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a b s t r a c t

In this paper, a highly efficient fast boundary element method (BEM) for solving large-scale engineering
acoustic problems in a broad frequency range is developed and implemented. The acoustic problems are
modeled by the Burton–Miller boundary integral equation (BIE), thus the fictitious frequency issue is
completely avoided. The BIE is discretized by using the Nyström method based on the curved quadratic
elements, leading to simple numerical implementation (no edge or corner problems) and high accuracy
in the BEM analysis. The linear systems are solved iteratively and accelerated by using a newly developed
kernel-independent wideband fast directional algorithm (FDA) for fast summation of oscillatory kernels.
In addition, the computational efficiency of the FDA is further promoted by exploiting the low-rank
features of the translation matrices, resulting in two- to three-fold reduction in the computational time
of the multipole-to-local translations. The high accuracy and nearly linear computational complexity of
the present method are clearly demonstrated by typical examples. An acoustic scattering problem with
dimensionless wave number kD (where k is the wave number and D is the typical length of the obstacle)
up to 1000 and the degrees of freedom up to 4 million is successfully solved within 10 h on a computer
with one core and the memory usage is 24 GB.

& 2014 Published by Elsevier Ltd.

1. Introduction

The boundary element method (BEM), besides its wide appli-
cations in other branches of science and engineering, has been an
important numerical method in acoustics. This is mainly due to its
unique advantages in dimension reduction, solution accuracy and
treating infinite and semi-infinite domain problems where the
radiation condition at infinity is automatically satisfied. The
capability of the acoustic BEM has been further improved when
it is combined with the famous Burton–Miller formulation [1] or
the combined Helmholtz integral equation formulation (CHIEF)
[2], in which the annoying non-uniqueness problem of the con-
ventional Helmholtz boundary integral equation (BIE) can be
successfully circumvented. Among them the Burton–Miller for-
mulation is more attractive since it does not need to choose
interior points by users as the CHIEF method [3].

The traditional BEM, however, cannot be used for large-scale
numerical simulation, because of the densely populated system
matrices and thus the square scaling of computational cost with

respect to N, the degrees-of-freedom (DOF). Fortunately, this
limitation has now been removed to a large extent by various
BEM acceleration techniques emerged in the past three decades.
The representative examples are the fast multipole method (FMM)
[4–6], H�matrix [7], wavelet compression [8,9], pre-corrected FFT
[10,11], ACA [12,13], etc. Of those acceleration techniques, it is the
FMM that has found the most substantial applications in many
areas [14], such as acoustics [15,16], electromagnetics and elasto-
dynamics [17].

The original FMM was first proposed by Greengard and Rokhlin
[4] to accelerate the evaluation of interactions of large ensembles
of particles governed by Laplace equation. Its success hinges on the
observation that the interaction via the kernel between well-
separated sets of points is approximately of low rank. In the low
frequency regime, the low rank property still holds for the
Helmholtz kernels, thus the FMM for the Laplace equation is
applicable to the Helmholtz equation with slight modifications
[14]. The complexity of the resulting low frequency FMM is of
order O(N) for a given accuracy. In the high frequency regime,
however, the situation is drastically different as the low rank
assumption is not valid any more. In fact, the approximate rank of
the translation matrix grows linearly with the size of the point sets
(in terms of the wavelength). However, Rokhlin [18] observed that
the translation matrix between well-separated point sets, though
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of large rank, can be expressed in “diagonal form” in Fourier space.
This observation leads to a high frequency FMM with OðN log NÞ
complexity. Nevertheless, this algorithm is only suitable for
relatively high frequency; it becomes numerically unstable in the
low frequency regime. The desirability for a FMM that is accurate
and efficient in a broad frequency range, from low frequency to
high frequency, gives rise to the wideband FMM in [19,20], which
are essentially hybrid schemes of the FMMs in low and high
frequency regimes. However, besides the success in dealing with
both non-oscillatory and oscillatory kernels, one should note that
the implementation of the original FMM is highly technical,
mathematically involved and kernel-dependent. This poses a
severe limitation on its engineering application and its general-
ization to other problems.

With this background, the kernel-independent FMM (KIFMM)
has gain its popularity in recent years. The main advantage of the
KIFMM lies in that it requires no complicated analytic expansions
for the kernels, but only uses kernel evaluations in its implemen-
tation; see e.g. [21–23] and the references therein. For low
frequency problems, we would like to mention two KIFMM
algorithms proposed by Ying et al. [21] and Fong and Darve [22],
both of which have attracted much attention in the past several
years. In [21] the analytic expansions of the original FMM are
replaced with equivalent density representations, while in [22]
they are replaced with Chebyshev polynomial interpolations. For
applications of the algorithm in [21], see e.g., [24,25]; recent
developments of the algorithm in [22] can be found in [26,27].

The KIFMM for high frequency problems are built upon the
directional low rank property of the oscillatory kernels [28]. Two
representative examples along the this line are the fast directional
algorithm (FDA) proposed by Engquist and Ying [29] which uses
equivalent density representations (as in [21]), as well as the one
proposed by Messner et al. [27] which uses Chebyshev polynomial
interpolations (as in [22]). The readers are referred to [27] for the
restrictions and advantages of the FDA, and to [26] for its efficiency
enhancement.

