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a b s t r a c t

A low-frequency fast multipole boundary element method (FMBEM) for 3D acoustic problems is

proposed in this paper. The FMBEM adopts the explicit integration of the hypersingular integral in the

dual boundary integral equation (BIE) formulation which was developed recently by Matsumoto, Zheng

et al. for boundary discretization with constant element. This explicit integration formulation is

analytical in nature and cancels out the divergent terms in the limit process. But two types of regular

line integrals remain which are usually evaluated numerically using Gaussian quadrature. For these

two types of regular line integrals, an accurate and efficient analytical method to evaluate them is

developed in the present paper that does not use the Gaussian quadrature. In addition, the numerical

instability of the low-frequency FMBEM using the rotation, coaxial translation and rotation back (RCR)

decomposing algorithm for higher frequency acoustic problems is reported in this paper. Numerical

examples are presented to validate the FMBEM based on the analytical integration of the hypersingular

integral. The diagonal form moment which has analytical expression is applied in the upward pass. The

improved low-frequency FMBEM delivers an algorithm with efficiency between the low-frequency

FMBEM based on the RCR and the diagonal form FMBEM, and can be used for acoustic problems

analysis of higher frequency.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The boundary element method (BEM) plays a dominant role in
solving infinite or semi-infinite acoustic wave problems due to
easy handling of boundary condition at infinity and dimension
reduction. However, it suffers from well-known drawbacks with
regard to the computational efficiency and memory requirement,
because the conventional BEM leads to a linear system of equations
with dense coefficient matrix. This prevents the conventional
BEM from being applied to large-scale problems.

To overcome this problem, many studies have been conducted
on the fast multipole method (FMM) accelerated BEM (FMBEM),
one of the popular fast solution methods for the BEM. The FMM
was first innovated by Rokhlin to rapidly calculate potentials of a
large-scale particle system [1]. It was generalized by Greengard
[2] to compute two-dimensional and three-dimensional Laplace
equations in particle simulations. Later on, it was extended to 2D
and 3D acoustic wave problem [3,4]. The efficiency of the FMBEM
in acoustic analysis has been recognized gradually in acoustic
ll rights reserved.
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community. Therefore the FMBEM has been extensively studied
and widely used for acoustic problems since the end of the last
century. The mathematical theory of multipole translation opera-
tors, one of underlying theory of low-frequency (LF) FMBEM
for 3D Helmholtz equation, was summarized by Epton and
Dembart [5]. The diagonal form translation operators and its
error analysis was given by Rahola [6]. Methods to accelerate the
LF FMBEM were proposed in Ref. [7,8] which replace the classical
multipole expansion with a representation in term of evanescent
waves and propagating waves. Sakuma and Yasuda employed the
high-frequency (HF) FMBEM for large-scale steady-state sound
field analysis in the series papers [9,10]. Two rough criteria to
determine the number of cell levels which can minimize proces-
sing time and memory requirements respectively were proposed
in Ref. [10]. Later on, they discussed an effective setting of the
hierarchical cell structure [11], and developed a technique of
plane-symmetric model [12] for FMBEM. Chen and Chen devel-
oped a FMBEM for 2D exterior acoustics based on dual integral
formulation by adopting the addition theorem and expanding the
four kernels into degenerate kernels to separate the field and
source point [13]. Later on, they applied the FMBEM to an oblique
incident wave problem [14]. A FMBEM based on the Galerkin
boundary integral was proposed by Fischer, Gauger and Gaul [15],
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which has a symmetric coefficient matrix but increases the time
used in each iteration because of double integration on an
element. The structure-acoustic coupling simulation by adopting
FMBEM and FEM has been studied in the group leading by Fischer
and Gaul [16–18]. Shen and Liu developed an adaptive FMBEM
based on Burton–Miller formulation by extending the adaptive
algorithm from 3D potential problems to 3D acoustic problems
[19]. The adaptive FMBEM was then applied to solve half-space
acoustic problems in conjunction with half-space Green’ function
and the RCR method [20], which can reduce CPU time and
memory storage by half [21]. Later on, a new definition of
interaction list was introduced by Bapat and Liu to reduce the
M2L translation by about 30–40% and therefore can improve the
efficiency of the FMBEM [22]. Tong and Chew employed the
FMBEM to solve acoustic wave scattering problems by very large
objects with 3D arbitrary geometries [23]. Solution of a model
with 2 million unknowns on a workstation without involving
parallel algorithms was reported therein. A LF FMBEM based on a
variety of formulations has been presented by Yasuda et al. [24].
The LF FMBEM adopted a technique that uses the Taylor expan-
sion for M2M and L2L translations, and the RCR with recurrence
relations for M2L translation. A diagonal form FMBEM for 2D
acoustic problems based on the Burton–Miller formulation was
developed by Wu, Jiang and Liu [25]. Analytical moment expres-
sions which are accurate and efficient in computation of moments
on constant [26] and linear triangular [27] elements were devel-
oped by the authors. Recently, a FMBEM for 3D multi-domain
acoustic scattering problems was developed in our group [28].

The FMBEMs introduced above have their preference frequency
range and can be grouped into two types, named LF FMBEM and
HF FMBEM (also referred as diagonal form FMBEM). Common
views of the two types FMBEM are: LF FMBEM is stable in the
low-frequency regime and requires less memory, while HF
FMBEM is faster in the higher frequency but instable in the
low-frequency, and needs more memory. In recent years, hybrid
FMBEMs which are free of frequency division have been devel-
oped by Cheng et al. [29], Gumerov and Duraiswami [30]. The
former switches to different representations at low and high
frequencies, while the latter is based on a RCR scheme. From
the practical point of view, some problems still remain for the LF
FMBEM, especially when it is applied on higher frequency
acoustic problems and no special treatment is taken. However,
the numerical instability problems of the LF FMBEM are rarely
mentioned except at the end of Ref. [30].

