

For each inclusion, the hypersingular BIE can be written
as:

1

2
t (α)
i (x) =

∫

Sα

[
K (α)

i j (x, y)t (α)
j (y) − H (α)

i j (x, y)u(α)
j (y)
]

d S(y),∀x ∈ Sα, (8)

for α = 1, 2, . . . , n, in which K (α)
i j (x, y) and H (α)

i j (x, y)

are given by Eqs. (6) and (7), respectively, using the shear
modulus, Poisson’s ratio and outward normal for inclusion α.

A dual BIE (CHBIE) formulation using a linear combina-
tion of the CBIE and HBIE can be written as:

CBIE + β HBIE = 0, (9)

for the matrix domain using CBIE (1) and HBIE (5), and for
each inclusion α using CBIE (4) and HBIE (8), where β is
the coupling constant. In this study, the choice of β equal to
the size of a typical element in the mesh (and divided by the
Young’s modulus) has been found to be quite effective for all
the cases. More discussions on the selection of β can be found
in [29–34] for other cases. Dual BIE formulations have been
found to be very effective and efficient for solving acoustic
wave, elastic wave, potential and electrostatic problems [29–
34]. Dual BIE formulations are especially beneficial to the
fast multipole BEM since they provide better conditioning
for the BEM systems of equations than the CBIE formu-
lation and thus can facilitate faster convergence (see, e.g.,
[33–35]).

The discretized form of the multi-domain CHBIE (9),
using CBIE (1) and HBIE (5) for the matrix domain and
CBIE (4) and HBIE (8) for the inclusions, can be written as
follows:

Matrix

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S0
S1
S2
.
.
.

Sn

Inclusions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S1
S2
.
.
.

Sn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A00 A01 A02 · · · A0n −B01 −B02 · · · −B0n
A10 A11 A12 · · · A1n −B11 −B12 · · · −B1n
A20 A21 A22 · · · A2n −B21 −B22 · · · −B2n

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.

An0 An1 An2 · · · Ann −Bn1 −Bn2 · · · −Bnn

0 A f
1 0 · · · 0 B f

1 0 · · · 0

0 0 A f
2 · · · 0 0 B f

2 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · A f
n 0 0 · · · B f

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0

u1

u2
...

un

t1

t2
...

tn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B00

B10

B20
...

Bn0

0
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{t0} , (10)

in which u0 and t0 are the displacement and traction vector
on the outer boundary S0, ui and ti the displacement and
traction vector on the interface Si from the matrix domain,
and Ai j and Bi j the coefficient submatrices from the matrix

domain, while A f
i and B f

i the coefficient submatrices from
inclusion i . On the interface, displacement continuity and
traction equilibrium conditions have been assumed.

Rearranging the terms in Eq. (10), an alternative form of
the BEM system of equations is:
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Matrix S0
Matrix S1

Inclusion S1
Matrix S2

Inclusion S2
.
.
.

Matrix Sn
Inclusion Sn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A00 A01 −B01 A02 −B02 · · · A0n −B0n
A10 A11 −B11 A12 −B12 · · · A1n −B1n

0 A f
1 B f

1 0 0 · · · 0 0
A20 A21 −B21 A22 −B22 · · · A2n −B2n

0 0 0 A f
2 B f

2 · · · 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

An0 An1 −Bn1 An2 −Bn2 · · · Ann −Bnn

0 0 0 0 0 · · · A f
n B f

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0

u1

t1

u2

t2
...

un

tn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B00

B10

0
B20

0
...

Bn0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{t0} . (11)

Both systems of Eqs. in (10) and (11) will be tested with the
fast multipole BEM to investigate the computational efficien-
cies. In solving the above linear systems, the matrix–vector
multiplications when using the GMRES iterative solver will
be evaluated using the fast multipole method which will be
discussed next.

3 Fast multipole BEM for the dual BIE formulation

The fast multipole algorithms for solving general 2D elastic-
ity problems using CBIE (1) have been described in details
in [16]. These results are summarized in the following for
completeness. Then the treatment of HBIE (5) is presented
in this section.