This paper will concentrate on the FDA in [29]. The good
accuracy and efficiency (OðN log NÞ complexity) of the algorithm
have been proved theoretically and numerically in [29]. Further-
more, the algorithm can be adapted to handle kernels other than
the Helmholtz kernel quite easily, which is not true for most other
existing algorithms. The algorithm was used to accelerate the BEM
for electromagnetic scattering problems by Tsuji and Ying in [30].
However, to the best of the authors' knowledge, no reported work
is devoted to the application of the algorithm to accelerating BEM
for the Burton–Miller BIE, which is essential for solving real-world
acoustic problems.

There are two contributions in this paper. The first one is to
adapt the FDA in [29] to accelerate the BEM (the resulting method
will be called fast directional BEM, or FDBEM for short, from now
on) for the Burton–Miller BIE; see Section 3. The advantages of the
FDBEM for Burton–Miller BIE are the following: (1) it does not
require complicated analytical expressions for the far-field approx-
imations, but only uses kernel evaluations, which results in a
simpler implementation and ease of use; (2) the algorithm can
handle the kernels of the Burton–Miller formulation in a similar
manner. Therefore, it is more user-friendly than the other FMM
algorithms.

The second contribution is achieved by further acceleration for
the translations in the FDA. It is based on the observation that
generally the ranks of most of the M2L translation matrices are
much lower than their dimensions. The improvement of the
algorithm is implemented by the following two steps: (1) com-
pressing all the translation matrices into more compact forms, and
(2) approximating the compressed M2L matrices by low rank
representations, see Section 4. Numerical experiments show that

the computational time for M2L translations can be reduced by a
factor of 2–3, and that for the upward and downward passes can
be reduced by about 40%, the memory consumption is reduced by
about 30%, see Section 5.

2. Burton–Miller formulation and its Nyström discretization

2.1. Acoustic Burton–Miller formulation

The time harmonic acoustic waves in a homogenous and
isotropic acoustic medium Ω is described by the following
Helmholtz equation:

∇2uðxÞþk2uðxÞ ¼ 0; 8xAΩ; ð1Þ
where ∇2 is the Laplace operator, uðxÞ is the velocity potential at
the point x¼ ðx1; x2; x3Þ in the physical coordinate system,
k¼ω=c is the wave number, with ω being the angular frequency
and c being the sound speed. The boundary conditions can be any
combinations of the Dirichlet, Neumann or Robin boundary con-
ditions. For exterior problems, the Sommerfeld condition at
infinity has to be satisfied as well.

By using Green's second theorem, the solution of Eq. (1) can be
expressed by integral representation

uðxÞþ
Z
Γ

∂G
∂ny

ðx; yÞuðyÞ dy¼
Z
Γ
Gðx; yÞqðyÞ dyþuincðxÞ; 8xAΓ; ð2Þ

where x denotes the field point and y denotes the source point on
the boundary Γ; ny denotes the unit normal vector at the source
point y; qðyÞ ¼ ∂uðyÞ=∂ny is the normal gradient of velocity poten-
tial, i.e., the normal vibrating velocity on y. The incident wave
uincðxÞ will not be presented for radiation problems. The three-
dimensional (3D) fundamental solution G is given as

Gðx; yÞ ¼ eikr

4πr
; ð3Þ

with r¼ jx�yj being the Euclidean distance between the source
and the field points, and i¼

ffiffiffiffiffiffiffiffi
�1

p
being the imaginary unit.

Before presenting the BIEs it is convenient to introduce the
associated single, double, adjoint and hypersingular layer opera-
tors which are denoted by S, D, M and H, respectively, that is,

SqðyÞ ¼
Z
Γ
Gðx; yÞqðyÞ dy; ð4aÞ

DuðyÞ ¼
Z
Γ

∂G
∂ny

ðx; yÞuðyÞ dy; ð4bÞ

MqðyÞ ¼
Z
Γ

∂G
∂nx

ðx; yÞqðyÞ dy; ð4cÞ

HuðyÞ ¼
Z
Γ

∂2G
∂nx∂ny

ðx; yÞuðyÞ dy: ð4dÞ

The operator S is weakly singular and the integral is well-defined,
while the operators D and M are defined in Cauchy principal value
sense (CPV). The operator H, on the other hand, is hypersingular
and unbounded as a map from the space of smooth functions on Γ
to itself. It should be interpreted in the Hadamard finite part sense
(HFP). Denoting a vanishing neighbourhood surrounding x by Γε,
the CPV and HFP integrals are those after extracting free terms from
a limiting process to make Γε tends to zero in deriving BIEs [31].

