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a b s t r a c t

A diagonal form fast multipole boundary element method (BEM) is presented in this paper for solving

3-D acoustic wave problems based on the Burton–Miller boundary integral equation (BIE) formulation.

Analytical expressions of the moments in the diagonal fast multipole BEM are derived for constant

elements, which are shown to be more accurate, stable and efficient than those using direct numerical

integration. Numerical examples show that using the analytical moments can reduce the CPU time by a

lot as compared with that using the direct numerical integration. The percentage of CPU time reduction

largely depends on the proportion of the time used for moments calculation to the overall solution

time. Several examples are studied to investigate the effectiveness and efficiency of the developed

diagonal fast multipole BEM as compared with earlier p3 fast multipole method BEM, including a

scattering problem of a dolphin modeled with 404,422 boundary elements and a radiation problem of a

train wheel track modeled with 257,972 elements. These realistic, large-scale BEM models clearly

demonstrate the effectiveness, efficiency and potential of the developed diagonal form fast multipole

BEM for solving large-scale acoustic wave problems.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The boundary element method (BEM) based on the boundary
integral equation (BIE) formulation can be used to analyze
acoustic wave problems effectively, such as in noise prediction
for automobiles [1], high speed trains [2], airplanes [3], and
underwater structures [4]. Several of the earlier work laid the
foundation for applying the BIE/BEM to solve acoustic problems
[5–10]. Especially, the work by Burton and Miller in Ref. [7] has
been regarded as a classical one, which provides an elegant way
to overcome the so called fictitious eigenfrequency difficulties
existing in the conventional BIE for exterior acoustic wave
problems [11,12].

In the last decade, the focus of the research has been on
developing fast solution methods for efficiently solving large-
scale BEM models for acoustic problems. The fast multipole
method (FMM) is one of the most promising fast solution
methods for the BEM. FMM was first pioneered by Rokhlin [13]
and further developed by Greengard and Rokhlin [14] for fast
simulation of large particle fields in physics. The FMM can
improve the matrix-vector multiplication dramatically from
O(N2) to O(N) or O(N log N) with N being the number of degrees
ll rights reserved.

; fax: þ86 21 34205783.
of freedom. Later on, a diagonal form FMM for Helmholtz
problems was proposed by Rokhlin [15] as well. Since then, many
research works have been published to improve and extend the
applicability of the FMM for Helmholtz equations. Epton and
Dembart [16] presented a concise summary of multipole transla-
tions for 3-D Helmholtz equations. Rahola [17] gave an error
analysis of the FMM by considering both truncation error of the
kernel expansion and the errors from the use of numerical
integration in diagonal translation theorem. Darve [18] provided
a rigorous mathematical approach on the estimation of the
truncation error. Besides the above error considerations, Koc
et al. [19] also analyzed the interpolation error in multilevel
FMM. To accelerate the low frequency FMM, Greengard et al. [20]
used the combination of evanescent and propagate mode to
reduce the computation cost. Darve and Have [21] proposed a
stable plane wave expansion, which uses the singular-value
decomposition method to represent the evanescent kernel for
the low frequency FMM. Gumerov and Duraiswami [22,23]
extended the recurrence relations reported in Chew’s paper [24]
to develop a general recursive method for obtaining the transla-
tion matrices, the resulting approach is generally termed as p3

FMM for solving the Helmholtz equation (with p being the order
of the expansion). Adaptive algorithms for the FMM were also
developed to speed up the solutions for 3-D full- and half-space
acoustic problems [25–27]. The fast multipole BEM for solving
structural-acoustic interaction problems was developed by
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Gaul and Fisher [28,29]. Hybrid FMMs were developed recently by
Cheng et al. [30] and Gumerov and Duraiswami [31], which are
stable for a wide range of frequencies. The former switches to
different representations at low and high frequencies, while the
latter is based on a rotation – coaxial translation – back rotation
scheme. More information about the fast multipole BEM in
general can be found in a review article [32], a tutorial [33], and
the first textbook [34].