In [16], it is shown that the two integrals in the CBIE for
2D elasticity can be represented in complex variables readily
if the fundamental solution Ui j (x, y) and Ti j (x, y) are written
in complex forms using the classical results in 2D elasticity
for fields due to a point force [36–38]. For example, CBIE
(1) can be written in a complex form as follows [16]:

1

2
u(z0) = Dt (z0) − Du(z0), (12)

in which:

Dt (z0) ≡
⎡
⎣
∫

S

U1 j (x, y)t j (y)d S(y)

⎤
⎦

+i

⎡
⎣
∫

S

U2 j (x, y)t j (y)d S(y)

⎤
⎦

= 1

4πµ(1 + κ)

∫

S

[
κG(z0, z)t (z) − (z0 − z)

×G ′ (z0, z)t (z) + κG(z0, z)t (z)
]

d S(z), (13)

representing the first integral with the U kernel in CBIE (1),
and

Du(z0) ≡
⎡
⎣
∫

S

T1 j (x, y)u j (y)d S(y)

⎤
⎦

+i

⎡
⎣
∫

S

T2 j (x, y)u j (y)d S(y)

⎤
⎦

= − 1

2π(1 + κ)

∫

S

{
κG ′(z0, z)n(z)u(z) − (z0 − z)

×G ′′(z0, z)n(z)u(z) + G ′(z0, z)

×
[
n(z)u(z) + n(z)u(z)

]}
d S(z), (14)

representing the second integral with the T kernel in CBIE
(1). In the above equations, i = √−1; ( ) indicates the com-
plex conjugate; u = u1 + iu2, t = t1 + i t2 and n = n1 + in2

are the complex displacement, traction and normal, respec-
tively; z0(= x1 + i x2) and z (= y1 + iy2) represent x and
y, respectively; G(z0, z) = − log(z0 − z) the Green’s func-
tion (in complex form) for 2D potential problems [3,15],
( )′ ≡ ∂( )/∂z0, and κ = 3 − 4ν for the plane strain case.

To derive the complex form of the HBIE (5), one first notes
that the real variable traction ti on the boundary S is given
by:

ti = σi j n j = [λδi j uk,k +µ(ui , j +u j ,i )
]

n j , (15)

in which σi j is the stress tensor and λ = 2µν/(1 − 2ν) for
plane strain problems. It is interesting to note that this relation
has a complex form as follows:

t (z) = 2µ

[
1

κ − 1

(
∂u

∂z
+ ∂u

∂z

)
n + ∂u

∂z
n

]
, (16)

in which t, u, and n are the complex traction, displacement
and normal, respectively. In applying this formula, z and z
are considered as two independent variables, that is, ∂z/∂z =
∂z/∂z = 0. It is straightforward to verify that Eq. (16) is
indeed equivalent to Eq. (15) by simply extracting the real
and imaginary parts of t (z) from (16) and comparing with
the results from expanding (15). A similar formula for the
traction in the normal and tangential directions is given in
[39] and further related discussions can be found in [38].

Applying the relation in Eq. (16), we can show that HBIE
(5) can be written in the following complex form:

1

2
t (z0) = Ft (z0) − Fu(z0), (17)
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where

Ft (z0) ≡ [F1(x) + i F2(x)]t ≡
⎡
⎣
∫

S

K1 j (x, y)t j (y)d S(y)

⎤
⎦

+i

⎡
⎣
∫

S

K2 j (x, y)t j (y)d S(y)

⎤
⎦ = 1

2π(1 + κ)

∫

S

{[
G ′(z0, z)t (z) + G ′(z0, z)t (z)

]
n(z0)

+
[
κG ′(z0, z)t (z) − (z0 − z) G ′′ (z0, z)t (z)

]

n(z0)
}

d S(z), (18)

representing the first integral with the K kernel in HBIE (5),
and

Fu(z0) ≡ [F1(x) + i F2(x)]u ≡
⎡
⎣
∫

S

H1 j (x, y)u j (y)d S(y)

⎤
⎦

+i

⎡
⎣
∫

S

H2 j (x, y)u j (y)d S(y)

⎤
⎦ = − µ

π(1 + κ)

∫

S

{[
G ′′(z0, z)n(z)u(z) + G ′′(z0, z)n(z)u(z)

]

n(z0) +
[
G ′′(z0, z)

(
n(z)u(z) + n(z)u(z)

)

− (z0 − z) G ′′′(z0, z)n(z)u(z)
]

n(z0)
}

d S(z),

(19)

representing the second integral with the H kernel in HBIE
(5).