If the field point x approaches the boundary Γ, Eq. (2) becomes
the conventional BIE (CBIE)

cðxÞuðxÞþDuðxÞ ¼ SqðxÞþuincðxÞ; xAΓ; ð5Þ
where cðxÞ is the free term coefficient which equals to 1/2 on
smooth boundary. By taking the normal derivative of Eq. (2) and
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letting the field point x going to the boundary Γ, one obtains the
hypersingular BIE (HBIE)

cðxÞqðxÞþHuðxÞ ¼MqðxÞþqincðxÞ; xAΓ: ð6Þ
Both CBIE and HBIE can be applied to solve the unknown boundary
values of interior problems. For exterior problems, they have
different set of fictitious frequencies at which a unique solution
cannot be obtained. However, Eqs. (5) and (6) will always have
only one solution in common. Given this fact, the Burton–Miller
formulation which is a linear combination of Eqs. (5) and (6)
(CHBIE) should yield unique solutions for all frequencies

cðxÞuðxÞþðDþαHÞuðyÞ�uincðxÞ ¼ ðSþαMÞqðyÞ�α½cðxÞqðxÞ�qincðxÞ�; xAΓ;

ð7Þ
where α is a coupling constant that can be chosen as i=k [1].

2.2. Nyström boundary element discretization

In this paper, the Nyström method is used to discretize the
Burton–Miller equation. We choose to use the Nyström method
because the resultant linear systems are more like a summation,
namely, the far-field part of the system matrix is just the values of
the integral kernels. As such, many fast methods, like the FMM and
the FDA, which are primarily proposed for accelerating summations,
can be applied to BEM acceleration with minor modifications.

The implementation of the Nyström BEM follows the work in
[32]. The boundary Γ is partitioned into Ne curved triangular
quadratic elements. The 6-point Gauss quadrature rule on triangle
is used in evaluating regular element integrals, and thus the
quadrature points of the Nyström method on each element are
those of the 6-point Gauss rule. As a result, the total number of
DOFs is N¼ 6 � Ne.

For each quadrature point xi, i¼ 1;…;N, a local region, denoted
by Di, should be assigned. In this paper Di consists of all the
elements whose distance to xi is not larger than 2 times of their
largest side length. To show the discretizing procedures, let K be
one of the integral operators in (4) and K be the associated kernel
function. For any field point xi the boundary integralR
ΓKðxi; yÞuðyÞ dy can be divided into two parts by the local region
Di; i.e.,Z
Γ
Kðxi; yÞuðyÞ dy� ∑

Δ=2Di

Z
Δ
Kðxi; yÞuðyÞ dyþ ∑

ΔADi

Z
Δ
Kðxi; yÞuðyÞ dy dy

ð8Þ
where Δ denotes the boundary elements. For elements outside the
local region Di the integral is regular and thus is accurately
evaluated by using the Gauss quadrature,Z
Δ
Kðxi; yÞuðyÞ dy�∑

j
ωjKðxi; yjÞuðyjÞ; Δ=2Di; ð9Þ

where yj and ωj are the j-th quadrature point and weight over
element Δ, respectively.

For elements inside the local region Di, however, the kernels
exhibit various types of singularity. As a result, conventional
quadratures fail to give correct results. In order to maintain
high-order properties, the quadrature weights are adjusted by a
local correction procedure [32]. Consequently one hasZ
Δ
Kðxi; yÞuðyÞ dy�∑

j
ωΔ

j ðK; xiÞuðyjÞ; ΔADi; ð10Þ

where ωΔ
j ðK; xiÞ represents the locally corrected quadrature

weights associated with element Δ, kernel K and field point xi.
The local corrected procedure is performed by approximating the
unknown quantities using linear combination of polynomial basis
functions which are defined on intrinsic coordinates of the
element. The locally corrected quadrature weights are obtained

by solving the linear system

∑
j
ωΔ

j ðK; xiÞϕðnÞðyjÞ ¼
Z
Δ
Kðxi; yÞϕðnÞðyÞ dy; ΔADi; ð11Þ

where ϕðnÞ are polynomial basis functions. For the Nyström
method based on quadratic elements as used in this paper, ϕðnÞ

are given by

ϕðnÞðξ1; ξ2Þ ¼ ξp1ξ
q
2; pþqr2; ð12Þ

where p and q are integers, ξ1 and ξ2 denote local intrinsic
coordinates.

The integrals in Eq. (11) become nearly singular when xi is close
to the element, and these integrals are computed by using a
recursive subdivision quadrature in this paper. When the field
point xi locates on the element, singularity appears in the
integrals. For the first three operators in Eq. (4), the integrals have
weak singularity of order r�1, while for the hyper-singular
operator H the integral has singularity of order r�3, as r-0. The
accurate evaluation of those singular integrals is crucial to ensur-
ing the accuracy of the BEM. Here, an efficient numerical method
recently proposed in [33] is used. The method is capable of
treating weakly, strongly and hyper-singular integrals in a similar
manner with high accuracy, and the code is open.

Consequently, the boundary integral (8) can be transformed
into a summation asZ
Γ
Kðxi; yÞuðyÞ dy� ∑

N

j ¼ 1
K ðxi; yjÞuj; ð13Þ

where uj ¼ uðyjÞ and

K ðxi; yjÞ ¼
Kðxi; yjÞωj; yj is on a element Δ=2Di;

ωΔ
j ðK; xiÞ; yj is on a element ΔADi:

8<
: ð14Þ

Performing the Nyström discretization to the boundary inte-
grals in the Burton–Miller equation (7) leads to the BEM linear
system of form

Hu¼ Gqþ f ; ð15Þ
where H and G are N � N matrices, u and q are N-vectors of the
boundary values of uðxÞ and qðxÞ, respectively, and f consists of the
values of the incident wave terms in (7). It is worth noting that
when yj is on an element outside the local region Di of xi the
kernel values of the matrices H and G are just the quadrature
weight ωj of yj time the function values

Hij ¼
∂G
∂ny

ðxi; yjÞþα
∂2G

∂nx∂ny
ðxi; yjÞ and ð16aÞ

Gij ¼ Gðxi; yjÞþα
∂G
∂nx

ðxi; yjÞ: ð16bÞ

Therefore, the matrix–vector product with matrices H and G is in
fact summations with the respective kernels.

