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A fast multipole boundary element method (FMBEM) is developed for the analysis of 2D linear viscoelastic composites with 
imperfect viscoelastic interfaces. The transformed fast multipole formulations are established using the time domain method. 
To simulate the viscoelastic behavior of imperfect interfaces that are frequently encountered in practice, the Kelvin type model 
is introduced. The FMBEM is further improved by incorporating naturally the interaction among inclusions as well as elimi-
nating the phenomenon of material penetration. Since all the integrals are evaluated analytically, high accuracy and fast con-
vergence of the numerical scheme are obtained. Several numerical examples, including planar viscoelastic composites with a 
single inclusion or randomly distributed multi-inclusions are presented. The numerical results are compared with the developed 
analytical solutions, which illustrates that the proposed FMBEM is very efficient in determining the macroscopic viscoelastic 
behavior of the particle-reinforced composites with the presence of imperfect interfaces. The laboratory measurements of the 
mixture creep compliance of asphalt concrete are also compared with the prediction by the developed model.  
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1  Introduction 

Recent developments in technology, such as gas turbines, 
jet engines, nuclear power plants and space crafts, have 
placed severe demands on high performance of materials, 
especially stability. However, most engineering materials 
are time-dependent materials. Because of the time-effect, 
actual materials will possess viscous and elastic properties 
simultaneously, making practical structures suffer from 
creep, relaxation and hysteresis problems. Consequently, 
the time-dependent or viscoelastic behavior of materials has 
been of great importance. Full understanding of the mecha-

nism and response of viscoelastic materials under external 
loadings will help us to provide the scientific basis for pre-
dicting the service-life of engineering structures or compo-
nents.  

The boundary element method (BEM) is a promising 
numerical tool for serving this purpose, due to its features of 
dimensionality reduction and high accuracy. Many investi-
gators have applied BEM to the investigation of viscoelastic 
characteristics of materials and structures. Along with the 
BEM, the most commonly used technique is the Laplace 
transform method [1−4]. By the elastic-viscoelastic corre-
spondence principle [5], the viscoelastic governing equa-
tions can be transformed into a set of corresponding elastic 
governing equations using the Laplace transform. The solu-
tions are then transformed back to the time domain by nu-
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merical methods. Mesquita et al. [6−9] presented a bound-
ary element alternative procedure for Boltzmann and Kelvin 
viscoelasticity based on the assumption of viscoelastic con-
stitutive relations and weighted residual technique. They 
produced the differential systems of equations with respect 
to time variable, which were solved by an appropriate time 
marching process. Combining the approach based on the 
two-dimensional version of Somigliana’s formula with the 
time-marching procedure described for the viscoelastic 
analysis by Mesquita et al., Huang et al. [10] considered the 
problem of an infinite, isotropic viscoelastic plane containing 
randomly distributed elastic inclusions. Sensale et al. [11−13] 

transformed the domain integral into a boundary integral us-
ing the dual reciprocity method for the stress analysis of bod-
ies with aging viscoelastic constitutive relations. Birgisson et 
al. [14−16] employed a special boundary element-based 
method, called the displacement discontinuity method, along 
with an explicit time-marching scheme, to model the 
quasi-static response of linear viscoelastic materials. 

The numerical methods based on boundary integral equa-
tion mentioned above only consider composites with perfect 
interfaces. Actually, it is inadequate to describe the physical 
nature and macromechanical behavior of engineering materi-
als, such as fiber-reinforced composites, by considering the 
bond between matrix and fibers as perfect. However, when 
the interface is imperfect, additional efforts should be made 
in the analysis. Lene and Leguillon [17] modeled the interfa- 
cial zone by a spring layer with vanishing thickness. It is as- 
sumed that the tractions are continuous while jumps of dis- 
placements are allowed to cross the interface, and these 
jumps are proportional to the conjugate tractions transmitted 
across the interface. Such an interface model is elastic in na- 
ture. However, when the composites present apparent viscoe- 
lastic characteristic, it will be more suitable to describe the 
behavior of bond adhesives by means of viscoelastic inter-
faces. Hence, in the present paper, the Kelvin type model is 
employed to describe the viscoelastic interfaces. Actual inter-
action among inclusions and elimination of the phenomenon 
of material penetration are both taken into consideration. 