In the following, we first review the multipole expansions,
local expansions and their translations related to Eqs. (13)
and (14) in the fast multipole BEM for CBIE (12). Then we
derive the same results related to Eqs. (18) and (19) for HBIE
(17).

(a) Multipole expansion for the U Kernel integral
Assuming zc is a multipole expansion point close to z

(Fig. 2), that is, |z − zc| << |z0 − zc|, the multipole expan-
sion for Dt (z0) in (13) with the U kernel is given by [16]:

Dt (z0) = 1

4πµ(1 + κ)

[
κ

∞∑
k=0

Ok(z0 − zc)Mk(zc)

+z0

∞∑
k=0

Ok+1(z0 − zc)Mk(zc)

+
∞∑

k=0

Ok(z0 − zc)Nk(zc)

]
, (20)

1

2

r

cS

0z

z
n

Lz
'Lz

'cz
cz

0

Fig. 2 Complex notation and the related points for fast multipole
expansions

where

Mk(zc) =
∫

Sc

Ik(z − zc)t (z)d S(z), for k ≥ 0, (21)

and⎧⎪⎨
⎪⎩

N0 = κ
∫

Sc
t (z)d S(z);

Nk(zc) = ∫Sc

[
κ Ik(z − zc)t (z) − Ik−1(z − zc)zt (z)

]
d S(z) for k ≥ 1.

(22)

are the two sets of moments about zc with Sc being a subset
of S that is far away from the source point [16]. The two
auxiliary functions Ik(z) and Ok(z) are defined by:

Ik(z) = zk

k! , for k ≥ 0; (23)

O0(z)= − log(z); and Ok(z)= (k − 1)!
zk

, for k ≥ 1.

(24)

(b) Moment-to-moment (M2M) translation
If the multipole expansion point zc is moved to a new

location zc′ (Fig. 2), we have [16]:

Mk(zc′) =
k∑

l=0

Ik−l(zc − zc′)Ml(zc), for k ≥ 0. (25)

Similarly,

Nk(zc′) =
k∑

l=0

Ik−l(zc − zc′)Nl(zc), for k ≥ 0. (26)

These are the M2M translations for the moments when zc

is moved to zc′ . Note that these translation coefficients are
symmetrical for the two sets of moments (Ik−l and conjugate
of Ik−l ) and coefficients Ik−l are exactly the same as used in
the 2D potential case [3,15].
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(c) Local expansion and moment-to-local (M2L)
translation

If zL is a local expansion point close to point z0 (Fig. 2),
that is, |z0 − zL | 	 |zc − zL |. Expanding Dt (z0) in (20)
about z0 = zL using Taylor series expansion, we have the
following local expansion [16]:

Dt (z0) = 1

4πµ(1 + κ)

[
κ

∞∑
l=0

Ll(zL)Il(z0 − zL)

−z0

∞∑
l=1

Ll(zL)Il−1(z0 − zL)

+
∞∑

l=0

Kl(zL)Il(z0 − zL)

]
, (27)

where the coefficients are given by the following M2L trans-
lations [16]:

Ll(zL) = (−1)l
∞∑

k=0

Ol+k(zL − zc)Mk(zc), for l ≥ 0;
(28)

Kl(zL) = (−1)l
∞∑

k=0

Ol+k(zL − zc)Nk(zc), forl ≥ 0.