By considering the boundary conditions, Eq. (15) is recast as the
following linear system of equations to be solved:

Ax¼ b; ð17Þ
where the N � N matrix A consists of columns of matrices H and G,
depending on the specific boundary conditions, b and x are known
and unknown N-dimensional vectors, respectively. For large-scale
problems, linear system (17) is often solved by using the iterative
solvers; the generalized minimal residual method (GMRES) will be
used in this paper. The main computational work of the iterative
solver is in the evaluation of matrix–vector product Ax. Since
matrix A is always fully populated in BEM, the computational cost
for a naive evaluation should be OðN2Þ, which suddenly becomes
prohibitive with the increase of N. In the next section, the fast
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directional algorithm is employed to reduce the square scaled
computational cost to almost linear.

3. Fast directional algorithm for Burton–Miller formulation

In this section, the FDA is adapted to accelerate the Nyström
BEM for Burton–Miller BIE, resulting in a fast BEM solver (denoted
by FDBEM) for acoustic problems. The central is to develop a FDA
for the fast summation with the kernels in (16).

3.1. Multilevel FDA

The multilevel FDA recently developed for the Helmholtz
kernel is briefly reviewed here, detailed description can be found
in [29,34].

3.1.1. Octree structure
The implementation of the FDA relies on an adaptive octree

structure by which the source and target points are grouped [21].
The octree is constructed by the following steps. First, find a
level-0 cube containing all the points. Then, subdivide each cube C
at level-l of the octree into eight equally sized level-ðlþ1Þ cubes if
it contains more than Np points. The subdivision process is
performed recursively until each leaf cube contains no more than
Np points. In this paper, Np is determined by

Np ¼maxð30;50ðlog 10 ε�3ÞÞ; ð18Þ
where ε is the target accuracy of the FDA. The finest level of the
octree is indexed by L.

In order to developing a FDA that is efficient in both low- and
high-frequencies, the octree is often divided into two regimes,
namely the low frequency regime and high frequency regime,
according the side length of the cubes and the wavelength. The
low frequency regime consists of cubes whose side length w is less
than the wavelength, and the high frequency regime consists of
the rest cubes. Obviously, when the non-dimensional wave num-
ber kD (where D is the typical size of the boundary Γ) is
sufficiently small, all the levels would lie in the low frequency
regime, and the FDA would degenerate to the kernel independent
FMM [21].

With the aid of the octree, the basic notations of the FDA can be
defined. Consider a cube C with width w in the octree.

� Near field NC: When C is in the low frequency regime, its near
field NC is defined as the union of the cubes that are adjacent
with C; when it is in the high frequency regime, NC is defined as
the union of the cubes B that are separated from C by no more
than ns cubes in the same level, with ns being the rounded
number of (cdkw). In other words, for each cube BANC ,

distðB;CÞrcdðkw2Þ;
where distðB;CÞ denotes the distance between B and C; Let wB

and wC be the widths and cB and cC be the centroids of cubes B
and C, respectively, then

distðB;CÞ ¼ max
i ¼ 1;2;3

ðjcB;i�cC;ij�wB=2�wC=2Þ:

The constant cd ¼ 1=π is used in this paper.
� Far field FC: Consists of all the cubes not in NC.
� Interaction field IC: IC ¼NP\NC .
� Directional wedges: When C is in the high frequency regime, IC

can be further divided into multiple directional wedges, each of
which has the spanning angle no greater than Oð1=ðkwÞÞ.
The directional wedges would be indexed by their center
directions u, as shown in Fig. 1. The area of the boundary
of NC is 6½ð2nsþ1Þw�2, and it should be cutted by the directional

wedges into pieces with size Oð1=ðkwÞÞ � Oðkw2Þ ¼OðwÞ. Thus,
the number of directional wedges should be 6½ð2nsþ1Þw�2=
Oðw2Þ ¼Oðn2

s Þ. It is noticed that the Cartesian grid with ns points
along each direction contains Oðn2

s Þ points on the surface,
which inspired us to define the directional wedges with these
surface grid points. In other words, the directional wedges are
defined by center directions u¼ ði; j; kÞ, with i; j; k¼ �ns;

�nsþ1;…;ns and maxði; j; kÞ ¼ ns. For each cube BA IC , the
directional wedge in which it lies is defined to be the one with
center direction u closest to cB�cC . The near field and direc-
tional wedges for a cube in high frequency regime are illu-
strated in Fig. 2. The low frequency regime can be considered as
a special case of the high frequency regime which consists of
only one directional wedge indexed by ζ ¼ ð0;0;0Þ.