Burton–Miller [31] formulation is the widely used method in
FMBEM to overcome the non-uniqueness problem at character-
istic frequencies for exterior acoustic problems. The most difficult
part in implementation of the Burton–Miller formation is the
hypersingular integral. Lots of research has been devoted to
alleviate the singularity. Chien et al. [32] employed some iden-
tities in the integral equation related to an interior Laplace
problem to reduce the order of kernel singularity. A weakly
singular form of the hypersingular integral by subtracting a
two-term Taylor series from the density function are presented
by Liu, Rizzo and Chen in Refs. [33,34]. Guiggiani et al. [35]
proposed a general algorithm method to deal with hypersingular
integrals which allows any hypersingular integral to be directly
transformed into a sum of double and a one-dimensional regular
integrals. A method based on multiple subtractions and additions
to separate singular and regular integral terms in the polar
transformation domain was developed by Karami and Derakhshan
to evaluate the hypersingular integrals [36]. Methods to deal with
hypersingular integral in Galerkin BEM are prosed in Refs [37,38].
Seydou et al. [39] proposed an approach to compute the singular
and hypersingular parts of the integrals by a simple use of Green’s
theorem and particular solutions of the Helmholtz equations.
Based on the method proposed by Chen et al. [40], an improved
Burton–Miller was developed by Li and Huang [41]. Most of the
methods introduced above are still cumbersome and require
extremely complicated numerical procedure in general. Recently,
explicit evaluation of hypersingular integrals for 3D acoustic
problems discretized with constant triangular element were
proposed by Matsmuto, Zheng et al. [42,43], and then was used
in shape sensitivity analysis [44]. The resulting integrals for the
element on which the field point lies consist of two regular line
integrals of angular variables, as they said, those regular line
integrals can be numerically evaluated by means of a standard
Gaussian quadrature formula. We find that the two remaining
regular line integrals of angular variables can be computed by an
analytical method. This is another motivation of this paper.

This paper is organized as follows: The Burton–Miller formula-
tions based on explicit hypersingular BIE for boundary discretiza-
tion with constant triangular element are reviewed in Section 2.
Analytical expression of the two regular line integrals left in the
explicit hypersingular evaluation and its error analysis are
described in Section 3. Section 4 consists of three parts, part
one gives the definition of spherical function used in the LF
FMBEM; in part two, formulations of translations are briefly
reviewed, and reasons of numerical instability in translation are
discussed; an algorithm of adopting the HF moment in the
upward pass is developed in part three. Numerical examples are
given in Section 5 to validate the explicit hypersingular integrals
with analytical integration of the two remaining regular line
integrals, and demonstrate the numerical instability of the LF
FMBEM using RCR. The efficiency and accuracy of the improved LF
FMBEM for higher frequency acoustic problems are also proved.
Section 6 concludes the paper with some discussions.
2. Boundary integral formulation

The time harmonic acoustic waves in a homogeneous and
isotropic acoustic medium E is described by the following Helmholtz
equation:

r
2jðxÞþk2jðxÞ ¼ 0, 8xAE, ð1Þ

wherer2 is the Laplace operator, j(x) is the sound pressure at point
x, k is the wavenumber defined by k¼o/c, with o being the angular
frequency and c being the sound speed in medium E. By using the
Green’s second identity, the solution of Eq. (1) can be expressed by
an integral representation:

j xð Þ ¼

Z
S

G x,yð Þq yð Þ�
@G x,yð Þ

@nðyÞ
j yð Þ

� �
dS yð ÞþjI xð Þ, 8xAE, ð2Þ

where x is a field point and y is a source point on boundary S, q(y) is
the normal gradient of sound pressure, defined as q(y)¼qj(y)/qn(y)
where the unit normal vector n(y) on boundary S is defined to point
outwards from E. Incident wave jI(x) will not be presented for
radiation problems. In this paper, the time convention adopted is
using the factor e� iot, correspondingly, the free-space Green’s
function G for 3D problems is given by

G x,yð Þ ¼
eikr

4pr
, with r¼ 9x�y9: ð3Þ

To solve the integral Eq. (2), source point x should be moved to
the boundary to generate the well-known conventional boundary
integral equation (CBIE). The CBIE fails to give unique solutions
for exterior acoustic problems at the fictitious frequencies of the
associated interior problems. The Burton–Miller method [31] was
proposed to overcome this non-uniqueness. It has been widely
used in acoustic problems and been proved effective to circum-
vent the fictitious frequency problems. But it gives rise to a
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hypersingular boundary integral equation (HBIE) which is the
most difficult part in the implementation of the Burton–Miller
method. Recently, an explicit evaluation of strongly singular and
hypersingular boundary integral contained in the CBIE and HBIE
for constant triangular element was proposed in Ref. [42].

Suppose the boundary is composed of constant triangular
elements and the sound pressure j(x) satisfies C1,a Hölder
continuity, the CBIE and HBIE with explicit evaluation of strongly
singular and hypersingular boundary integral are

1

2
j xð Þþ

Z
S\Dx

@G x,yð Þ

@nðyÞ
j yð ÞdS yð Þ ¼

Z
S\Dx

G x,yð Þq yð ÞdS yð Þ

þ
i

2k
1�

1

2p
X3

m ¼ 1

Z ym
2

ym
1

eikRðyÞdy

 !
q xð ÞþjI xð Þ, ð4Þ

Z
S\Dx

@2G x,yð Þ

@nðxÞ@nðyÞ
j yð ÞdS yð Þþ

ik

2
�
X3

m ¼ 1

Z ym
2

ym
1

eikRðyÞ

4pRðyÞ
dy

 !
j xð Þ

¼

Z
S\Dx

@G x,yð Þ

@nðxÞ
q yð Þ

� �
dS yð Þ�

1

2
q xð ÞþqI xð Þ, ð5Þ

where S\Dx denotes the boundary S excluding the boundary
element on which the field point x is located, angles ym

1 and ym
2

are demonstrated in Fig. 1. In the next section, we will give an
analytical expression of the two regular line integrals appearing
in Eqs. (4) and (5) on the element where the field point is located.