Analysis of viscoelastic problems often requires multi- 

time-step computation to predict accurate creep or relaxation 
behavior of the bodies under external loadings. Besides, an 
iterative algorithm should be employed to ensure that the 
material penetration phenomenon will not occur. Therefore, 
when we are dealing with large-scale models, such as 
multi-inclusion composites, the computation time and storage 
space will increase significantly. The conventional boundary 
element-based method requires O(N2) operations using itera-
tive solvers (with N being the number of equations) because 
of its dense and non-symmetrical matrices. Thus conventional 
BEM-based approach is not suitable for solving large-scale 
viscoelastic problems with imperfect interfaces. Fast multi-
pole method (FMM) is a new algorithm developed recently 
for numerical solution of BEM. This algorithm has been 
proved that it can solve system equations formed by BEM 

with higher efficiency and lower storage than that of the tra-
ditional solvers.  

For elasticity problems, there have been a lot of works re-
ported on fast multipole BEM approaches. Greengard et  
al. [18, 19] developed a fast multipole formulation for di-
rectly solving the biharmonic equations using Sherman’s 
complex variables formulae. Peirce and Napier [20] gave a 
spectral multipole approach similar to the FMMs, reducing 
the complexities of both memory and operation to O(NlogN). 
Yao et al. [21] and Wang et al. [22] presented a fast and ac-
curate algorithm for modeling composite materials and crack 
problems. They applied complex Taylor expansion and adap-
tive tree structure to obtain a new shift of multipole expan-
sion for two-dimensional elastostatics. Liu et al. [23−25] 
proposed compact and efficient fast multipole BEM formula-
tions for both 2D and 3D elasticity problems. In Liu’s ap-
proach for 2D elastostatics [24], the displacement and traction 
kernels are represented using two complex analytic functions, 
and the two functions are first re-grouped and then expanded 
to form two moments for each kernel. In their work, they 
reduced the CPU time and memory usage in the fast multi-
pole accelerated BEM to O(N). This approach has recently 
been extended to 2D multi-domain elasticity problems [26]. 
A systematic description and various applications of the fast 
multipole BEM can be found in ref. [27]. In our previous 
study [28], we have developed the formulations of fast mul-
tipole BEM for the elastic analysis of composites which ac-
counts for the effect of bonding imperfection between matrix 
and inclusions. 

In this paper, the formulations of fast multipole BEM 
analysis of 2D viscoelastic composites with imperfect vis-
coelastic interface are presented. First, the boundary integral 
equation for 2D viscoelasticity is expressed in the time do-
main, which is discretized using a special numerical scheme 
[29]. The multipole expansion formulations are developed. 
Then, the Kelvin type viscoelastic model is adopted to simu-
late the interface bonding imperfection. Based on this model, 
a system of equations for 2D viscoelastic solids containing 
elastic particles but with in-between viscoelastic interfaces is 
formulated. Analytical solutions for a single-embedded inclu-
sion and randomly distributed multi-inclusion planar viscoe-
lastic composites with imperfect interfaces are also devel-
oped. Numerical results are presented and verified by the 
analytical solutions, and the accuracy and efficiency of the 
approach are illustrated. The developed FMBEM is finally 
used to predict the creep compliance of an asphalt concrete, 
which is a typical viscoelastic composite. The laboratory 
measurements of the mixture creep compliance are com-
pared with that predicted by the developed BEM model. 

2  FMBEM for 2D viscoelasticity 

According to the viscoelastic reciprocity theorem, the 
boundary integral equation for 2D isotropic viscoelasticity 
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without body force can be expressed as follows [29,30]: 
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where S is the boundary of domain V0, which is occupied by 
the viscoelastic body; Cij(x) is a free term determined from 
the shape of the boundary S at point x; ui and pi are the dis-
placements and tractions respectively; Pij and Uij are the 
fundamental solutions for an infinite viscoelastic body sub-
jected to a Heaviside unit step force, and they can be de-
fined as follows: 
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Functions J1(t), J2(t), J3(t) and J4(t) are called four basic 
functions, which can be obtained by Laplace inverse trans-
form from their counterparts in the Laplace domain 
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with s being the transform parameter. Note that the consti-
tutive equations for a linear viscoelastic material can be 

written in a differential form as 
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To solve eq. (1) with respect to time t, we choose the 
trapezoidal rule for discretization, and obtain 
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Similar to the 2D FMBEM for elasticity problem, we can also 
easily establish the multipole expansion formulations based 
on eq. (14). If we employ the constant boundary elements, the 

integrals in eq. (14), such as ( , , ) ( , )d ( )ij j
S
U p t Sτ∫ x y y y  and 
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By means of the multipole expansions developed in ref. 