It is proved that the numerical rank of interaction matrices is
low for the points in C and each directional wedge of IC [29].
Therefore, the far field summation can be accelerated by using the
low rank approximation.

3.1.2. Translations in FDA
The FDA recently developed in [29] is a fast algorithm for

computing summations with the Helmholtz kernel, i.e.,

pi ¼∑
j
Gðxi; yjÞqj: ð19Þ

Fig. 1. The interaction field of a cube C in the high frequency regime is partitioned
into multiple directional wedges.

CCC

Fig. 2. Near field (the gray domain) and directional wedges for a cube C in high
frequency regime, with ns¼2. When B lies in the gray domain, BANC ; when B is
one of the white cubes, BA IC , and it lies in one of directional wedges.
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where G is given by (3). The basic procedure consists of five
translations, namely, the source-to-multipole (S2M), multipole-to-
multipole (M2M), multipole-to-local (M2L), local-to-local (L2L)
and local-to-target (L2T) translations, which is similar to the
well-known FMM. As a kernel independent algorithm, FDA con-
structs the outgoing equivalent densities to take the role of multi-
pole expansions in analytic FMM, and the incoming check potentials
to take the role of local expansions. The main procedure of FDA is
illustrated in Fig. 3. To evaluate the contribution of the sources
(marked with “þ”) to the potentials on the target points (marked
with “� ”) in a far-away cube, the five translations are carried out
serially. First translate the original sources into outgoing equivalent
densities (the blue points marked with “�”) by S2M; then compute
the outgoing equivalent densities on coarser levels by M2M;
evaluate the incoming check potentials (the red points marked
with “○”) produced by the outgoing equivalent densities by M2L;
translate the incoming check potentials on the coarse levels to finer
levels by L2L; finally the contribution to the potentials on the
target points is computed using the incoming check potentials by
L2T. For the cubes in low frequency regime (smaller cubes in
Fig. 3), the outgoing equivalent densities and incoming check
potentials are non-directional, as denoted by the equally spaced
points on squares in Fig. 3. For cubes in high frequency regime
(larger cubes in Fig. 3), they are directional, and are denoted by the
non-equally spaced points on circles, concentrating near a direc-
tion. The translations are described in more detail as follows.

For a leaf cube C, the S2M operation, represented by matrix S,
translates the original sources inside C to the outgoing equivalent
densities of C. The definition of the outgoing equivalent points and
the associated outgoing check points is illustrated in Fig. 4 , where

all the definitions are demonstrated using the 2D cases, but they
can be generalized to 3D readily. The S2M translation can be
further divided into two steps: (1) the evaluation of the outgoing
check potentials at the outgoing check points produced by the
original sources, the matrix of which is denoted by Eup, and (2) the
inversion to construct the outgoing equivalent densities at the
outgoing equivalent points that can reproduce the outgoing check
potentials, the matrix of this linear translation is denoted by Rþ

up.
When C is in the low frequency regime, the outgoing equivalent

points and the outgoing check points are non-directional, and can
be sampled straightforwardly at Cartesian grid points, as described
in [21]. The matrix Rþ

up is defined as the pseudo-inverse of
½Rup�ij ¼ Gðai;bjÞ, where ai is the i-th outgoing check point, and bj

is the j-th outgoing equivalent point. When C is in the high
frequency regime, since its interaction field is partitioned into
multiple directional wedges, a group of the outgoing equivalent
and check points have to be defined for each directional wedge. In
this paper, these points and Rþ

up in direction ð1;0;0Þ are computed
by the algorithm in [34]. For the other directional wedges, the
points can be obtained by rotation and the matrices Rþ

up remain
the same. In both low and high frequency regime, the numbers of
equivalent points and check points are controlled by the required
accuracy ε of the FDA; see [29,34].

For each non-leaf cube at level-l, the M2M operation, asso-
ciated with matrix Ml, translates the outgoing equivalent densities
of its children to the outgoing equivalent densities of itself. When
C is in the low frequency regime, only one group of outgoing
equivalent densities of C are to be translated, otherwise one has to
loop over all the directional wedges to compute the directional
outgoing equivalent densities for each wedge.

The translations in the downward pass of FDA are performed
based on another two groups of points, namely the incoming
check points and incoming equivalent points whose definitions are
similar to those of the outgoing points with the roles reversed. For
example, in the downward pass the outgoing equivalent points are
used as the incoming check points, and the outgoing check points
are used as the incoming equivalent points, as illustrated in Fig. 5.

The M2L operation, represented by matrix K , translates the
outgoing equivalent points to incoming check potentials. Assume B
is a cube in C's interaction list and in direction ζ , then C must lies
in B's interaction list and in direction �ζ . The M2L translation
evaluates B's incoming check potentials in direction �ζ using C's
outgoing equivalent densities in direction ζ .

