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a b s t r a c t

In this note, it is shown explicitly that the displacement discontinuity method (DDM) is equivalent to the
boundary element method (BEM) for solving crack problems. To show this, the direct traction boundary
integral equation (BIE) in terms of the displacement jump across crack surfaces is applied to a crack in an
infinite 2-D elastic domain. Then, the direct traction BIE is discretized with constant line elements.
All the integrals are evaluated analytically. The yielded linear system of equations is found to be exactly
the same as the original DDM system of equations in terms of the displacement discontinuities. This
proof of the equivalence of the DDM and BEM suggests that the two methods are the same in nature and
both are based on the same traction BIE for crack problems.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The displacement discontinuity method (DDM) was proposed
by Crouch in 1976 [1] based on the earlier research results in the
elasticity theory of dislocations (cracks or inclusions) in mining
[2–6]. DDM has been applied widely in solving crack problems,
especially in rock mechanics [7], such as modeling hydraulic
fracture [8,9]. In the original DDM for two-dimensional (2-D)
elasticity problems, the displacement discontinuity across the
two surfaces of a crack are assumed to be constant on line
segments representing the crack. Stresses in the cracked domain
are related to the displacement discontinuities on the line seg-
ments by use of Papkovitch functions and superposition. A linear
system of algebraic equations is formed directly that can be used
to solve the unknown displacement discontinuities on the crack
surfaces. The method is easy to implement and accurate when the
number of line segments or displacement discontinuities is suffi-
ciently large [8,9]. To improve the accuracy of the DDM, higher-
order representations of the displacement discontinuities are also
available [8–10].

The boundary element method (BEM) based on the boundary
integral equation (BIE) for elasticity theory [11] has been applied
to solve crack problems for more than three decades [12–20].
The multidomain BEM was introduced first to solve crack problems
[14] using only the displacement (singular) BIE, in which a cracked

body is divided into subdomains using artificial boundaries con-
necting the cracks. In the late 1980s and early 1990s, the traction
(hypersingular) BIE [14–25] was introduced and the displacement
discontinuity (or jump) across the crack surfaces is used as the
primary unknown variable to solve the crack problems based on the
one surface model of the crack. Since then, dual BIE formulations
[19,26,27] using various combinations of the displacement and
traction BIEs have been applied to solve crack problems in a more
general setting, for example, by discretizing the two surfaces of a
crack in the model and using the displacements on the two surfaces
as separate variables. More comprehensive reviews of the BEM for
crack problems can be found in Refs. [14,17,18].

What are the connections between the DDM and BEM for
solving crack problems? Both methods use the solution due to a
point force or dislocation, the method of superposition, and
unknowns only on the boundary. Therefore, it is natural for
researchers to link the two methods. In the literature, the DDM
has been said to be a special indirect BEM, or similar to the direct
BEM, or a third method based on physical arguments [7–10,28].
In 1988, Hong and Chen provided perhaps the earliest and closest
linkage between the DDM and BEM in Refs. [15,16]. They started
with the traction BIE for a crack in terms of the displacement
discontinuity and discretized the BIE with constant elements. They
obtained a set of equations containing derivatives of inverse
tangent functions. Besides, the authors claim that the final
equations are identical to the ones from the DDM [1] by using
MACSYMA (a symbolic manipulator). In the 1990s, Linkov and
Mogilevskaya also noted that the DDM is equivalent to the traction
BIE for 2-D crack problems [29,30] and later in the context of 3-D
crack problems [31]. However, to the authors' best knowledge, no
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equivalence has been shown explicitly in the literature demon-
strating that the DDM and BEM systems of equations are identical,
and therefore the two methods are the same for solving crack
problems.

In this short note, it is shown explicitly that the discretization
of the direct traction BIE for a crack in a 2-D infinite elastic domain
using constant line elements will yield exactly the same system of
equations as in the original DDM. This linkage will help advance
the development of the DDM (or the BEM) as it is being increas-
ingly used to solve large-scale crack problems, such as those in
hydraulic fracture [8,9,32,33]. There are abundant knowledge and
software tools in the field of the BEM research regarding solving
large-scale BEM models, such as the fast multipole BEM, adaptive
cross approximation method, and others [34], that can be applied
to accelerate the solutions of the systems of equations obtained
using the DDM (or the BEM) in solving large-scale crack problems.