A new diagonal fast multipole BEM for solving 3-D Helmholtz
equation with analytical integration of the moments is presented
in this paper. The BEM is based on the Burton–Miller’s BIE
formulation [7], which has no fictitious eigenfrequency difficul-
ties in solving exterior acoustic problems. The implementation of
the diagonal FMM is also based on the adaptive fast multipole
BEM given in Ref. [25] for 3-D full-space acoustic problems, in
Ref. [26] for 3-D half-space acoustic problems, and in Ref. [27]
for a new definition of the interaction list. The FMM used in
Refs. [25–27] is valid for all frequencies, but is less efficient than
the diagonal form FMM at high frequencies (e.g., with the
nondimensional wavenumber ka above 300), since the translation
complexity is at best O(p3) in Refs. [25–27] (with p being the
expansion order at each tree level). The developed diagonal fast
multipole BEM with the analytical integration of the moments is a
significant improvement of the above mentioned fast multipole
BEM, which can fill the gap in the analysis of high-frequency
acoustic problems.

The rest of the paper is organized as follows. First the BIE
formulation is reviewed in Section 2. The diagonal form FMM is
presented in Section 3. Then, the fast multipole BEM algorithm is
described in Section 4. The analytical moment formulation for the
diagonal FMM is presented in Section 5. In Section 6, several
numerical examples are given to demonstrate the capability of
the proposed diagonal form FMM in modeling large-scale acoustic
problems. Section 7 concludes this paper.
2. Boundary integral equations

The governing equation in the frequency domain of time-
harmonic acoustic waves in a homogeneous isotropic acoustic
medium E is described by the following Helmholtz equation:

r2jðxÞþk2jðxÞ ¼ 0, 8xAE, ð1Þ

where j(x) is the sound pressure at point x, k is the wave number
defined by k¼o/c, with o being the angular frequency and c the
sound speed in medium E. Using Green’s second identity, the
solution of Eq. (1) can be expressed by an integral representation:

jðxÞ ¼
Z

S
Gðx,yÞqðyÞ�

@Gðx,yÞ

@nðyÞ
jðyÞ

� �
dSðyÞþjIðxÞ, 8xAE, ð2Þ

where x is the source point and y is the field point on boundary S,
qðyÞ is defined as q(y)¼@j(y)/@n(y) where the unit normal vector
n(y) on boundary S is defined to point outwards from E. Incident
wave jI(x) will not be presented for radiation problems. In this
paper, the time convention adopted is using the factor e� iot,
correspondingly, the free-space Green’s function G for 3-D pro-
blems is given by

Gðx,yÞ ¼
eikr

4pr
with r¼ 9x�y9: ð3Þ

Letting point x approach the boundary leads to the following
conventional boundary integral equation (CBIE):

cðxÞjðxÞ ¼
Z

S
Gðx,yÞqðyÞ�

@Gðx,yÞ

@nðyÞ
jðyÞ

� �
dSðyÞþjIðxÞ, 8xAS, ð4Þ

where constant c(x)¼1/2 if S is smooth around point x. There is a
defect with Eq. (4) concerning the non-uniqueness of the solution
of an exterior acoustic problem at the eigenfrequency associated
with the corresponding interior problem. To deal with the non-
uniqueness difficulties, Burton and Miller [7] proposed a method
by combining the CBIE and the normal derivative of the CBIE.
Taking the derivative of integral representation Eq. (2) with
respect to the normal at the field point x and also letting point
x approach the boundary lead to the following hypersingular
boundary integral equation (HBIE):

cðxÞqðxÞ ¼

Z
S

@Gðx,yÞ

@nðxÞ
qðyÞ�

@2Gðx,yÞ

@nðyÞ@nðxÞ
jðyÞ

" #
dSðyÞþqIðxÞ, 8xAE,

ð5Þ

where qIðxÞ ¼ @jIðxÞ=@nðxÞ. For an exterior problem, Eqs. (4) and
(5) have a different set of fictitious frequencies at which unique
solutions for the exterior problem cannot be obtained. However, a
linear combination of Eqs. (4) and (5) will always have unique
solutions [7]. That is, the following linear combination of Eqs.
(4) and (5) (CHBIE) yields unique solutions at all frequencies:

b
Z

S

@2Gðx,yÞ

@nðxÞ@nðyÞ
jðyÞdSðyÞþ

Z
S

@Gðx,yÞ

@nðyÞ
jðyÞdSðyÞþcðxÞjðxÞ�jIðxÞ

¼ b qIðxÞ�cðxÞqðxÞþ
Z

S

@Gðx,yÞ

@nðxÞ
qðyÞdSðyÞ

� �
þ

Z
S

Gðx,yÞqðyÞdSðyÞ,

ð6Þ

where b is a coupling constant that must be a complex number
and can be chosen, for example, as i/k. This CHBIE formulation is
referred to as the Burton–Miller formulation.The acoustic pro-
blem considered in this paper is to solve Eq. (6) with the fast
multipole BEM under given boundary conditions.
3. Diagonal form fast multipole method

The FMM is employed to solve the Burton–Miller BIE, or CHBIE
(6), for which iterative solver GMRES will be used. Two earlier
versions of the FMM are available in the literature. One is based
on a multipole expansion of the kernel, named low frequency
method, and another based on a plane wave expansion of the
kernel, referred as the diagonal form method. Both of them have
their drawbacks. It is costly and sometimes not applicable to
perform low frequency fast multipole BEM in the high frequency
regime. On the other hand, due to the divergence of the transla-
tions when the size of the clusters becomes very small compared
with the wavelength and round-off errors of the translations, the
diagonal form is unstable when it is used in the low frequency
range. Despite their limitations, those methods have been proved
to be very successful in their suitable frequency ranges.

The diagonal form FMM is based on a plane wave expansion of
the kernel, which can be described by the following expansion [17]:

Gðx,yÞ �
XNl

n ¼ 0

ik

8p
on

2Nlþ1

X2Nl

m ¼ 0

Im
n ðk,x,xcÞT

m
n ðk,xc ,ycÞO

m
n ðk,yc ,yÞ, ð7Þ

for 9x�xc9o9y�xc9 and 9y�yc9o9x�yc9, where xc is an expansion
point near x and yc is that near y, Nl is the truncation number of the
multipole expansion. The inner, translation and outer functions in
Eq. (7) are defined by

Im
n ðk,x,xcÞ ¼ eikðx�xc Þ�ŝnm , ð8Þ

Tm
n ðk,xc ,ycÞ ¼

XNl

l ¼ 0

ilð2lþ1Þhð1Þl ðkuÞPlðû�ŝnmÞ, ð9Þ

Om
n ðk,yc ,yÞ ¼ eikðyc�yÞ�ŝnm , ð10Þ

respectively, where u¼9xc�yc9 and û¼ ðxc�ycÞ=u, Pl is lth order
Legendre function, ŝnm ¼ ðsinyn cosjm,sinyn sinjm,cosynÞ in which



H.J. Wu et al. / Engineering Analysis with Boundary Elements 36 (2012) 248–254250
jm¼2pm/2Nlþ1, yn¼a cos(xn) and xn, on are the abscissa and
weights for the Gaussian quadrature.

We define the moment of the diagonal form FMM for element
j, which is far away from the collocation point x as

Mm
n,jðk,ycÞ ¼

Z
DSj

eikðyc�yÞ�ŝnm qðyÞdSðyÞ: ð11Þ

Several numerical integration schemes can be readily used to
calculate the moment. However, in this paper we will present an
analytical method for the moment calculation, which is more
efficient, stable and accurate than the numerical integration.

The upward and downward passes in the diagonal form FMM
are separated into two parts. First, in the upward pass the
moments are temporarily shifted from the child level to the
parent level. Conversely, in the downward pass the local expan-
sions are temporarily shifted from the parent level to the child
level. They are computed, respectively, by

~M
m

n ðk,yc0 Þ ¼ eikðyc0 �yc Þ�ŝnm Mm
n ðk,ycÞ for 9y�yc0 9o9x�yc0 9, ð12Þ

~L
m

n ðk,xc0 Þ ¼ eikðxc�xc0 Þ�ŝnm Lm
n ðk,xcÞ for 9x�xc0 9o9y�xc0 9: ð13Þ

Second, the interpolations are performed over a spherical
surface for the temporary moments and local expansions in the
upward and downward pass, respectively. To perform the inter-
polation, we adopt the fast uniform resolution spherical filter
method [35] in which Christoffel–Darboux formula and 1-D FMM
are used to reduce the complexity. Since a none-leaf cell contains
at most eight cells, in the upward pass, instead of performing
interpolations for all child cells one by one, we perform the first
step of all the child cells and then add all the temporary moments,
and at last we perform the interpolation step. This can reduce
almost half of the computing complexity for the M2M translation.
A similar method is applied to the L2L translation.