[24], we can further rewrite eqs. (16) and (17) as follows: 

 

0 0
0

0 1 0
0

0
0

1
( , , ) ( ) ( , , )

16

         ( ) ( , , )

         ( ) ( , , ) ,

p k c k c
k

k c k c
k

k c k c
k

D z t O z z R z t

z O z z A z t

O z z W z t

τ τ

τ

τ

∞

=

∞

+
=

∞

=

⎡
= −⎢π ⎣

+ −

⎤
+ − ⎥

⎦

∑

∑

∑

 

(18)

 

 

0 0
1

0 1 0
0

0
0

1
( , , ) ( ) ( , , )

8

 ( ) ( , , )

 ( ) ( , , ) ,

u k c k c
k

k c k c
k

k c k c
k

D z t O z z Y z t

z O z z B z t

O z z V z t

τ τ

τ

τ

∞

=

∞

+
=

∞

=

⎡
= −⎢π ⎣

+ −

⎤
+ − ⎥

⎦

∑

∑

∑

 

(19)

 

where Rk, Ak, Wk, Yk, Bk, and Vk are called moments about zc 
which are independent of the collocation point z0 and only 
need to be computed once; they are given by 
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Up to now, the fast multipole BEM formulations for 2D 
viscoelasticity have been obtained. Since the M2M, M2L 
and L2L translations remain the same as those for the elas-
tostatic problems, it is not difficult to program the present 
2D viscoelastic counterpart based on the fast multipole 
BEM code for 2D elastic problems. Detailed analysis and 
formulations of the subsequent multipole translations and 
implementations of FMM can be found in ref. [24]. 

3  FMBEM modeling of multi-inclusion com-
posites with interfacial imperfection 

Consider a 2D viscoelastic domain V0 containing N elastic 
inclusions Vα. The conventional boundary integral equation 
(BIE) for the matrix domain V0 can be written as eq. (1), 
while each inclusion domain can be written as 
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where Sα is the boundary of the αth inclusion.  
After discretization with the boundary elements, eqs. (1) 

and (30) can be written in a matrix form for the αth inclu-
sion as follows: 
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can be obtained from earlier time steps by the matrix. 
For an imperfect interface, we use a Kelvin type viscoe-

lastic interface, in which a linear spring and a linear dashpot 
are connected in parallel. It can be written in the following 
mathematical form: 
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where ruΔ  and uθΔ  are the relative sliding displace-

ments between the matrix and inclusions, ru t∂Δ ∂  and 

u tθ∂Δ ∂  are the sliding velocity. 0rk , 0k θ  
and 1rk , 1k θ  

are the elastic constants and viscous coefficients of the vis-
coelastic interface, respectively. Therefore, we can get the 
boundary conditions in the following matrix form: 
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in which Qα is the coordinate transformation matrix to 
translate the nodal values from the α th local element coor-
dinate system to the global coordinate system. To avoid an 
unrealistic radial overlap of the two materials at the inter-
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Simialr to eq. (14), we can also discretize eq. (35) by the 
trapezoidal rule. Therefore, according to eqs. (35) and (36), 
eqs. (31) and (32) can be rewritten in the time domain as 
follows: 
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where ( 2) (0)h α
α′ =k k  and *

f
α′R  is the entire history 

from earlier time steps by the α th inclusion. The final 
equation system for the 2D viscoelastic solid with multiple 
elastic inclusions, which involves the effect of viscoelastic 
imperfect interfaces, can be obtained as 
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Preconditioner is a crucial part to ensure the efficiency 
and accuracy of the fast multipole BEM. The preconditioner 
used here for eq. (40) is a block diagonal preconditioner 
proposed by Liu [26]. In the matrix domain, a diagonal 
sub-matrix is formed on each leaf by direct evaluations of 
the kernels within that leaf, while in the inclusions domain, 
the sub-matrix ′ ′-i i iG H k  along the main diagonal is used 