2. Equivalence of the DDM and BEM

Consider a mode I crack in a 2-D infinite elastic medium under
plane strain condition (Fig. 1). The displacement discontinuity
method gives the following equations for determining the displace-
ment discontinuities distributed over N line segments (Fig. 2) [1]:

p¼ G
πð1�νÞ ∑

N

j ¼ 1

aj
ðxj�xiÞ2�a2j

ðΔu2Þj; for i¼ 1;2; :::;N; ð1Þ

where xj is x coordinate of the center of segment j, aj is the half
length of segment j, G is the shear modulus, ν is Poisson's ratio,
p¼ σ22ðx;07 Þ with jxjoa is the normal stress on the boundary in
the y direction (negative pressure load on the entire crack surface),
and

ðΔu2Þj ¼ u2ðxj;0þ Þ�u2ðxj;0� Þ

is the (constant) displacement discontinuity over line segment j.
To apply the BEM for the same crack problem (Fig. 1), we start

with the direct displacement (singular) BIE for the configuration

in Fig. 1 [11]:

ð1=2ÞuðxÞ ¼
Z
Sþ [S�

½Uðx; yÞtðyÞ�Tðx; yÞuðyÞ�dSðyÞ; ð2Þ

where x and y are the source point and field point, respectively, u
and t are the displacement and traction vector, respectively, U and
T are 2�2 matrices from the displacement and traction kernels in
Kelvin's solution, respectively [20]. It is assumed that the crack
surface is smooth at the source point x.

The corresponding direct traction (hypersingular) BIE is
[16,19,20]

ð1=2ÞtðxÞ ¼
Z
Sþ [S�

½Kðx; yÞtðyÞ�Hðx; yÞuðyÞ�dSðyÞ; ð3Þ

where K and H are 2�2 matrices from the two new kernels based
on Kelvin's solution [20]. For completeness, we list the expressions
for the four kernels (U, T, K and H) in index notation for the case of
plane strain in the following [20]:

Uijðx; yÞ ¼ ð1=ð8πGð1�νÞÞÞ ð3�4νÞδij log ð1=rÞþr;ir;j
� �

; ð4Þ

Tijðx; yÞ ¼ � 1
4πð1�νÞr

∂r
∂n

½ð1�2νÞδijþ2r;ir;j��ð1�2νÞðr;inj�r;jniÞ
� �

;

ð5Þ

Kijðx; yÞ ¼
1

4πð1�νÞr½ð1�2νÞðδijr;kþδjkr;i�δikr;jÞþ2r;ir;jr;k� nkðxÞ;

ð6Þ

Hijðx; yÞ ¼
G

2πð1�νÞr2 2
∂r
∂n

½ð1�2νÞδikr;jþνðδijr;kþδjkr;iÞ�4r;ir;jr;k�
�

þ2νðnir;jr;kþnkr;ir;jÞ�ð1�4νÞδiknj

þð1�2νÞð2njr;ir;kþδijnkþδjkniÞ
�
nkðxÞ; ð7Þ

in which r is the distance between the source point x and field
point y, ð Þ;i ¼ ∂ð Þ=∂yi, δij is the Kronecker δ symbol, and ni is the
direction cosine of the normal.