In the case of 3-D domains, the maximum number of cells in
the interaction list is 189. M2L translations need to be performed
for all the cells in the interaction list. It is the most expensive part
of the FMM algorithm. The new definition of the interaction list
presented in Ref. [27] is adopted to reduce the M2L translations.
To convert the moment of one cell’s well-separated cell, the
following equation is applied:

Lm
n ðk,xcÞ ¼ Tm

n ðk,xc ,ycÞM
m
n ðk,ycÞ, ð14Þ

for 9x�xc9o9y�xc9 and 9y�yc9o9x�yc9. In this paper, the
translation coefficients Tm

n are computed in a pre-computing
process for all levels and stored for reuse in order to accelerate
the computations. In the downward pass, if a leaf cell is reached,
the final evaluation is computed in terms of local expansion using
Eq. (7) with x being the collocation point in the leaf.
Fig. 1. Sketch of moments of an element.
4. Boundary element discretization

We use N constant triangular elements to discretize the
boundary S, that is, an element with three vertices where the
pressure or velocity on the element is assumed to be a constant.
The corresponding discretized form of the Burton–Miller BIE
formulation can be written as

XN

j ¼ 1

fijjj ¼
XN

j ¼ 1

gijqjþ
~bi for i¼ 1,2,. . .,N, ð15Þ

where ~bi is from incident wave for scattering problem, and on
element DSj

fijjj ¼ b
Z
DSj

@2Gðxi,yÞ

@nðxiÞ@nðyÞ
dSðyÞþ

Z
DSj

@Gðxi,yÞ

@nðyÞ
dSðyÞþ

1

2
dij

( )
jj, ð16Þ
gijqj ¼ b
Z
DSj

@Gðxi,yÞ

@nðxiÞ
dSðyÞ�

1

2
dij

" #
þ

Z
DSj

Gðxi,yÞdSðyÞ

( )
qj, ð17Þ

with dij being Kronecker d-symbol. FMM is used to compute
Eqs. (16) and (17) efficiently for two well separated cells. Eqs. (16)
and (17) imply that for each pair of (i,j), there are four integrals
that need to be evaluated. Moments for kernel G(xi,y) is described
in the previous section, and the moments for the other three
kernels can be dealt with similarly. For more details, please refer
to Refs. [25,34,36].

For adjacent elements, direct method is used to compute their
contributions. In the implementation of the fast multipole BEM,
we pre-compute and store the coefficients fij and gij of element
pair (i,j) in the same cell. It can be used as preconditioner for the
iterative solver (GMRES). Marked improvement can be achieved,
especially when the numerical integration requires large numbers
of quadrature points due to the strong variation of the kernels.
The singular and hypersingular integrations in Eqs. (16) and (17)
are evaluated using the singularity subtraction approach [11,25].
5. Analytical evaluation of the moments

The moment of the diagonal form fast multipole BEM for
Helmholtz equation in essence is a surface integral of an expo-
nential function on an element as is found in Eq. (11). In this
section, we present analytical expressions for evaluating the
moment. First, we define a translation from the x, y, z global
Cartesian coordinates to the x1, x2, Z local coordinates defined
over an element, where x1, x2, are the oblique coordinates, which
can also be treated as the area coordinates and Z is the direction
of the normal [34,37]. To simplify the expression, we omit the
subscripts and superscript from Eq. (11). Using area coordinates,
for a constant element used in the diagonal form FMM, Eq. (11)
becomes

MðsÞ ¼ 2Aq

Z 1

0

Z 1�x1

0
eikðyc�yÞ�sdx2dx1, ð18Þ

where A is the area of the element, and q is the constant physical
quantity on the element. The Cartesian coordinates of point y is
related to area coordinates by

y¼ x1y13þx2y23þy3, ð19Þ

where y1, y2, and y3 are the three vertices of the element,
y13¼y1�y3, y23¼y2�y3. As shown in Fig. 1, n is the unit
normal vector of the element. Suppose b¼�s � y13, g¼�s � y23,
r¼2Aqeikðyc�y3Þ�s. Integrating the integral in Eq. (18) analytically,



Table 1
Analytical integration results for the moment.