For each non-leaf cube C at the l-th level, the L2L matrix Ll
translates the incoming check potentials of itself to the incoming

M2L
M2M

L2L

S2M

L2T

Fig. 3. The main procedure of FDA. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this article.)
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Fig. 4. The outgoing equivalent points (the blue points marked with “�”), outgoing check points (the red points marked with “○”) and S2M translations in the low and high
frequency regime. The computation of the outgoing equivalent densities for the original sources inside a cube (located at the points marked with “þ”) includes two steps
shown by arrows: (1) the evaluation of the check potentials at the outgoing check points using the original sources and (2) the inversion to construct the outgoing equivalent
densities. (a) Low frequency regime and (b) high frequency regime. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this article.)
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check potentials of its children. Similar to the translations in the
upward pass, it also consists of two steps: (1) the inversion to
construct C's incoming equivalent densities at the incoming
equivalent points that can reproduce its incoming check poten-
tials, the matrix of which is denoted by Rþ

dn, and (2) the evaluation
of the incoming check potentials of C's child cubes produced by C's
incoming equivalent densities, the matrix of which is denoted
by Edn.

The L2T matrices T translate the incoming check potentials of
each leaf cube C to the potentials at the target points inside C.
Similar to L2L, it also consists of the inversion and evaluation
steps, as illustrated in Fig. 5.

3.2. FDA for Burton–Miller formulation

The FDA outlined above is a multilevel algorithm for the
evaluation of potentials defined by (19) where G is the Helmholtz
kernel. Although the algorithm is kernel-independent, its applica-
tion to the evaluation of the potentials associated with the kernels
(16) of the Burton–Miller BIE is not straightforward, because the
kernels involve the normal vector nx at the field point x which
cannot be taken into consideration in the construction of equiva-
lent densities. Below, strategies to cope with this issue and their
numerical implementations are described.

Consider the potential summation with kernel Gij in (16b),

pi ¼ ∑
N

j ¼ 1
Gðxi; yjÞþα

∂G
∂nx

ðxi; yjÞ
� �

qj

¼ ∑
N

j ¼ 1
1þα

∂
∂nx

� �
Gðxi; yjÞqj

¼ 1þα
∂

∂nx

� �
∑
N

j ¼ 1
Gðxi; yjÞqj: ð20Þ

It follows that the potential pi can be computed by two steps. The
first step is the evaluation of the single layer potentials, denoted by
p̂ðxÞ, generated by the sources qj, i.e.,

p̂ðxÞ ¼ ∑
N

j ¼ 1
Gðx; yjÞqj: ð21Þ

This can be accelerated by using the FDA in Section 3.1. The second
step is the computation of pi by

pi ¼ 1þα
∂

∂nx

� �
p̂ðxiÞ: ð22Þ

The numerical implementation of this step requires a change of
the matrix Edn that is used in the computation of the L2T
translation matrix L¼ EdnR

þ . More specifically, for a cube C,
suppose that a group of incoming equivalent densities qj at the
incoming equivalent points bj are obtained in the first step of the
L2T translation, which can produce p̂ðxÞ inside C, i.e.,

p̂ðxÞ ¼∑
j
Gðx;bjÞqj:

Then the potential pi in (22) can be evaluated by

pi ¼ 1þα
∂

∂nx

� �
∑
j
Gðxi;bjÞqj

¼∑
j

1þα
∂

∂nx

� �
Gðxi;bjÞqj

¼∑
j

Gðxi;bjÞþα
∂G
∂nx

ðxi;bjÞ
� �

qj ð23Þ

This suggests that pi at xi can be computed by using

½Edn�ij ¼ Gðxi;bjÞþα
∂G
∂nx

ðxi;bjÞ ð24Þ

as the translation matrix for the evaluation step in L2T.
The FDA for the potential summation with kernel Hij in (16a)

can be attained analogously, since

pi ¼ ∑
N

j ¼ 1

∂G
∂ny

ðxi; yjÞþα
∂2G

∂nx∂ny
ðxi; yjÞ

� �
qj

¼ ∑
N

j ¼ 1
1þα

∂
∂nx

� �
∂G
∂ny

ðxi; yjÞqj

¼ 1þα
∂

∂nx

� �
∑
N

j ¼ 1

∂G
∂ny

ðxi; yjÞqj: ð25Þ

The potential pi can be computed with two steps. The first step is
the evaluation of the double layer potentials, denoted by ~pðxÞ,
generated by the sources qj,

~pðxÞ ¼ ∑
N

j ¼ 1

∂G
∂ny

ðx; yjÞqj: ð26Þ

Summation (26) can be accelerated by using the FDA in Section 3.1
with minor modification. The rationale is that the source densities
qj are essentially dipoles in the ny direction. Since the field
produced by dipoles can be approximated by a group of mono-
poles in its vicinity, the potentials produced by the sources inside a
cube C can be approximated by a group of equivalent densities,
when observing at the far field of C.
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Fig. 5. The incoming equivalent points (the blue points marked with “�”), incoming check points (the red points marked with “○”) and L2T translations in the low and high
frequency regime. The potentials at the points inside the cube (marked with “þ”) are computed by two steps shown by arrows: (1) the inversion to construct the incoming
equivalent densities that can reproduce the incoming check potentials at the check points, and (2) the evaluation of the potentials at the target points inside the cube using
the equivalent densities. (a) Low frequency regime and (b) high frequency regime. (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this article.)
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Therefore, in the FDA for single layer kernel G in Section 3.1, the
S2M matrix S is computed as S ¼ Rþ

upEup. The entries of matrix Eup

are given by the values of the single layer kernel,

½Eup�ij ¼ Gðai; yjÞ;

because the source densities are monopoles. When FDA is adopted
to the double layer potential in (26), the entries of Eup have to be
the values of the double layer kernel,