for each inclusion. However, it should be mentioned that in 
the implementation of such a model by numerical method 
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presented above, a numerical trial should be made. First, 
calculation based on the interface condition in eq. (37) is 
implemented, and then the sign of normal stress at all nodal 
points along the interface is checked. The interface condi-
tion should be corrected to eq. (38) at those nodal points 
where compressive normal stresses appear. The calculation 
then proceeds in such an iterative way. The calculation will 
not be ended until at any nodal point the same interface 
condition, either eq. (37) or eq. (38), is satisfied. 

4  Numerical examples 

Several examples are considered here to verify the 
proposed numerical procedures of the fast multipole BEM 
for 2D multi-domain viscoelastic problems with interfacial 
bonding imperfection. Analytical solutions are also devel-
oped here to compare with the numerical results. In this 
paper, two commonly used models are represented to 
simulate the linear viscoelastic behavior of the real materi-
als. Figure 1(a) shows the Burgers model (Type 1) which 
describes a body that has instantaneous elasticity, delayed 
elasticity and viscous flow. It can also be used to simulate 
the materials working under high stress or at high tem-
perature. Figure 1(b) presents the two Voigt+one spring 
model (Type 2) which is commonly used, because it can fit 
experimental curves better. Thus, we often use it to de-
scribe the viscoelastic solids in engineering, such as asphalt 
concrete and rock. The operators ( )P s′ , ( )Q s′  for these 

two types can be written as 
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for Type 1, and 
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for Type 2. 

4.1  Analytical solution for concentric cylinder model 

We first study a concentric cylinder model (Figure 2) to 
verify the BEM programme for multi-domain problems 
with imperfect viscoelastic interface. In this case, a solid  

 

Figure 1  Two models representing the linear viscoelastic behavior. 

 

Figure 2  Concentric cylindrical model. 

cylinder inclusion is embedded in a larger cylinder matrix, 
where the matrix is isotropic and linear viscoelastic (of 
Type 1), and the inclusion is isotropic elastic. Applying the 
theory of elasticity for plane strain case in the polar coordi-
nate system, one can derive the following expressions for 
the radial displacements and stress fields in the inclusion 
and matrix, respectively 
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To reflect the interface imperfections, eq. (33) is intro-
duced. Besides, a radial displacement δ or a radial tension δ 
is prescribed on the outer boundary of the matrix r=b here. 
Thus the boundary and interface conditions are 

 :r b= m
ru δ=  (condition 1) or m

rσ δ= (condition 2), (47) 

 r a= : 0 1 .m f r
r r r r r

u
k u k

t
σ σ

∂Δ
= = Δ +

∂
 (48)

 

Effective elastic material properties can be directly con-
verted to viscoelastic properties using the correspondence 
principle on the basis of Laplace transform. The correspon-
dence process is performed by replacing each elastic 
modulus with the corresponding modulus related to time. It 
should be mentioned that the elastic modulus of the inclu-
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sion and the bulk modulus of each phase are assumed con-
stant. Therefore, three constants Af, Am and Bm can be solved 
by combining eqs. (43)−(48) in the Laplace domain, 
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for con`dition 2, and 
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For example, the radial displacements of the inclusion in 
the Laplace image space at r=a under condition 1 can be 
written as 
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The following material parameters for the matrix are 
used in numerical and analytical calculation: 

 1 2

1 2

10 MPa,  25 MPa,

750 MPa,  35 MPa s.

E E

η η
= =

= = ⋅
 (54) 

Three different values of Young’s modulus of the inclu-
sion Ef=1 MPa, 10 MPa and 100 MPa (Figures 3 and 4), 
and five different values of the interface parameters 
k0r=k1r=k=0.1, 1, 10, 100 and 108 (Figure 5) have been con-
sidered. The results calculated by the fast multipole BEM 
are compared with the exact analytical solution presented 
above. It is shown that the FMBEM results are in excellent 
agreement with the analytical solutions, which indicates that 
the developed fast multipole BEM is adequate to predict the 
viscoelastic behavior of multi-inclusion composites with 
imperfect viscoelastic interfaces. 