Cases M(s)

9s � n9¼ 1 r/2

9s � n9a1 b¼0 rðeg�1�gÞ=g2

g¼0 rðeb�1�bÞ=b2

b�g¼0 r eg� eb�1
b

� �
=g

bg(b�g)a0 r 1
g eg ðe

b�g�1Þ
b�g �

1
b ðe

b�1Þ
h i

Table 2
Configuration of tree and iteration times.

DOFs 3888 14,700 30,000 50,700 120,000 307,200 607,500

Maxl 20 20 20 20 30 30 50

TreLev 4 5 6 6 7 7 7

Iters 16 14 14 14 14 14 14
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we obtain the analytical results for the moments as shown in
Table 1.

Analytical integration of the moment derived here are for
constant elements only, but the approach is not limited to this.
Analytical moments for linear elements are also available for the
diagonal form fast multipole BEM. Moments for hypersingular
kernel are different from that in Table 1 by a constant factor,
�iknðyÞ � s, and replacing q in r with j. Since direct evaluations
are still calculated by numerical method and various series
truncation are used in the diagonal form fast multipole BEM,
the analytical moments do not guarantee more accurate solu-
tions, but simply improve the efficiency of moment calculation,
especially for large-scale problems.
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6. Numerical examples

The diagonal form fast multipole BEM based on the Burton–
Miller BIE formulation with analytical integration of moments has
been implemented in a computer code. In all the examples
presented below, constant triangular elements are used, for which
one can use singularity subtraction approach to analytically
evaluate the singular and hypersingular integrals involving the
static kernels, and use analytical method (Table 1) to compute the
moments. The GMRES solver will stop the iteration when the
residue (relative error) is below the tolerance of 10�4 and left
block-preconditioner is used. All the computations were done on
a desktop PC with a 64-bit Intels CoreTM 2 Duo CPU and 6 GB
RAM, but only one core is used in computation.

6.1. Validation of the approach

First, we use the scattering problem with a rigid sphere as the
example to validate the diagonal form fast multipole BEM and the
developed code. As a comparison, we take the earlier developed
adaptive p3 fast multiple BEM code [27], referred to as the original
code, as a benchmark for comparison regarding the accuracy. The
nondimensional wavenumber tested for this problem is ka¼20, in
which k is the wavenumber and a is the diameter of the sphere.
To avoid instability of the diagonal FMM, the maximum number
of elements allowed in a leaf varies with respect to the total
number of elements used in the BEM model. The total number of
elements (DOFs), maximum number of elements allowed in a leaf
(Maxl), the corresponding number of tree levels (TreLev), and the
number of iterations used (Iters) are listed in Table 2. The results
in terms of the relative errors with respect to the solution
computed by the original code and by the analytical solution
are plotted in Fig. 2.

To demonstrate the improvement obtained using analytical
moments in the diagonal form fast multipole BEM, the CPU time
and accuracy are compared between the two diagonal fast multi-
pole BEM codes, in which one uses the analytical moments and
the other uses a numerical integration scheme. Figs. 3 and 4 show
their CPU time and accuracy comparisons.
Fig. 2 shows that both methods have almost the same solution
and the solution reaches analytical solution from 14,700 DOFs under
the sense of L2 error with GMRES solver tolerance being 10�4. Fig. 3
shows that analytical moments for the diagonal form fast multipole
BEM can reduce about 60% CPU time if compared with direct
numerical moments evaluation. Fig. 4 demonstrates that the solu-
tion, which does not use analytical moments is almost the same as
that uses the analytical moments. This means that analytical
moments may not guarantee more accurate solutions even if it is
more accurate for each moment evaluation, but can improve the
solution efficiency. These results show the accuracy of the diagonal
form fast multipole BEM approach as well as its efficiency.



Fig. 4. Relative errors of the diagonal form fast multipole BEM solution using

analytical moments with respect to that using direct moments.