A linear combination of Eqs. (4) and (5) with a properly
selected complex coupling constant b, such as b¼ i/k, yields the
Burton–Miller formulation for constant triangular element:

1

2
j xð ÞþDj yð ÞþbHj yð Þþb _RDx

j xð Þ

¼ Sq yð ÞþbMq yð ÞþRDx
q xð Þ�

b
2

q xð ÞþjI xð ÞþbqI xð Þ, ð6Þ

in which

SqðyÞ ¼

Z
S\Dx

G x,yð ÞqðyÞdSðyÞ, ð7Þ

Dj yð Þ ¼

Z
S\Dx

@G x,yð Þ

@nðyÞ
j yð ÞdS yð Þ, ð8Þ

Mq yð Þ ¼

Z
S\Dx

@G x,yð Þ

@nðxÞ
q yð ÞdS yð Þ, ð9Þ

Hj yð Þ ¼

Z
S\Dx

@2G x,yð Þ

@nðxÞ@nðyÞ
j yð ÞdS yð Þ, ð10Þ
Fig. 1. Integral on an element.
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eikRðyÞdy

 !
: ð12Þ

Eq. (6) can give unique solutions at all frequencies for exterior
acoustic problems, and its solution is accelerated by the fast
multipole method.
3. Analytical expression of the regular line integrals on the
triangular element

3.1. Formulations

Numeral integration methods are available to compute the
two regular line integrals appearing in Eqs. (4) and (5). But, in this
section, those integrals are described in detail to get analytical
expression which is accurate and easier to control the error. As
shown in Fig. 1, the triangle composes of three vertexes, denoted
as 1, 2 and 3. The geometry center of the triangle is denoted as 0.
Lines connecting the geometry center and other three vertexes
divide the triangle into three smaller triangles where the regular
line integrals are carried out. To calculate the line integral on
those smaller triangles, the perpendicular line from the center to
one side of the triangular element is treated as the polar axis
which further divides the smaller triangles into two smaller
triangles. According to the above configuration of coordinates,
there are actually six smaller triangles in which the two regular
line integrals need to be carried out for an element. If the
geometry is chosen to be the center of inscribed circle of the
triangle, as we used in Fig. 1, integrals only need to be computed
on three smaller triangles due to the symmetry. One of the
smaller triangles, as shown in Fig. 2, is taken as an example to
derive the analytical expression.

Denote the corresponding two regular line integrals as

I1 ¼

Z y1
2

0
eikRðyÞdy, ð13Þ

I2 ¼

Z y1
2

0

eikRðyÞ

RðyÞ
dy ð14Þ

in which R(y)¼h/cosy. Appling the power series expansion of
exponent function and exchanging the integral and summation
order in Eqs. (13) and (14) yield

I1 ¼
X1
n ¼ 0

ðikhÞn

n!

Z y1
2

0
secn y dy, ð15Þ

I2 ¼
siny1

2

h
þ ik

X1
n ¼ 0

ðikhÞn

nþ1ð Þ!

Z y1
2

0
secn y dy ð16Þ
Fig. 2. Integral on a smaller triangle.



Table 1
The error bound computed with Eq. (22) for different N and g.

N g¼kR(y)max

0.898 0.5 0.25 0.1 0.09

4 5.16E-02 3.28E-02 2.89E-03 1.71E-04 4.25E-06

5 9.95E-03 5.70E-03 2.84E-04 8.49E-06 8.47E-08

6 1.62E-03 8.33E-04 2.34E-05 3.52E-07 1.41E-09

7 2.26E-04 1.05E-04 1.65E-06 1.25E-08 2.01E-11

8 2.79E-05 1.16E-05 1.03E-07 3.89E-10 2.51E-13

9 3.06E-06 1.15E-06 5.66E-09 1.08E-11 2.78E-15

10 3.03E-07 1.02E-07 2.82E-10 2.69E-13 2.78E-17

11 2.73E-08 8.29E-09 1.28E-11 6.10E-15 2.53E-19

12 2.26E-09 6.16E-10 5.30E-13 1.27E-16 2.10E-21
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in which sec y¼ 1=cosy. Therefore, the computation of I1 and I2

relies on the integration of powers of secant function. We divide
the integration of powers of secant function into two cases: n is
even and n is odd. For the even n¼2m, m ¼0,1,y, the integration
of even power of secant function can be written as

Z y1
2

0
sec2m y dy¼

Xm�1

l ¼ 0

1

2lþ1

m�1

l

� �
tany1

2

� �2lþ1
, f or ma0

y1
2, f or m¼ 0

,

8>><
>>:

ð17Þ

in which binomial identity is used and
n

n

� �
is the binomial

coefficient. For odd n, using the secant reduction formula, the
integration of odd power of secant function has the following
recursive relation

Z y1
2

0
secn y dy¼

secn�1 y1
2siny1

2

n�1
þ

n�2

n�1

Z y1
2

0
secn�2ydy, for na1,

ð18Þ

in which the initial value is

Z y1
2

0
sec y dy¼ log sec y1

2þtany1
2

� �
: ð19Þ

Combing Eqs. (17)–(19), the integration of powers of secant
function can be evaluated exactly. Once the integration of powers
of secant function is done, I1 and I2 can be computed with
different coefficients as indicated in Eqs. (15) and (16).