 

 

Figure 3  Comparison between analytical and numerical results of 
stresses at r=b for different values of Ef (MPa) (condition 1, k0r=10 MPa/m, 
k1r=100 MPa/m).  

 

 

Figure 4  Comparison between analytical and numerical results for different values of Ef: (MPa). (a) Displacement of inclusion; (b) displacement of matrix, 
both at r=a (condition 1, k0r=10 MPa/m, k1r=100 MPa/m).  



 ZHU XingYi, et al.   Sci China Tech Sci   August (2010) Vol.53 No.8 2167 

 

Figure 5  Comparison between analytical and numerical results for different values of k (MPa/m). (a) Displacement of inclusion; (b) displacement of matrix, 
both at r=a (condition 2, Ef=10 MPa). 

4.2  Multi-inclusion problems 

We next study the properties of multi-phase planar viscoe-
lastic composites subjected to plane strain assumption. The 
model examined is that of randomly distributed circular 
elastic inclusions embedded in a matrix possessing linear 
viscoelastic property, which is modeled by Burgers type 
model. First, we establish a micromechanical method, based 
on the Mori-Tanaka method, for determining effective 
composite properties when the matrix is viscoelastic with 
imperfect viscoelastic interface. Due to the isotropy of the 
overall stiffness tensor, the effective shear modulus G and 
planer bulk modulus K for the composite with circle inclu-
sions, estimated by Mori-Tanaka method, are expressed in 
the Laplace domain as follows: 
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where K0 and 0G�  are the bulk modulus and viscoelastic 

shear modulus for the matrix, f is the volume content of the 

inclusions, and 1K ′� , 1G′� are the effective bulk modulus 

and effective shear modulus for the inclusion, respectively, 
in which the interface effect has already been taken into 
account. In the computations, the following interface con-
stants are taken equal in magnitude 

 0 0 0 1 1 1,  .r rk k k k k kθ θ= = = =  (57) 

According to the equivalent method idea proposed by 
Achenbach and Zhu [31], we can further get the effective 
shear modulus and effective bulk modulus for the inclusions 

with viscoelastic interface in the image domain. It can be 
obtained as follows: 
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Based on the relationship between the elastic constants, the 
effective Young’s modulus of the composite can be ob-
tained quite easily for the two-dimensional cases in the 
Laplace domain: 
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.
GK
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=
+

� ��
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Using the same method and hypothesis as Example 1 dis-
cussed, the constitutive equation of the composite in the 
Laplace image domain becomes 

 ( ) ,s
sE

σε = �  (61) 

where σ  is the uniaxial tension acting on the opposite 
edges, ε(s) is the average strain of the composite along the 
tensile direction in the image domain. 

By Laplace integral inverse transform, one can obtain 
from eq. (61) the time variation of the average strain of the 
composite along the tensile direction. 

For the multi-inclusion model, analytical solutions are 
obtained for the average strain, which can be employed to 
compare with the developed FMBEM results. For calculat-
ing the average strain along the tensile direction, we con-
sider a square domain subjected to a uniform unit uniaxial 
tension in x-direction, see Figure 6. It has been reported by 
Hu et al. [32] that the results tend to be stable when the 
number of inclusions is greater than 100, and the body pre-
sents apparent homogeneous and isotropic characteristic. 
Therefore, in our models, the number of inclusions is kept  
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Figure 6  Viscoelastic composite containing multiple elastic circular 
inclusions. 

to be 100, and the radius of inclusions is changed with the 
volume content of the inclusion. Once all fast multipole 
boundary functions are determined, one can use the results 
to estimate the average strain of materials with multi- inclu-
sions. The average strain in the transverse direction is de-
termined by 

 ,AB CD
x

U U

L
ε

+
=  (62) 

where L is the length of the square sheet, and U  is the 
effective displacement calculated from the fast multipole 
BEM results, and it can be written as 
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e e
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U d
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Γ
Γ

=
∑∫
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where Ue is the displacement of the element. In civil engi-
neering, creep problems often occur in many cases, such as 
pressure pipes and asphalt pavement. It is known that most 
engineering materials more or less have the viscoelastic 
characteristic and this property will make many structures  

suffer from creep problems under some environmental 
conditions. Here, we also investigate the creep problem of 
the multi-inclusion composite from the numerical results: 

 ( ) ,xJ t
ε
σ

=  (64) 

where ( )J t  is the creep compliance, which is defined as 
the strain function in time resulting from the application of a 
unit step stress. In linearly viscoelastic materials, the creep 
compliance is independent of the stress level. 