When S� is collapsed onto Sþ to form a one surface model for
the crack (Fig. 2), the displacement BIE (2) is reduced to the
following equation [26,35]:

ð1=2ÞΣuðxÞ ¼
Z
Sþ

½Uðx;yÞΣtðyÞ�Tðx; yÞΔuðyÞ�dSðyÞ; ð8Þ

and the traction BIE (3) is reduced to the following equation
[19, 22–27]:

ð1=2ÞΔtðxÞ ¼
Z
Sþ

½Kðx; yÞΣtðyÞ�Hðx; yÞΔuðyÞ�dSðyÞ; ð9Þ

where Δu¼ ujSþ �ujS� , Σu¼ ujSþ þujS� , Δt¼ tjSþ �tjS� , and
Σt¼ tjSþ þtjS� . Assuming that the load on the crack surface is in
equilibrium (such as a pressure load), we have

Σt¼ tjSþ þtjS� ¼ 0: ð10Þ

Thus displacement BIE (8) is further reduced to

ð1=2ÞΣuðxÞ ¼ �
Z
Sþ

Tðx; yÞΔuðyÞdSðyÞ; ð11Þ

and the traction BIE (9) is further reduced to

ð1=2ÞΔtðxÞ ¼ �
Z
Sþ

Hðx; yÞΔuðyÞdSðyÞ: ð12Þ

Note that an integral representation similar to BIE (11) and in
terms of the displacement discontinuity was presented by Jaswon
and Symm in Ref. [36] (Eq. (6.4.4), with the source point x inside
the domain). If one let the source point approach the surface, the
same BIE (11) can be derived from Jaswon and Symm's result in

2
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Fig. 1. A crack in an infinite 2-D elastic domain.
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Fig. 2. One surface model of the crack and discretized with N constant line
elements.
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Ref. [36]. However, the displacement BIE (11) is insufficient when
it is applied alone to a crack problem, as it contains both the
displacement sum and displacement discontinuity across the crack
surfaces (two unknown functions). On the other hand, the traction
BIE (12) is ideal for solving the displacement discontinuity (or
jump) for crack problems (and then stress intensity factors) when
the traction is specified on the crack surfaces or another load at a
remote location.

In the following, we will show that the discretization of the
traction BIE (12) leads directly to the DDM equation, that is, Eq. (1).
First, the traction BIE (12) can be written in the following
component form:

1
2

Δt1
Δt2

( )
¼ �

Z
Sþ

H11 H12

H21 H22

" #
Δu1

Δu2

( )
dS; ð13Þ

where Hkl are the coefficients of matrix H. Now, apply the BIE in
(12) or (13) to the crack problem shown in Fig. 1 using the
discretization shown in Fig. 2. That is, the one surface crack model
is discretized with N constant elements, where for element j, the
element length is 2aj and the x-coordinate of the center of the
element is xj, for j¼1,2,…,N. Then, the discretized BIE when
the source point x is placed at the center of element i is

1
2

Δt1
Δt2

( )
i

¼ � ∑
N

j ¼ 1

Z
ΔSj

H11 H12

H21 H22

� �
i
dS

 !
Δu1

Δu2

( )
j

; ð14Þ

for i¼1,2,…, N; in which ΔSj indicates element j. Integration of the
four coefficients can be done analytically using the results in
Appendix A.2 of Ref. [20] for an arbitrary orientation of the
element and location of the source point x (Fig. 3). The parameters
shown in Fig. 3 have the relations d¼ 0; r21 ¼ T2

1; r22 ¼ T2
2 for the

special case of the given crack (Fig. 4). Applying the results in
Eqs. (A.20), (A.22), and (A.25) of Appendix A.2 in Ref. [20], we have

R
ΔSj

H11 H12

H21 H22

� �
i
dS¼

D111 D121

D211 D221

" #
¼ G

2πð1� νÞ
�Γ12 0
0 �Γ12

" #

¼ G
2πð1�νÞ

1
T1
� 1

T2

� 	
ij

0

0 1
T1
� 1

T2

� 	
ij

2
664

3
775; for i; j¼ 1;2; :::;N:

ð15Þ

From Fig. 4, we have

1
T1

� 1
T2


 �
ij
¼ 1
ðxj�xiÞ�aj

� 1
ðxj�xiÞþaj

¼ 2aj
ðxj�xiÞ2�a2j

Therefore, the integrals in (15) are found to be

Z
ΔSj

H11 H12

H21 H22

� �
i
dS¼ G

πð1�νÞ

aj
ðxj �xiÞ2 �a2j

0

0 aj
ðxj � xiÞ2 �a2j

2
64

3
75;

for i; j¼ 1;2; :::;N: ð16Þ
For i¼ j, the integral is a Hadamard finite part (HFP) integral

and the result given by the above equation is consistent with the
one given in Eq. (A.29) of Ref. [20].