½Eup�ij ¼
∂G
∂ny

ðai; yjÞ: ð27Þ

The second step is the computation of pi by

pi ¼ 1þα
∂

∂nx

� �
~pðxiÞ; ð28Þ

which can be realized in the same way as (22).
From the above discussion, it is clear that there are two

common points in the FDA for the Helmholtz kernel (19) and
those for the kernels of the Burton–Miller BIE. First, equivalent
sources of monopoles are always used even though the Burton–
Miller kernels (16) are the combinations of the Helmholtz kernel
and its derivatives. Second, since the M2M, M2L and L2L transla-
tions only involve the equivalent densities, no modification is
needed at all for these translations.

Besides the common points, three modifications are described
for the application of FDA to the Burton–Miller formulation:

(1) For the summation with Hij, the outgoing check potentials for
S2M should be computed by using the kernel ð∂G=∂nyÞðx; yÞ.

(2) The matrix Edn in the computation of the L2T matrix should
be evaluated by (24), for both summations with kernels Hij

and Gij.
(3) The contribution to the potentials by the sources in the near

field should be computed by using the kernels (16a) and (16b),
as well as their local corrections.

In the implementation of the FDA, the matrices of the M2M,
M2L and L2L translations are computed only once and then stored
in memory for later use. In addition, from the definition of the
equivalent points and check points, it is known that the inverse
operator in the downward pass is the transpose of that in the
upward pass, and the L2L translation matrix is just the transpose
of the M2M translation matrix for the same directional wedge;
that is, Rþ

dn ¼ ðRþ
upÞT, Edn ¼ ET

up, and

L¼ EdnR
þ
dn ¼ ET

upðRþ
upÞT ¼ ðRþ

upEupÞT ¼MT: ð29Þ

Therefore only one set of matrix is needed to be computed and saved
for both the L2L and M2M translations in each directional wedge.

4. Further improvement to FDA

In this section, further improvement to the FDA is proposed
based on the observation that generally the translation matrices
are rank deficient. Therefore, the computational cost of the FDA
can be reduced by compressing these translation matrices into
more compact forms. Furthermore, our numerical experiments
show that, after the matrix reduction, most of the M2L matrices
are still of ranks much lower than their dimensions, as shown in
Fig. 6. Therefore these M2L translations can be further accelerated
by using the low rank approximations for the translation matrices.
In the present work, due to the small sizes of the matrices, the
low-rank decomposition is computed by using singular value
decomposition (SVD) to get the optimal ranks.

4.1. Matrix reduction

Consider two leaf cubes B and C at the l-th level such that B is in
the interaction field of C's parent cube. Then, the potentials pl in C
produced by the source densities ql in B are evaluated as

pl ¼ T lLl�1K l�1Ml�1Slql; ð30Þ
where Sl and T l are the S2M and L2T translation matrices,
respectively, at the l-th level; Ml�1, K l�1 and Ll�1 are the M2M,
M2L and L2L translation matrices at the ðl�1Þ-th level,
respectively.

Below, a scheme for reducing the sizes of aforementioned
matrices is proposed. Consider the computation of the S2M and
L2T matrices,

Sl ¼ Rþ
up;lEup;l; ð31aÞ

T l ¼ Edn;lR
þ
dn;l; ð31bÞ

where Rþ is the pseudo-inverse of R, which is computed by the
SVD,

R¼UΣVH; ð32Þ
where U and V are unity matrices, VH is the Hermitian matrix of
V , and Σ¼ diagðσ1;σ2;…;σnÞ; with σ14σ24⋯4σn, is the diag-
onal matrix of singular values. For a given error tolerance ε,
identify the singular values σioεσ1 and truncate the associated
columns of matrices U and V to obtain two matrices ~U and ~V
which consist of the columns of U and V corresponding to the
singular values σiZεσ1. Then Rþ is given by

Rþ � ~V ~Σ�1 ~U
H
; ð33Þ

where ~Σ is the diagonal matrix of the remaining singular values. In
this paper, the error tolerance ε is chosen to be the controlling
accuracy in the sampling process of the directional equivalent
points and check points.

The matrices Ml�1 and Ll�1 have the similar decompositions
with the matrices Sl and T l in (31). By plugging those
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Fig. 6. The ranks of M2L matrices in the finest level of the high frequency regime,
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decompositions into (30) and using (33), one gets