The analytical and numerical results for the average 
strain of the multi-inclusion composite are calculated for the 
following Burgers model parameters for the matrix: 

 1 2

1 2

2.328 MPa,  1.389 MPa,

752.516 MPa,  31.549 MPa s.

E E

η η
= =

= = ⋅
 (65) 

The numerical solution is obtained by using 200 ele-
ments on the outer boundary and 20 elements on each inter-
face of the inclusions. When k0=k1=10, the increase of the 
interface parameters has little effect on the overall proper-
ties of the composite. It is noted that the fast multipole BEM 
prediction shows good agreement with the analytical solu-
tion. Figures 7 and 8 give the effect of the interface pa-
rameters on the average strain when Ef=1 Mpa and Ef=100 
MPa for the Burgers model. The corresponding average 
strain increases with the decrease of the interface parame-
ters. It indicates that a stiff inclusion surrounded by a weak 
interface behaves as a soft inclusion. 

Figure 9 plots the effects of the interface parameters and 
volume content on the creep compliance of the composite. 
For a weak interface, the corresponding creep compliance 
increases with the increase of the volume content of the 
inclusions. This indicates that with a weaker interface, the 
material with the higher volume content will creep faster. 
The reason is that more inclusions will act as cavities when 
the rigidity of the interface tends to zero. Therefore, the 
composite is softer even than the non-reinforced matrix. On 
the contrary, when the interface parameters are relatively  

 

 

Figure 7  Comparison of the average strains between the numerical and analytical solutions when Ef=1 MPa for Type 2 model. (a) Volume fraction f=0.3; 
(b) volume fraction f=0.4. 
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Figure 8  Comparison of the average strains between the numerical and analytical solutions when Ef=100 MPa for Type 1 model. (a) Volume fraction f=0.3; 
(b) volume fraction f=0.4. 

 

Figure 9  The creep compliance curves for various volume fractions. (a) k0=k1=0.1 MPa/m; (b) k0=k1=10 MPa/m. 

large, the material with the lower volume content will creep 
faster. This conclusion agrees well with the concept of re-
inforced composites. 

4.3  Numerical implementation for asphalt concrete 
modeling 

Asphalt concrete is widely used in the surface layer of 
flexible pavements. It is a typical complex composite made 
of aggregates, asphalt binder, air voids and additives. At 
low temperature, asphalt concrete can be treated as an elas-
tic body, while at high temperature, it presents apparent 
viscoelastic characteristic. Therefore, it is necessary to start 
with an assessment of their viscoelastic material properties 
such as creep compliance or relaxation modulus to explain 
the mechanical influence of fillers on the asphalt mixtures. 
The purpose of this study is to predict the asphalt concrete 
creep compliance with the developed viscoelastic simula-
tion tool on a cross-sectional image model. This numerical 
prediction will be compared with the creep test results from 
laboratory asphalt concrete specimens. 

First, the cross-sectional images of the asphalt concrete 
samples are developed for numerical modeling. Since it is 
impossible to identify aggregates that are very small, the  

model is assumed to be composed of two phases only [33]. 
The first phase is the mastic, which consists of fine aggre-
gates (taken as aggregates passing 2.36 mm sieve), sands, 
fines and asphalt binder. The other phase is the coarse ag-
gregates larger than 2.36 mm sieve. Figure 10(a) shows a 
real sample from a sectional surface of the asphalt concrete 
specimen, and Figure 10(b) presents the fitted elliptical  

 

 
Figure 10  Asphalt concrete image model generation for FMBEM simu-
lation. (a) Original sample; (b) fitted elliptical aggregates sample. 
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aggregates model by means of image processing technique. 
The center coordinates, the area, orientation and long axis 
of the aggregates are determined firstly, and then the short 
axis is figured out according to the area and long axis of 
each ellipse. Therefore, the developed model has the same 
volume content as the actual sample. 