(29)

(d) Local-to-local translation (L2L)
If the local expansion point is moved from zL to zL ′

(Fig. 2), the new local expansion coefficients are given by
the following L2L translations [16]:

Ll(zL ′) =
∞∑

m=l

Im−l(zL ′ − zL)Lm(zL), for l ≥ 0; (30)

Kl(zL ′) =
∞∑

m=l

Im−l(zL ′ − zL)Km(zL), for l ≥ 0. (31)

(e) Expansions for the T Kernel integral
Through a similar procedure as used for the U kernel inte-

gral in (13), the multipole expansion of T kernel integral
Du(z0) in (14) can be written as [16]:

Du(z0) = 1

2π(1 + κ)

[
κ

∞∑
k=1

Ok(z0 − zc)M̃k(zc)

+z0

∞∑
k=1

Ok+1(z0 − zc)M̃k(zc)

+
∞∑

k=1

Ok(z0 − zc)Ñk(zc)

]
, (32)

where the two sets of moments are:

M̃k(zc)=
∫

Sc

Ik−1(z − zc)n(z)u(z)d S(z), for k ≥ 1; (33)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ñ1 = ∫Sc

[
n(z)u(z) + n(z)u(z)

]
d S(z);

Ñk(zc) = ∫Sc

{
Ik−1(z − zc)

[
n(z)u(z) + n(z)u(z)

]

− Ik−2(z − zc)zn(z)u(z)
}

d S(z), for k ≥ 2.

(34)

These moments are similar to those for the U kernel integral.
It can be shown that the M2M, M2L and L2L translations
remain the same for the T kernel integrals, except for the fact
that M̃0 = Ñ0 = 0. The local expansion for Du(z0) is:

Du(z0) = 1

2π(1 + κ)

[
κ

∞∑
l=0

Ll(zL)Il(z0 − zL)

−z0

∞∑
l=1

Ll(zL)Il−1(z0 − zL)

+
∞∑

l=0

Kl(zL)Il(z0 − zL)

]
, (35)

where the local expansion coefficients Ll(zL) and Kl(zL) are
given by Eqs. (28) and (29) with Mk being replaced by M̃k ,
and Nk by Ñk , respectively.

(f) Expansions for the HBIE
To derive the multipole expansions and local expansions

for HBIE (17), one can simply take the derivatives of the
local expansions for the two integrals in the CBIE, that is,
Eqs. (27) and (35), respectively, and then invoke the consti-
tutive relation in the complex form (Eq. 16). The result of
the local expansion for the first integral Ft (z0) in (18) for the
HBIE is:

Ft (z0) = 1

2π(1 + κ)

{[ ∞∑
l=0

Ll+1(zL)Il(z0 − zL)

+
∞∑

l=0

Ll+1(zL)Il(z0 − zL)

]
n(z0) (36)

+
[
−z0

∞∑
l=1

Ll+1(zL)Il−1(z0 − zL)

+
∞∑

l=0

Kl+1(zL)Il(z0 − zL)

]
n(z0)

}
,

in which, the expansion coefficients Ll(zL) and Kl(zL) are
given by the same M2L translations in (28) and (29), respec-
tively. That is, the same sets of moments Mk and Nk used
for Dt (z0) are used for Ft (z0) directly. Similarly, it can be
shown that the local expansion for the second integral Fu(z0)

in (19) for the HBIE is:
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Fu(z0) = µ

π(1 + κ)

{[ ∞∑
l=0

Ll+1(zL)Il(z0 − zL)

+
∞∑

l=0

Ll+1(zL)Il(z0 − zL)

]
n(z0)

+
[
−z0

∞∑
l=1

Ll+1(zL)Il−1(z0 − zL)

+
∞∑

l=0

Kl+1(zL)Il(z0 − zL)

]
n(z0)

}
, (37)

where Ll(zL) and Kl(zL) are given by Eqs. (28) and (29)
with Mk being replaced by M̃k , and Nk by Ñk , respectively.
Again, the same moments M̃k and Ñk used for Du(z0) are
used for Fu(z0), and all the M2M, M2L and L2L translations
for the CBIE are used for the HBIE.