In the evaluation of I1 and I2, series expansions are truncated.
The selected truncation number is very crucial to the accuracy of
those integrals. Since the integration of powers of secant function
can be computed exactly, errors come from series expansion of
the exponent function. Obviously, series expansions of kernels
eikR(y) and eikR(y)/R(y) with N�1 truncated number share the same
relative error which can be expressed as:

X1
n ¼ N

ikRðyð ÞÞ
n

n!

�����
�����r

X1
n ¼ N

kRðyÞmax

	 
n

n!
re, ð20Þ

in which e is the desired relative error, and R(y)max¼r02 as
indicated in Fig. 2. As shown in Eq. (20), N is determined by the
size of kR(y)max. To derive a general method of N selection, we
resort to the engineering empirical rule in the mesh generation,
that is, for every wavelength (l) one should have at least six

elements. We roughly assume that r02rl/7 since r02 is smaller
than the element size. In that sense, kR(y)maxr2p/7¼0.898 can
be guaranteed especially when using the fast multipole boundary
element method where the number of elements is generally
larger than the above number determined by the engineering
empirical rule. Therefore, with g¼kR(y)maxr1, the following
formula can be used to check whether N is large enough for the
given e:

X1
n ¼ N

kRðyÞmax

	 
n

n!
r

gN

1�g
1

N!
re: ð21Þ

To describe quantitatively the relation of N with kR(y)max. The
error bounds of different truncation numbers and several g are
listed in Table 1by computing with

x¼
X1

n ¼ N

kRðyÞmax

	 
n

n!
: ð22Þ

Even though Eq. (20) just gives the relative errors of series
expansion of the exponent function, actually it can also be used to
describe the relative errors of the computation of I1 and I2. Take I2
as an example for which the relative error can be expressed as:

e I2ð Þ ¼

R y1
2

0
1

RðyÞ
P1

n ¼ N
ikRðyð ÞÞ

n

n! dyR y1
2

0
eikRðyÞ

RðyÞ dy

������
������r

R ~y
� �
h

xo
r02

h
x, ð23Þ

in which the mean value theorem of integral is used and ~y is a
point in the range 0,y2

1

� �
. If the triangle element is regularly

configured, the relative error of I2 computation can be viewed at
the same level of that in the exponent function computation with
series expansion. It is worth noting that the relative error of
I1 computation is the same as that of the exponent function
computation with series expansion since the denominator R(y) in
Eq. (23) is equal to one.
3.2. Numerical validation

From above analysis we know that the two remaining regular
line integrals can be evaluated as accurate as possible in the sense
of machine precision. To prove benefits of the method developed
above, the accuracy and efficiency of weakly singular and hyper-
singular integrals are compared with those computed by the
Gaussian quadrature method, and the singular subtraction
method [33] for different cases. The formulations of singular
subtraction of weakly singular and hypersingular integrals for
constant element areZ
Dx

G x,yð ÞdSðyÞ ¼

Z
Dx

½G x,yð Þ�G x,yð Þ�dSðyÞ

þ

Z
Dx

G x,yð ÞdSðyÞ, ð24Þ

Z
Dx

@2G x,yð Þ

@nðxÞ@nðyÞ
dS yð Þ ¼

Z
Dx

@2½G x,yð Þ�G x,yð Þ�

@nðxÞ@nðyÞ
dS yð Þ

þ

Z
Dx

@2G x,yð Þ

@nðxÞ@nðyÞ
dS yð Þ, ð25Þ

in which G x,yð Þ ¼ 1=4pr is the static fundamental solution, and
the added back terms can be evaluated with analytical formulas.
The first integral is evaluated using Gaussian quadrature since it
is only weakly singular after the subtraction. Two kinds of
triangular elements are set up for the test, one is named regular
(equilateral triangle) and another is irregular (isosceles triangle).
The quality of the triangular element is described by the aspect
ratio defined by the ratio of the longest side length over the
minimal height of the triangle. Therefore the aspect ratio of the
regular element is

ffiffiffi
3
p

=2, which is the best aspect ratio of a
triangle. The irregular element is configured to have an aspect
ratio of 40.

Two wavenumbers are selected to let kR(y)max¼0.1 and 0.898,
respectively. The relative errors of different cases are listed in



Table 2

Relative errors of singular integrals by different method of kR(y)max¼0.1.

Methods Term or point Relative error

Regular element Irregular element

Weaksingular Hypersingular Weaksingular Hypersingular

Explicit analytical 4 0.345609E-11 0.183505E-07 0.748418E-14 0.508850E-08

6 0.155103E-15 0.840761E-12 0.000000Eþ00 0.264864E-12

8 0.000000Eþ00 0.000000Eþ00 0.000000Eþ00 0.000000Eþ00

Explicit Gaussian 6 0.947767E-10 0.168353E-06 0.195126E-06 0.443423E-01

12 0.620491E-15 0.241297E-13 0.101683E-07 0.231200E-02

64 0.466219E-15 0.226956E-13 0.272154E-15 0.249241E-12

Singular subtraction 6 0.386950E-03 0.195125E-04 0.471373E-05 0.610273E-05

12 0.179098E-03 0.179257E-05 0.133865E-02 0.321967E-06

64 0.768859E-04 0.110399E-06 0.833647E-06 0.187908E-07

Table 3

Relative errors of singular integrals by different method of kR(y)max¼0.898.