Substituting results of Eq. (16) in Eq. (14), we obtain the
following BEM system of equations for the crack problem

1
2

Δt1
Δt2

( )
i

¼ � G
πð1�νÞ ∑

N

j ¼ 1

aj
ðxj � xiÞ2 �a2

j

0

0 aj
ðxj � xiÞ2 �a2

j

2
64

3
75 Δu1

Δu2

( )
j

; for i¼ 1;2; :::;N:

ð17Þ
Note that the x-component and y-component of the equations

are not coupled.
For the given load (negative pressure on the entire two crack

surfaces) as shown in Fig. 1, we have

Δt2 ¼ tþ2 �t�2 ¼ �p�p¼ �2p:

Thus, the second equation (y-component) of Eq. (17) becomes

�p¼ � G
πð1�νÞ ∑

N

j ¼ 1

aj
ðxj�xiÞ2�a2j

ðΔu2Þj; for i¼ 1;2; :::;N; ð18Þ

which is the same as Eq. (1) derived in the displacement
discontinuity method [1].

Therefore, the equivalence of the DDM and BEM for 2-D crack
problems is shown explicitly using the direct traction BIE which is
discretized with constant elements.

3. Discussions

This note is limited to the case of a single crack in a 2-D infinite
domain with the BEM discretized using constant line elements.
However, the equivalence of the DDM and the BEM based on the
traction BIE for modeling crack problems is believed to be general,
not limited to a single crack in 2-D infinite domain, or straight
cracks, or the use of constant elements. The 2-D case with constant
elements is used in this note simply because the analytical
integration results are readily available in Ref. [20]. For multiple
cracks in infinite or finite domains, curved cracks in 2-D and 3-D,
and BIEs discretized with linear, quadratic or other higher-order
elements, similar equivalence results can be shown if analytical
results for integrals of the kernels in the traction BIEs are available.

The proof of the equivalence of the DDM and BEM with
constant elements for crack problems also indicates that the
BEM with constant elements can be applied to solve crack
problems successfully. In the BEM literature, the BEM has been
reported in solving crack problems with almost exclusively higher-
order elements, in the pursuit of higher accuracy and in dealing
with the crack-tip singularity. However, the DDM shows that
traction BIE and the BEM with constant elements can be applied,

2
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r1

d 

x

θ

θ1

1

θ2

r ΔS 

n(y)

y

1

t T2

T1

2

Fig. 3. Analytical integration on a constant element.
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xi xj
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Fig. 4. Parameters for the analytical integration on the crack.
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and have been applied successfully for almost four decades, to
solve crack problems if one uses the displacement discontinuities
which are well defined near crack tips. In Ref. [37], the fast
multipole BEM code in Ref. [20] that is based on a dual BIE
formulation (a linear combination of the displacement BIE and
traction BIE) and using constant elements, is applied to solve 2-D
multiple crack interaction problems. Accurate BEM results of the
stress intensity factors are obtained using the displacement dis-
continuity (crack-tip opening displacement) results.

The linkage between the DDM and BEM can help advance the
development of the DDM, which has been increasingly used in
solving large-scale crack problems, such as those in hydraulic
fracture (fracking) [8,9,32,33]. The matrix for the system of
equations from the DDM is dense and nonsymmetric in general,
and therefore it requires O(N2) computational effort to obtain the
solutions for large-scale problems with the conventional DDM
approach. On the other hand, there are many fast solution
methods for solving large-scale BEM models, such as the fast
multipole BEM, adaptive cross approximation method, and others
[34], that can be applied directly to accelerate the solutions of the
DDM in solving large-scale crack problems. A couple of such
applications are given in Refs. [38,39].
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