The details of the fast multipole algorithms for solving 2D
elasticity problems have been described in details in [16]. In
this study, constant boundary elements (straight line segment
with one node) are applied to discretize the BIEs. All the
moments are evaluated analytically, as well as the integra-
tions of the kernels in the near-field direct evaluations.

Pre-conditioners for the fast multipole BEM are crucial
for its convergence and computing efficiency. In this study,
two pre-conditioners are devised based on the two forms of
the BEM system of equations shown in Eqs. (10) and (11).

For Pre-conditioner A, a block diagonal pre-conditioner
based on Eq. (10) is employed. For the matrix domain, a
diagonal submatrix is formed on each leaf using direct eval-
uations of the kernels on the elements within that leaf, while
for the inclusions, the submatrix B f

i in Eq. (10) along the
main diagonal is used for each inclusion.

For Pre-conditioner B, a block diagonal pre-conditioner
based on Eq. (11) is employed. In this case, the following
matrix from the matrix in Eq. (11) is used as the pre-condi-
tioner:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A00 0 0 0 0 · · · 0 0
0 A11 −B11 0 0 · · · 0 0
0 A f

1 B f
1 0 0 · · · 0 0

0 0 0 A22 −B22 · · · 0 0
0 0 0 A f

2 B f
2 · · · 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · Ann −Bnn

0 0 0 0 0 · · · A f
n B f

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (38)

This pre-conditioner is equivalent to solving many inclu-
sion problems as if there is only one inclusion embedded
in an infinite domain in each case. For this pre-conditioner,
larger diagonal matrices need to be inverted for each inclu-
sion, which can be time-consuming if the number of elements
on each inclusion is large. However, this pre-conditioner is
very effective for inclusion problems because the number of

iterations for the GMRES solver can be reduced significantly,
as will be shown in the third numerical example in the next
section. A similar pre-conditioner has been applied in the 3D
fast multipole BEM for modeling rigid-inclusion problems
using the 3D single-domain CBIE [40,41].

The systems in Eqs. (10) and (11) are right pre-condi-
tioned with the above two pre-conditioners, respectively. LU
decompositions of the submatrices in these pre-conditioners
are obtained once and saved in memory in the subsequent
iterations to save the CPU time.

4 Numerical examples

We present several numerical examples to demonstrate the
accuracy and efficiency of the new fast multipole BEM for
2D multi-domain elasticity problems using the dual BIE for-
mulation. In all the examples, the number of terms for both
multipole and local expansions is set to 20, maximum num-
ber of elements in a leaf to 100, tolerance for convergence
to 10−6, and coupling constant β for the dual BIE (CHBIE)
formulation to a typical element size in the mesh.

(a) A concentric cylinder model
We first study a concentric cylinder model (Fig. 3) to verify

the CHBIE formulation for multi-domain problems. In this
case, a solid cylinder (e.g., a fiber) is embedded in a larger
cylinder (e.g., a matrix) with the parameters: a = 1, b = 2,
Young’s modulus E = 1 and Poisson’s ratio ν = 0.3 for
the matrix, and E = 2 and ν = 0.3 for the inclusion. The
model is applied with a radial displacement ur = 1 on the
outer boundary Sb. Plane strain condition is assumed. For this
problem, the analytical solution is available (see, e.g., [42]).

a

b

o

V

S b

Sa

x

y

r

θ

Fig. 3 A concentric cylinder model
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Fig. 4 Distributions of
displacements and stresses in
the matrix along the interface
(r = a) with 60 boundary
elements
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Table 1 Displacement and stresses in the outer cylinder at the interface (r = a)