Methods Term or point Relative error

Regular element Irregular slement

Weaksingular Hypersingular Weaksingular Hypersingular

Explicit analytical 4 0.189457E-05 0.119751E-03 0.391041E-08 0.331374E-04

6 0.525100E-08 0.442612E-06 0.123166E-10 0.139192E-06

8 0.101707E-10 0.107172E-08 0.272474E-13 0.383632E-09

Explicit Gaussian 6 0.894203E-08 0.231859E-06 0.157515E-04 0.449388E-01

12 0.189493E-14 0.544280E-13 0.835234E-06 0.248167E-02

64 0.708789E-15 0.172698E-14 0.680723E-15 0.316041E-13

Singular subtraction 6 0.326970E-01 0.160220E-02 0.380337E-03 0.499535E-03

12 0.151197E-01 0.145537E-03 0.107987Eþ00 0.262450E-04

64 0.648959E-02 0.894902E-05 0.672488E-04 0.152443E-05

Table 4
CPU time of singular integrals for the three methods with different term or point.

Methods Term or point CPU time

Explicit analytical 4 0.104535E-05

6 0.141965E-05

8 0.193484E-05

Explicit Gaussian 6 0.173969E-04

12 0.347245E-04

64 0.441819E-03

Singular subtraction 6 0.196537E-05

12 0.297956E-05

64 0.116582E-04
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Tables 2 and 3. The relative error is defined as

Relative error¼
numerical�analytical
�� ��

analytical
�� �� , ð26Þ

in which numerical means singular integrals computed by the
explicit analytical method (developed above), the explicit Gaussian
quadrature (explicit singular integrals with Gaussian quadrature
evaluation) and the singular subtraction method. Analytical results
of singular integrals are computed by the analytical expression with
large enough truncation number to let evaluation of the integral
reach the machine precision. Term or Point in Tables 2 and 3 means
truncation number for explicit analytical method and number of
Gaussian quadrature point for Explicit Gaussian and Singular sub-
traction methods.

Careful observation in Tables 2 and 3 can make a conclusion that
the larger the element size (in the sense of wavelength) is, the more
term or point is needed for the three methods. For the explicit
Gaussian method, results on the irregular element are worse than
the regular element. But the explicit analytical method does not
produce the same phenomena because the bounded error of the
irregular element is worse than that of the regular element cannot
guarantee the real relative error follows the same relation as that of
bounded errors. If the Gaussian point does not locate at the singular
points, the singular subtraction can give a good accuracy, otherwise
the result is worse. Whatever, results of the explicit Gaussian
method and the singular subtraction method largely depend on
the size and shape of the element. In contrast, the explicit analytical
method of the singular integrals is flexible because its error just
relates to kR(y)max and is less sensitive to the element shape
limitation than the other two methods. The CPU time to compute
the two singular integrals for different terms and nodes are
summarized in Table 4. Clearly, the explicit analytical method is
more efficient than the other two methods.
4. Formulations of FMBEM

Discretizing the boundary S using N constant triangular elements
leads Eq. (6) to a N dimensional linear equations’ systems whose
solving can be accelerated by the fast multipole method with a
iterative solver, such as GMRES. In this section, the multiple expan-
sion and translation formulations are briefly reviewed. Reasons of
numerical instability in translation are discussed. An algorithm to
improve the efficiency of the computation of moments is presented.

4.1. Multipole expansion

The free-space Green’s function can be expressed by multipole
expansion. Please note that the normalized associate Legendre
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functions and special harmonic functions used in this paper are
different from that in our previous papers [19,21,22], which are in
the form

Pm
n xð Þ ¼ �1ð Þ

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ1

2

n� mj jð Þ!

nþ mj jð Þ!

s
P mj j

n xð Þ, �1rxr1, ð27Þ

Ym
n y,fð Þ ¼

1ffiffiffiffiffiffi
2p
p Pm

n cosyð Þeimj, 0ryrp, 0rfr2p: ð28Þ

Therefore the multipole expansion of Green’s function near
point yc is

G x,yð Þ ¼ ik
X1
n ¼ 0

Xn

m ¼ �n

Om
n k,x,yc

	 

I�m
n k,y,yc

	 

, y�yc

�� ��o x�yc

�� ��, ð29Þ

where the inner function is defined by

Im
n k,x,yc

	 

¼ jn k y�yc

�� ��	 

Ym

n

y�yc

y�yc

�� ��
 !

, ð30Þ

and the outer function is defined by

Om
n k,x,yc

	 

¼ hn k x�yc

�� ��	 

Ym

n

x�yc

x�yc

�� ��
 !

ð31Þ

In Eqs. (30) and (31), jn is the nth order spherical Bessel
function of the first kind; hn is the nth order spherical Hankel
function of the first kind.

For a source element Dj which is far from the field element
where the field point x is located, Eq. (29) can be used to translate
the contribution from an element Dj to a contribution collecting
center yc. The collected contributions from specific elements are
named multipole moment. The multipole moment for operators
S and M is in the form

Mm
n k,yc

	 

¼

Z
Dj

Im
n k,x,yc

	 

qðyÞdSðyÞ, ð32Þ

and the multipole moment for operators D and H is in the
form

Mm
n k,yc

	 

¼

Z
Dj

@

@nðyÞ
Im
n k,x,yc

	 

j yð ÞdS yð Þ: ð33Þ
4.2. Formulations of translations

In the fast multipole BEM, once the moments are computed,
the final evaluation of the contribution from far away source
elements to the field elements generally consists of three types of
translation, moment to moment (M2M), moment to local (M2L)
and local to local (L2L), between levels and cells.