Fig. 5. Scattering from a rigid sphere at fictitious eigenfrequency ka¼2p

Fig. 6. Scattering from a dolphin model.
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6.2. Scattering from a rigid sphere

Scattering from a rigid sphere is used to test the program for
solving the scattering problems at their fictitious eigenfrequency.
The sphere is centered at (0, 0, 0), impinged upon by an incident
plane wave with unit magnitude, traveling along positive z axis. In
this case, ka is chosen as one of its characteristic frequencies, 2p. The
model is meshed with 19,200 triangular elements. Field points are
evenly distributed on a circle in x–z plane as shown in Fig. 5(a), and
y is the inclination angle of points in spherical coordinate system.
Results of analytical, CHBIE and CBIE solutions are plotted in
Fig. 5(b), which shows that the diagonal form fast multipole BEM
based on the Burton–Miller BIE formulation can overcome the non-
uniqueness difficulties and yield accurate results.

6.3. Scattering from a dolphin model

The analysis of scattering from a dolphin model is presented
next. The dolphin model is 1.9 m in length, 0.5 m in width and
0.6 m in height and the nondimensional wavenumber ka used is
114.3. The model is meshed with 404,422 elements and the
incident wave is a plane wave with unit magnitude propagating
in the þx direction. The maximum allowed number of elements
in a leaf is set as 20, and 9 levels are generated for the tree. CPU
times used for solutions with analytical and direct numerical
methods to compute moments are 4,137 s and 7,309 s, respec-
tively. 43.4% CPU time is reduced in solution with analytical
method to compute moments for this case. As shown in Fig. 6,
near the head of the dolphin, the sound pressure registered the
largest value, which makes sense since this is the part of the
dolphin to generate and receive sounds under the water.

6.4. Radiation from locomotive interacting with the rail

When a train is moving with a low speed, one of the dominated
noises of the train is the wheel–rail noise. We apply the diagonal
form fast multipole BEM to analyze this large-scale locomotive
radiation problem. The locomotive has an overall dimension of
18.4 m�3.4 m�5.9 m in the x, y and z direction, respectively, and
is meshed with 257,972 constant elements. The model considered
here is a simplified one. The sources are from eight harmonic
vibrating wheels. The first step is to compute by FEM the harmonic
wheel vibrations along the z direction, corresponding to a harmonic
force equal to 104 N at a frequency equal to 160 Hz, applied at the
wheel–rail intersection line. The velocity of the elements on the
wheel surface computed by the FEM is copied to the other seven
wheels and the rest of the locomotive surface is treated as rigid
boundary. Then the BEM model is solved with the diagonal form fast
multipole BEM with the maximum allowed number of elements in a
leaf set at 20. The corresponding ka of this model is 55.78. For this
complicated shape model, the total CPU time used for solutions with
analytical and direct numerical methods to compute moments are
3269 s and 4072 s, respectively. 35.7% CPU time is reduced with
respect to that using direct numerical method to compute moments.



Fig. 7. Locomotive radiation.
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Fig. 7 shows the computed pressure on the boundary caused by the
eight vibrating wheels.
7. Conclusion

A diagonal form fast multipole BEM based on Burton–Miller
BIE formulation with the new adaptive tree algorithm is pre-
sented in this paper. Analytical evaluation of the moments for
diagonal form fast multipole BEM are proposed to compute the
moments accurately and efficiently. The diagonal form fast multi-
pole BEM with the analytical moments is compared with that
using numerical integration, and it is demonstrated that the new
approach can reduce the CPU time by about 60% for the rigid
sphere scattering case, by 43.4% for the dolphin scattering case
and by 35.7% for the locomotive radiation case. The differentiation
in CPU time reduction largely depends on the proportion of CPU
time for moments calculation to the overall solution time.
Comparison of the accuracies shows that both of algorithms can
converge to the analytical solution with the tolerance set at 10�4

for the iterative solver. Successful solutions of the BEM models
with the diagonal form fast multipole BEM for the dolphin and
locomotive models clearly demonstrate the potential of the
approach in solving large-scale acoustic wave problems. The
developed diagonal form fast multipole BEM can be readily
extended to half-space acoustic problems similar to that in
Ref. [26] and other acoustic problems.
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