Total no. of elements Total DOFs ur σr σθ

CBIE CHBIE CBIE CHBIE CBIE CHBIE

60 120 0.32622 0.32510 1.29146 1.28023 0.90755 0.90152

120 240 0.32629 0.32580 1.26852 1.26519 0.90111 0.89914

180 360 0.32614 0.32589 1.26234 1.26084 0.89891 0.89799

240 480 0.32603 0.32588 1.25953 1.25863 0.89780 0.89724

300 600 0.32596 0.32585 1.25794 1.25734 0.89713 0.89676

600 1, 200 0.32578 0.32576 1.25495 1.25479 0.89580 0.89570

1,200 2, 400 0.32569 0.32568 1.25356 1.25352 0.89513 0.89510

2,400 4, 800 0.32564 0.32563 1.25289 1.25288 0.89479 0.89478

3,000 6, 000 0.32562 0.32562 1.25276 1.25275 0.89472 0.89472

6,000 12, 000 0.32560 0.32560 1.25250 1.25250 0.89459 0.89459

9,000 18, 000 0.32560 0.32560 1.25241 1.25240 0.89456 0.89451

Exact solution 0.32558 1.25224 0.89445

Table 1 shows the results of the displacement and stresses
in the matrix domain and at the interface Sa by the fast mul-
tipole BEM using both the CBIE and CHBIE formulations
with the total number of elements used on both the boundary
and interface changing from 60 to 3,000. Both BIE formu-
lations give results of comparable accuracies. With only 60
elements on the outer boundary and the interface (20 ele-
ments on each boundary curve of each domain) , the errors
in the BEM results (σr ) are less than 3%. Figure 4 is a plot
of the displacement and stress components on the interface
from the matrix domain with the 60-element mesh and using
the CHBIE. The stress data for σx and σy in Fig. 4 and for

σθ in Table 1 are computed based on the boundary values
of the displacement and traction fields using interpolations.
These results demonstrate that the multi-domain fast multi-
pole BEM is fairly accurate and stable within a large range
of mesh densities.

(b) A plate with an elliptical inclusion
We next study a square plate embedded with an elliptical

inclusion at the center (Fig. 5) to further test the accuracy
and robustness of the dual BIE formulation. If the Young’s
modulus of the inclusion is much smaller than that of the
plate, the problem is close to the case of a plate with a very
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x
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0
σ2b

A

2a

r
θ

Fig. 5 A square plate with a very “soft” elliptical inclusion at the
center and loaded with σ0

“soft” inclusion or with an elliptical hole, for which analytical
solutions can be used to verify the results. The dimensions
used are: L = 1, b = 0.025, E = 1 and ν = 0.3 for the
plate, and E = 0.00001 and ν = 0.3 for the inclusion. Plane
stress condition is assumed.

We first calculate the maximum hoop stress along the edge
the “hole” with various values of a/b. This maximum stress
is at point A (Fig. 5) and the analytical value for an infinitely
large plate with an elliptical hole is σmax = σ0(1+2b/a). The
computed results using the BEM are listed in Table 2 for five
values of a/b. A total of 100 elements are used on the outer
boundary of the plate, while the number of elements on the
interface (or edge of the “hole”) changing from 100 to 1,600
with a decreasing ratio a/b. Good results are obtained using
both the CBIE and CHBIE formulations. When the ratio a/b
is below 0.05, stress field changes vary rapidly and large
number of elements are required to capture these variations.
Figure 6 shows the hoop stress (computed using boundary
displacement and traction fields) on the edge of the “hole”
when a/b = 1 and compared with the analytical solution for
an infinitely large plate with a circular hole. There are 100
elements on the edge of the “hole” in this case. When a/b
is small, the “hole” becomes an open crack with length 2b
and the maximum stress tends to infinity at point A. Figure 7
shows the crack opening displacement (COD) for a/b = 0.01
with the CHBIE and compared with the analytical solution
for the true crack case (a/b = 0). The results in Figs. 6 and
7 with the CHBIE agree very well with the corresponding
analytical solutions.

This example further demonstrates that the dual BIE for-
mulation can provide accurate solutions even when the
domain of consideration is very thin and there is a large
difference between the material properties for the different

domains. This is consistent with the conclusions with the dual
BIE formulations for solving thin-shape and crack problems
[31,43].