If the center yc is moved to another position yc0, the moments
can be translated by the following M2M method

Mm0
n0 k,yc0
	 


¼
XP

n ¼ 0

Xn

m ¼ �n

M9M
	 
m,m0

n,n0
k,tð ÞMm

n k,yc

	 

, for 0r m0

�� ��rn0rP0,

ð34Þ

for 9y�yc09o9x�yc09, in which we assume P0 and P are orders of
the moment associated with center yc0 and yc correspondingly, t ¼
yc�yc0 . An approach to compute the M2M translation coefficients is

M9M
	 
m,m0

n,n0
k,tð Þ ¼

Xnþn0� n�n0j jð Þ=2

l ¼ 0

Wm0�m,m0,m
n�n0j jþ2l,n0 ,nIm�m0

n�n0j jþ2l k,tð Þ, ð35Þ

in which W is purely numerical and can be computed by

Wm00,m0,m
n00 ,n0 ,n ¼ 4pm00e�m0emin

00 þn0�n 2n00 þ1ð Þ 2n0 þ1ð Þ 2nþ1ð Þ

4p

� �1
2

n00 n0 n

0 0 0

� �
n00 n0 n

m00 �m0 m

� �
, ð36Þ

where
n n n

n n n

� �
denotes the wigner-3j symbol,

em ¼
�1ð Þ

m, m40

1, mr0

(

The L2L formulation is the same as Eq. (34) but with moments
replaced with local expansion coefficients:

Lm0
n0 k,xc0ð Þ ¼

XP

n ¼ 0

Xn

m ¼ �n

L9L
	 
m,m0

n,n0
k,tð ÞLm

n k,xcð Þ, for 0r m0
�� ��rn0rP0

ð37Þ

in which t ¼ xc�xc0 . The L2L is the reverse process of M2M. It
shares the same translation coefficients expression, Eq. (35).

The local expansion coefficient of a cell whose center is xc is
realized by collecting moments in its interaction list:

Lm0
n0 k,xcð Þ ¼

XP

n ¼ 0

Xn

m ¼ �n

M9L
	 
m,m0

n,n0
k,tð ÞMm

n k,yc

	 

, for 0r m0

�� ��rn0rP0,

ð38Þ

for 9x�xc9o9y�xc9 and 9y�yc9o9x�yc9, in which t¼yc�xc,
the translation coefficients are

M9L
	 
m,m0

n,n0
k,tð Þ ¼

Xnþn0� n�n0j jð Þ=2

l ¼ 0

Wm0�m,m0,m
n�n0j jþ2l,n0 ,nOm�m0

n�n0j jþ2l k,tð Þ: ð39Þ

The fast multipole formulation discussed above is an O(p5)
algorithm which is rarely used in FMBEM except for the simula-
tion of very low-frequency acoustic problems. For complete
analysis, its formulations are provided here. Actually one widely
used formulation for low-frequency problems is the O(p3) algo-
rithm developed by Gumerov and Duraiswami [20,45]. They
proposed a rotation-coaxial-rotation back (RCR) decomposing of
the M2M, M2L and L2L translation which results in O(p3) com-
plexity because rotation and coaxial process are all O(p3). Transla-
tions of moments and local expansion coefficients can be computed
by the following decomposing

F9E
	 


k,tð ÞC¼ Rot Q�1
� �

F9E
	 


coax
k,tð ÞRotðQ ÞC, ð40Þ

where Rot(Q) is the rotation matrix, (F9E)coax(k, t) is the coaxial
translation matrix, C is a rotating vector composing of moments or
local expansion coefficients, both operators E and F represent either
moments (M) or local expansion operator (L).

The rotation translation is designed to rotate the coordinates to a
new coordinates where the oriented translation vector is along the
positive z-axis. The rotation in essence is to rotate the spherical
harmonic of a specific degree, and is a well-studied problem arising
in classical scattering theory, quantum mechanics and numerical
analysis. Recurrence method is a widely used approach to compute
the entries of the rotation matrix [20,46,47]. It is fast but subject to a
variety of instabilities which limits the effectiveness of rotation
computation for high degree. A recursive back propagation method
introduced by Gumerov (p336, in Ref. [48]), and a fast and stable
method using ‘‘pseudospectral’’ projection proposed by Gimbutas
and Greengard [49] are available to compute rotation accurately.
Therefore numerical instability of rotation computation in RCR is not
an issue anymore, but users should choose a proper method
according to their problems.

By exploring the fact that in the coaxial translation the
spherical polar angle f is not changed, and due to the
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orthogonality of the functions eimf, stating that they can be
expanded over the basis function of same order m only, the
coaxial translation is thus can be expressed by

E
~m

n0 ¼
XP

n ¼ mj j

F9E
	 
 ~m

n,n0
F
~m

n , for ~m
�� ��rn0rP0, ~m

�� ��rnrP, ð41Þ

where ~m
�� ��rmin P0,P

	 

, E represents either moments or local

expansions, while F just represents moments. Another explana-
tion of Eq. (41) comes from the fact that yt¼0, Pm

n cosytð Þ ¼ 0 for
ma0, and in light of Eqs. (35) and (39), the translation coeffi-
cients F9E

	 
m,m0

n,n0
¼ 0 for mam0. It is worth noting that generally in

the M2M translation P0ZP, obviously the translated coefficients
Em

0

n0 ¼ 0 for Po9m09rP0 after the coaxial translation. Actually, it is
not true for the real coefficients centering at where Em0

n0 is located.
But after rotation back, those coefficients are generally non-zero
and very small. It will not introduce serious errors to the final
results on the condition that the selected multipole expansion
order at each level satisfying the prescribed tolerance.

4.3. Using the diagonal form moment in the upward pass

The plane wave

e�ik y�ycð ÞUr̂ ¼ 4p
XP

n ¼ 0

Xn

m ¼ �n

�ið ÞnIm
n k,y,yc

	 

Y�m

n r̂ð Þþe, ð42Þ
in which r̂ is a point on a unit sphere, 9e9 is the relative error of
the above series expansion with the first P terms:

e¼
X1
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�ið Þn 2nþ1ð Þjn k y�yc

�� ��	 

Pn r̂U

y�yc

y�yc

�� ��
 !