The time-dependent creep compliance of the mastic is 
approximated by the two Voigt+one spring type models and 
the parameters of this model can be determined by fitting 
the experimental data of creep test. The 3-point bending test 
has been conducted to determine the relaxation modulus of 
the mastic and asphalt concrete. The relaxation modulus and 
time values for the mastic are listed in Table 1. The uniaxial 
compression is applied on the top and bottom layer. There-
fore, the creep compliance of the asphalt concrete can be 
obtained according to eq. (64). It is noted that we have no 
experimental results of relaxation modulus from the uniax-
ial compression test at this time. However, relaxation 
modulus is a fundamental material property. Therefore, the 
viscoelastic properties of mastic and asphalt concrete from 
different test methods are comparable, as adopted by other 
researchers [34]. The plane stress condition is considered in 
the present study. 

The creep tests are performed on samples to determine 
the time-dependent behavior of the asphalt concrete and the 
results are used to compare with the FMBEM analysis. For 
each composition, three samples are made and tested. For 
instance, in Figure 11, they are represented as Samples A, B 
and C. Figure 11 shows a comparison between the experi-
mental and computational results with elliptical aggregates 
sample. Here, the interface imperfection parameters are  

Table 1  Two Voigt+one spring model parameters for the mastic 

E0 (MPa) E1 (MPa) E2 (MPa) η1 (MPa⋅min) η1 (MPa⋅min) 

298.5 10.3 1.7 27.17 51.32 

 

 

Figure 11  Comparison of asphalt concrete creep compliance between 
experimental and FMBEM results. 

gained as k0=k1=5 MPa/m by fitting the experiment results. 
The viscoelastic response obtained by FMBEM matches 
quite well with the rising part of the experimental curve 
(Sample C) and matches well with the stable part of the 
experimental curve (Sample A), and its middle part is lo-
cated between Samples A and C. Therefore, this proposed 
elliptical aggregate sample with the developed FMBEM is 
adequate to predict the global viscoelastic behavior of the 
asphalt concrete. 

5  Conclusion 

A fast multipole BEM analysis for solving 2D linear vis-
coelastic multi-inclusion problems with the presence of im-
perfect viscoelastic interfaces is presented in this paper. 
Systems of the multipole expansion equations are formed 
and solved numerically by incorporating the time domain 
method. The Kelvin model is introduced to simulate the 
interface imperfection. The interaction among inclusions as 
well as elimination of the phenomenon of material penetra-
tion is also considered. Since the transformed multipole 
formulations are identical to those for the 2D elastic prob-
lems, it is quite easy to implement the 2D viscoelastic fast 
multipole boundary element method.  

Two numerical examples, including planar viscoelastic 
composites with single inclusion or randomly distributed 
multi-inclusions, are given to demonstrate the accuracy, 
efficiency, and versatility of the developed FMBEM. Re-
sults also show that the interface properties, volume ratio 
and stiffness of inclusions, as well as the viscoelastic char-
acteristic of the matrix have significant effect on the creep 
behavior of linear viscoelastic materials. For examples, for a 
weaker interface, the particle-reinforced composites with 
the higher volume content will creep faster, while for a 
stronger interface, the material with the lower volume con-
tent will creep faster. Finally, the focus is placed on imple-
mentation of the approach to investigate the viscoelastic 
characteristic of the asphalt concrete. The results indicate 
that the proposed elliptical aggregate sample with the de-
veloped FMBEM is applicable for asphalt concrete creep 
compliance prediction. In general, the advantage of 
FMBEM in higher speed and lower storage makes it possi-
ble to deal with many potential application problems, espe-
cially for multi-time step problems (e.g. the viscoelastic 
case). 

Further investigations will be carried out to extend the 
present fast multipole BEM for viscoelastic problem from 
2D to 3D. Besides, the consideration of the interface cracks 
in the present FMBEM simulation will be an interesting 
topic and can be carried out readily. Therefore, it is possible 
to make use of this method to study many engineering ma-
terials, such as polymers, composites, non-ferrous metals, 
rocks, concrete and others in the near future. 
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