(c) Multiple inclusion problems
We next study multiple inclusion problems using the dual

BIE and the fast multipole BEM. The same domain and
boundary conditions as in the previous example are studied.
Two cases are considered here, one with multiple circular
inclusions (long and unidirectional fibers) under plane strain
condition, and the other with multiple crack-like inclusions
under plane stress condition. Similar studies on multiple elas-
tic inclusions of 2D elasticity using Kolosov–Muskhelishvili
potentials can be found [44–46].

For the circular inclusion case the parameters used are:
a = b = 0.2, fiber volume fraction = 12.57%, E = 1 and
ν = 0.25 for the matrix, and E = 10 and ν = 0.25 for the
inclusions. For the crack-like inclusion case, b = 0.2, a/b =
0.01, crack density = b2 = 4%, E = 1 and ν = 0.25 for
the matrix, and E = 0.00001 and ν = 0.25 for the inclu-
sions (cracks). In both cases, the inclusions are randomly dis-
tributed in the material domains (The cracks, however, are
aligned). Two BEM models for the two cases are shown in
Fig. 8. For the outer boundary 400 elements are used, and on
each interface 200 elements are used. Using more elements
on the outer boundary did not yield significant improvements
in the evaluated effective properties of the materials discussed
below.

The effective Young’s moduli of the materials containing
the circular inclusions and cracks in the x–y plane are eval-
uated using the fast multipole BEM with the CHBIE and
compared with the estimates using homogenization theories
which are based on dilute defect distributions ([47], Table
8.1). To compute the effective moduli Ex , the domain is fixed
at the left edge and applied with a uniform load on the right
edge. Averaged strain are computed from the boundary solu-
tion and then used to estimate the effective modulus (see
[16]). Table 3 shows the BEM results with different num-
bers of the inclusions in the models and excellent results
are obtained for both cases. With the increase of the size of
the models, the evaluated effective Young’s moduli approach
constant values which are close to the analytical estimates in
[47], as expected.

Figure 9 is a plot of the CPU times used for the calculations
using the fast multipole BEM for the two cases studied and
with the two pre-conditioners. The computer used for these
calculations is with an Intel Pentium D 3.2 GHz processor
and 2 GB memory size. For the circular inclusion case, the
numbers of iterations using pre-conditioner A range from 141
to 550, while those using pre-conditioner B range from 11 to
16, with the tolerance of 10−6. For the crack-like inclusion
case, the numbers of iterations using pre-conditioner A range
from 29 to 41, while those using pre-conditioner B range from
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Table 2 Computed hoop stress σx (x σ0) in the plate at point A

a/b No. elements on interface Total DOFs σx (x σ0) at point A

CBIE CHBIE Analytical

1.0 100 600 3.01 3.01 3.00

0.5 200 1,000 5.01 5.03 5.00

0.1 500 2,200 21.06 21.42 21.00

0.05 800 3,400 41.17 41.58 41.00

0.01 1,600 6,600 206.78 207.65 201.00

Fig. 6 Hoop stress around the
edge of the “hole” when
a/b = 1
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Fig. 7 Crack opening
displacement (COD) when
a/b = 0.01
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Fig. 8 Elastic domains
embedded with elastic
inclusions: (a) circular
inclusions (fibers) with
Ei /E0 = 10; (b) crack-like
inclusions with
Ei /E0 = 0.00001 and
a/b = 0.01

Table 3 Computed effective moduli for the materials with circular and crack-like inclusions

No. of inclusions Total DOFs Effective moduli Ex (×E0)

Circular inclusions Crack-like inclusions

2 × 2 4,000 1.2678 0.7631

4 × 4 13,600 1.2728 0.8024

6 × 6 29,600 1.2596 0.7808

8 × 8 52,000 1.2605 0.7923

10 × 10 80,800 1.2649 0.7891

12 × 12 116,000 1.2640 0.7902

14 × 14 157,600 1.2635 0.7886

16 × 16 205,600 1.2651 0.7900

18 × 18 260,000 1.2642 0.7897

20 × 20 320,800 1.2644 0.7885

Analytical estimates [47] 1.2491 0.7992

Fig. 9 CPU times used for the
multiple circular and crack-like
inclusion models
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12 to 14. Significant advantages of using pre-conditioner B
are observed in both cases. However, larger memory size are
needed for using pre-conditioner B when the LU decompo-
sitions are saved in core as in this study. The last two larger
models are not solved by the BEM with pre-conditioner B due
to this constraint with the computer used. It is also observed
that the dual BIE provides much better conditioning for the
crack-like inclusion problems, based on the fact that much
faster convergence is achieved for the crack-like inclusion
problem than for the circular inclusion problem.