, ð43Þ
The partial wave expansion of the plane wave and addition
theorem of Legendre function, Pn, are used in Eqs. (42) and (43).
Therefore the multipole moment for operators S and M can also
be expressed as

Mm
n k,y,yc

	 

¼
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4p

Z
s1

Ym
n r̂ð ÞMHF r̂,y,yc

	 

dsþ

Z
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eYm
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in which MHF r̂,y,yc is the corresponding moment in the

diagonal form FMBEM, named the high-frequency moment:

MHF r̂,y,yc

	 

¼

Z
Dj

e�ik y�ycð ÞUr̂qðyÞdSðyÞ: ð45Þ

For operators D and H, the translation is same to Eq. (44) but
with the diagonal form moment as:

MHF r̂,y,yc

	 

¼�

Z
Dj

@y

@nðyÞ
Ur̂

� �
e�ik y�ycð ÞUr̂q yð ÞdS yð Þ: ð46Þ
It is worth noting that similar to the analysis in Eq. (23), the
relative error of the translation from the high-frequency moment to
the low-frequency moment can be viewed at the same level of 9e9.

Therefore, if P is selected properly to let 9e9 be less than a given
tolerance, the accuracy of the translation in Eq. (44) can be
guaranteed. The integral over the unit sphere in the translation
is computed exactly with Pþ1 Gaussian quadrature in the y
direction and 2Pþ1 trapezodial rule in the f direction. Since f is
equally spaced, the translation can also be accelerated by the FFT
which results in an O(2P3) complexity.

Advantages are manifested for adopting the diagonal form
moments in the upward pass of the low-frequency FMBEM for
higher frequency acoustic problems analysis. It is faster to use the
diagonal moments than to use the RCR method in the upward
pass. Because analytical integration [26] is available for the
moment computation, and the overall complexity of M2M using
the diagonal form moment and then translate it to the low-
frequency moment is O(2P3). In contrast, the complexity of M2M
using RCR is O(3P3). The efficiency of the improved LF FMBEM is
validated in the numerical examples. Even though the LF FMBEM
is not efficient and has drawbacks in the M2M translation, its
memory requirement for storing the moments is low. That is one
of reasons why we translate the diagonal form moment to the
low-frequency format for later translations.
5. Numerical examples

In this section, numerical examples are presented to demon-
strate the accuracy of the analytical hypersingular integral first,
and then the efficiency and accuracy of the LF FMBEM for higher
frequency acoustic problems analysis with the diagonal form
moment in the upward pass are proved. In the following exam-
ples, the LF FMBEM based on RCR in both upward and downward
passes is termed as A1. The LF FMBEM using diagonal moments in
the upward pass and RCR in the downward pass is termed as A2.
The diagonal FMBEM developed in the Ref [26] is termed as A3 in
this paper. All three FMBEMs are implemented with the explicit
singular BIEs method using the analytical approach to compute
the remaining regular line integrals.

The GMRES solver is used and the tolerance is set at 10�4. Left
precondition based on the leaf cell is used in the iteration to
accelerate the convergence ratio. The multipole expansion order
is given by the empirical formula [50] as

p¼ kdþc0log kdþpð Þ ð47Þ

where d is the diameter of the cell on which integration are
calculated, and c0 is a number to determine the desired accuracy,
which is set to 5 in simulations. All simulations are done on a
desktop PC with a 64-bit Intels CoreTM2 Duo CPU and 8GB RAM,
but only one core is used in the computation.
5.1. Interior problem of a pulsating sphere

A pulsating sphere with given constant boundary conditions is
chosen as an interior example to verify accuracy of the FMBEM
based on the analytical singular BIEs. The radius of the sphere is
a¼0.5 m, and its surface vibrates with normal velocity vn¼0.1 m/s
which relates to the boundary condition by qj/qn¼ irov. The mass
density of acoustic medium is r¼1.2 kg/m3. Analytical boundary
solution is given by

j að Þ ¼
irovna

ika�1
ð48Þ

In this case, the nondimensional value ka increases from 0.05
to 2.5, N is set to 4 in both Eq. (15) and Eq. (16). The L2 relative
error of boundary solution is defined as

Ej ¼
:jFMBEM�jana:

:jana:
ð49Þ

in which sound pressure jFMBEM is solved by the FMBEM, and
jana is computed by Eq. (48).

In Table 5, g is the same as the one in Table 1, ‘‘—’’ means the
solution is not correct due to the numerical instability of A3 for low-
frequency problems analysis. This example validates the analytical
singular BIEs, demonstrates the accuracy of the analytical formula-
tions for the two remaining regular line integrals on the field
element. Conclusion can also be made from Table 5 that the solution
efficiency of the three algorithms is ranked from high to low as A3,
A2 and A1. The reason is obvious because the overall complexity of



Table 5
Results of interior radiation of a pulsating sphere.

ka DOFs g Ej CPU time

A1 A2 A3 A1 A2 A3

0.05 432 1.22E-2 6.20E-3 6.20E-3 — 3.12E-1 2.65E-1 –

0.5 768 9.33E-2 3.73E-3 3.73E-3 3.84E-3 4.99E-1 2.03E-1 1.09E-1

1.0 1,200 1.51E-1 2.68E-3 2.68E-3 2.70E-3 9.67E-1 5.15E-1 2.81E-1

1.5 2,352 1.63E-1 1.59E-3 1.56E-3 1.58E-3 2.37Eþ0 1.48Eþ0 5.15E-1

2.0 4,332 1.61E-1 1.71E-3 9.86E-4 1.01E-3 3.82Eþ0 2.26Eþ0 1.28Eþ0

2.5 7,500 1.53E-1 8.34E-4 1.02E-3 7.32E-4 8.02Eþ0 5.21Eþ0 1.76Eþ0

Fig. 3. Sound pressure level of the sample point computed by A1 and A2.
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A3 is O(P2logP), the upward pass in A2 is O(P2logP) while the down
pass is O(P3), and the overall complexity of A1 is O(P3).