These results clearly demonstrate the accuracy and effi-
ciency of the fast multipole BEM with the dual BIE for-
mulation for solving large-scale multi-domain 2D elasticity
problems.

5 Discussions

A new fast multipole BEM approach for solving large-scale
multi-domain 2D elasticity problems using a dual BIE for-
mulation is presented in this paper, based on the work in [16]
which is for 2D single-domain problems with the CBIE only.
The fast multipole formulations are presented in this paper
for both the CBIE and HBIE for the 2D elasticity problems.
These formulations are based on a complex variable approach
that yields very compact results. For the HBIE, local expan-
sions can be obtained by directly taking derivatives of the
local expansions for the CBIE using the complex notation.
The same moments and all M2M, M2L and L2L translations
as used for the CBIE can be applied for the HBIE. Three
numerical examples are presented that clearly demonstrate
the accuracy and efficiency of the developed fast multipole
BEM with the dual BIE for solving large-scale multi-domain
2D elasticity problems.

Multi-domain problems present new challenges to the fast
multipole BEM due to the less favorable conditioning of the
systems of BEM equations. Due to the mismatch of the mate-
rial properties in different domains, the conditioning of the
BEM systems can deteriorate. Careful selection of the sys-
tems of equations to be used with the fast multipole BEM is
critical for solving multi-domain problems. The pre-condi-
tioner B in Eq. (37), which is based on the BEM system in
Eq. (11), is found to be very efficient in reducing the number
of iterations in the fast multipole BEM solutions, although
it requires larger memory size if the pre-conditioners are to
be stored in memory in order to reduce the CPU time. For
special cases, for example, when all the inclusions have the
same geometry and same material properties, the BIE equa-
tions for the inclusions can be solved once and eliminated
from the whole system of the equations for the multi-domain
problems, leaving only the equations from the matrix domain
to be solved using the fast multipole BEM (see, e.g., [19]).
However, this simplification is not applied in this current
work with the intent to leave the developed fast multipole

BEM code as general as possible so that it can be applied
to solve a broader range of 2D elasticity problems, such as
modeling of functional-grade materials with inclusions hav-
ing different geometries and mechanical properties.

To improve the accuracy and efficiency of the fast multi-
pole BEM for solving large-scale models, higher-order ele-
ments (such as linear and quadratic elements) can be applied
to replace the constant elements. For problems with curved
boundaries or slender structures in bending, use of constant
elements for the displacement fields is not efficient and large
number of elements may be needed. Using higher-order ele-
ments will be especially beneficial to the HBIE since the
finite-part integrals can be evaluated more accurately on
curved boundaries with higher-order elements than with the
constant elements as used in this study. Parallel computing
with the fast multipole BEM [5,8,48] can also be employed
to further improve the computational efficiencies. Field eval-
uations inside the domain can be performed with the fast
multipole BEM as well [49].

The developed dual BIE approach together with the effi-
cient fast multipole BEM can be extended to study other 2D
problems, such as modeling of composite materials, func-
tionally-graded materials (FGMs), and micro-electro-
mechanical-systems (MEMS), all of which often involve thin
inclusions. The developed code can also be applied to study
crack propagation problems [17] which can have significant
advantages over other methods. Combining the fast multipole
BEM code for elasticity problems with the potential [15,50]
or Stokes flow [35] code to study coupled fluid–structure
interaction problems is also possible and will be an inter-
esting research topic for applications in analyzing MEMS
devices and biological systems.
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