5.2. Scattering from a rigid sphere

In this example, a rigid sphere impinged by a plane wave
traveling along þz direction with unit amplitude is investigated
to verify the Burton–Miller formulation based on the analytical
singular BIEs. The nondimensional value ka (a is also the radius)
ranges from 2.0 to 10.0 in 300 steps. Corresponding ele-
ments meshing for different ka satisfies kR(y)maxr0.153. Bound-
ary solutions are computed with A2 based on CBIE and CHBIE,
respectively. Sound pressure levels of the sample point located
at (0, 0, 1.25a) are plotted in Fig. 3. From Fig. 3 we observe
that the A2 based on CBIE can give accurate results except
at the fictitious frequencies and the A2 based on CHBIE
can overcome the inaccuracy associated with the fictitious
frequencies.

The CPU times used for some specific cases (not the fictitious
frequencies) in the frequency sweep analysis are plotted in Fig. 4,
in which the corresponding CPU times of A1 and A3 are also
plotted. It further demonstrates the efficiency of the developed
LF FMBEM.

5.3. Scattering from an artificial head

Generally, models in acoustic problems are more complex. In
this example, we further explore the large-scale applicability of
the improved LF FMBEM. A realistic artificial head model is used
to test the LF FMBEM solver. The model has an overall dimension
of 0.25�0.43�0.35 m in x, y and z direction respectively, and is
meshed with 556, 370 triangular elements. The size of the
smallest triangle is 1.62�10�2 wavelengths, and the size of the
largest one is 4.05�10�2 wavelengths. The maximum element
number allowed in a leaf is set to 50 and 7 levels tree structure is
generated. Results are compared with those given by the HF
FMBEM regarding accuracy and efficiency. For the nondimen-
sional value ka¼96.6 in which a is the size in y direction, the CPU
time used for the LF FMBEM and HF FMBEM are 8.54 and 1.81 h,
respectively. Both FMBEMs require 129 iterations to reach the
solution. The boundary solutions are plotted in Fig. 5. The relative
error of solutions given by the two FMBEMs is at the level of 10�4

which clearly demonstrated that the improved LF FMBEM can
give good accuracy of acoustics problems for a wide range of
frequencies. It should be noted that the rotation coefficients for
multipole expansion orders larger than 30 are not correct due to
the round off errors in the recurrence method. The error
destroyed the accuracy of the LF FMBEM in this case. However,
the recurrence method is efficient to compute the rotation
coefficients. Therefore, the rotation coefficients used in the
improved LF FMBEM for this case are computed with the
recurrence method for multipole expansion orders less than 30
and the ‘‘pseudospectral’’ projection method for larger multipole
expansion orders.
6. Conclusion

In this paper, an analytical integration of the hypersingular
integral which is free of singular integration is adopted in the
FMBEM. To compute the two regular line integrals left in the
explicit hypersingular integral, analytical expressions by explor-
ing the power series expansion of the integrands are derived. The
analytical expressions just relate to the element size in wave-
length regardless of the element shape. Therefore evaluations of
the regular line integrals become more accurate and are easier to
control the errors.

The RCR is one of the efficient algorithms for LF FMBEM.
Numerical examples demonstrated that there are numerical
instabilities for coefficients computed with the recurrence
method. Solutions given by the LF FMBEM based on RCR with
coefficients computed by the recurrence method may not accu-
rate for higher frequency problems. Therefore the multipole
expansion order should be carefully configured or other methods
should be applied to compute the translation coefficients for the
LF FMBEM based on the RCR. Even though the LF FMBEM based on
the RCR has a complexity of O(p3) and may not give correct
solutions for higher frequency acoustic problems, it still deserves
investigation from the practical point of view, because it requires
less memory than other FMBEMs. An improved LF FMBEM, whose
moment computation and M2M translation are evaluated by the
diagonal method and then the moments are translated to the LF
format, is presented in this paper. The improved LF FMBEM has
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Fig. 4. CPU times used by the three FMBEMs.

Fig. 5. Boundary solutions of an artificial head.
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the same memory requirement as the one based on the RCR, and
can be used for higher frequency acoustic problems. Its solution
efficiency is between that of the LF FMBEM based on the RCR and
that of the HF FMBEM. Numerical examples presented in this
paper validate the accuracy and efficiency of the developed LF
FMBEM with analytical integration of the hypersingular integral.
Acknowledgment

The work is supported by grant 11074170 of the National
Natural Science Foundation of China, grant MSVMS201105 of the
State Key Laboratory of Mechanical System and Vibration and the
scientific foundation of graduate school of Shanghai Jiao Tong
University. The authors would like to thank Mr. Shang Xiang for
his help in creating the artificial head CAD model used in this
study.
References

[1] Rokhlin V. Rapid solution of integral equations of classical potential theory.
J Comput Phys 1985;60(2):187–207.

[2] Greengard L, Rokhlin V. A fast algorithm for particle simulations. J Comput
Phys 1987;73(2):325–48.

[3] Rokhlin V. Rapid solution of integral equations of scattering theory in two
dimensions. J Comput Phys 1990;86(2):414–39.

[4] Rokhlin V. Diagonal forms of translation operators for the Helmholtz
equation in three dimensions. Appl Comput Harmonic Anal 1993;1(1):
82–93.

[5] Epton MA, Dembart B. Multipole translation theory for the three-dimensional
laplace and Helmholtz equations,. Siam J Sci Comput 1995;16(4):865–97.

[6] Rahola J. Diagonal forms of the translation operators in the fast multipole
algorithm for scattering problems. BIT Numer Math 1996;36(2):333–58.

[7] Greengard L, Huang J, Rokhlin V, Wandzura S. Accelerating fast multipole
methods for the Helmholtz equation at low frequencies,. IEEE Comput Sci Eng
1998;5(3):32–8.
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