pl ¼ T lLl�1K l�1M l�1Slql

¼ ðEdn;lR
þ
dn;lÞðEdn;l�1R

þ
dn;l�1ÞK l�1ðRþ

up;l�1Eup;l�1ÞðRþ
up;lEup;lÞql

� Edn;lð ~V dn;l
~Σ �1
dn;l

~U
H
dn;lÞEdn;l�1ð ~V dn;l�1

~Σ �1
dn;l�1

~U
H
dn;l�1Þ

K l�1ð ~V up;l�1
~Σ�1
up;l�1

~U
H
up;l�1ÞEup;l�1ð ~V up;l

~Σ �1
up;l

~U
H
up;lÞEup;lql

¼ ~T l
~L l�1

~K ~M l�1
~S lql; ð34Þ

where all the new translation matrices have smaller sizes,

~S l ¼ ~Σ �1
up;l

~U
H
up;lEup;l; ð35Þ

~M l ¼ ~Σ �1
up;l

~U
H
up;lEup;l; ~V up;lþ1 ð36Þ

~K l ¼ ~U
H
dn;lK l

~V up;l; ð37Þ

~L l ¼ ~U
H
dn;lþ1Edn;l

~V dn;l
~Σ �1
dn;l ¼ ~M

T
l ; ð38Þ

~T l ¼ Edn;l
~V dn;l

~Σ �1
dn;l: ð39Þ

Thus the computational cost of all the translations can be reduced
by using these new matrices (34). It is shown that the reduction of
computational time can be up to 30% for each FDA summation.
Below, a method for further and much more considerable reduc-
tion of the computational time of the FDA is proposed.

4.2. Low rank approximations for the compressed M2L matrices

Here the M2L translation is considered in detail because it
consumes the most computational time of the FDA. Let ~K be a
compressed M2L matrix in (37) with dimension s. It is found that,
to the accuracy of ε, there are always many M2L matrices ~K whose
numerical ranks are much less than s=2. This indicates that the
M2L translation would be further accelerated by performing
matrix–vector production using the low rank decomposition of
~K instead of ~K itself.

The low rank decomposition for each compressed M2L matrix
~K is computed by the truncated SVD with the singular values
σioεσ1 being dropped; that is,

~K � Û Ŝ Q̂
H ¼ Û V̂ ; ð40Þ

where Û and Q̂ are matrices with orthogonal columns, Ŝ are the
truncated singular value matrix and V̂ ¼ Ŝ Q̂

H
. Moreover, since

there are at most Oð
ffiffiffiffi
N

p
Þ M2L matrices in FDA [29], the

computational time of the decomposition of the M2L matrices is
of order Oðs3

ffiffiffiffi
N

p
Þ which is negligible in the total CPU time of

the FDA.
For each M2L matrix ~K with rank ros=2, the low-rank

decomposition (40) is used in the translation. Otherwise, the
matrix ~K itself is used.

The objective of the compression and decomposition to the
translation matrices in this section is similar with the SArcmp M2L
optimizer in [26]. However, two distinctions of our method should
be noticed. First, the compressed matrices in Section 4.1 are
computed during the definition of the equivalent and check points,
thus one do not need to compute the low rank decomposition of
the collected M2L matrices as in SArcmp. Second, all the transla-
tion matrices are compressed in our work, while only the M2L
matrices are compressed in [26].

5. Numerical studies

In this section, representative numerical examples are provided
to demonstrate the performance of the improved FDA and its
application for the acceleration of the BEM for Burton–Miller
formulation, denoted by FDBEM. Our codes are implemented
serially in Cþþ . The computing platform is a workstation with a
Xeon 5450 (2.66 GHz) CPU and 32 GB RAM.

5.1. Performance of the improvements in Section 4

First, the performance of our acceleration technique in Section
4 is tested by evaluating the potential summation

pi ¼ ∑
N

j ¼ 1
Gðxi; yjÞþα

∂G
∂ny

ðxi; yjÞ
� �

qj; ð41Þ

with G being the Helmholtz kernel in (3). We set α¼ i=k as this
will be used in the Burton–Miller formulation. The points fxig and
fyjg are sampled on the surface of a unit sphere with about 20
points per wavelength. The densities fqjg on fyjg are randomly
defined with mean 0. Eq. (41) is evaluated by the original FDA and
the improved FDA in Section 4. The error εa of the potential pi,

εa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Nt

i ¼ 1jp
ðaÞ
i �pðdÞi j2

∑Nt
i ¼ 1jp

ðdÞ
i j2

vuut ; ð42Þ

is computed and compared, where pðaÞi is the potential on a Nt

randomly selected points xi computed by the fast algorithm, while

Table 1
Results of the example in Section 5.1.

N k TM2L (s) Tup (s) εa M (MB)

Original Improved Original Improved Original Improved Original Improved

ε¼ 1e�4
73,728 8π 10 4 5 3 4.86e�5 5.88e�5 310 158
294,912 16π 44 17 17 10 7.30e�5 1.31e�4 735 441
1,179,648 32π 218 94 103 58 1.15e�4 2.33e�4 1993 1338
4,718,592 64π 966 383 458 214 2.00e�4 3.70e�4 6818 5053

ε¼ 1e�6
73,728 8π 33 11 12 7 2.97e�7 9.33e�7 1010 471
294,912 16π 154 55 59 36 7.75e�7 2.72e�6 2186 1189
1,179,648 32π 631 235 218 145 1.30e�6 3.83e�6 4744 2941
4,718,592 64π 2937 1145 1153 742 3.26e�6 1.06e�5 13,938 9764

ε¼ 1e�8
73,728 8π 93 29 24 16 2.39e�8 2.79e�8 2644 1156
294,912 16π 421 137 119 84 4.93e�8 1.11e�7 5154 2684
1,179,648 32π 1806 602 563 384 7.12e�8 7.27e�8 10,147 5944
4,718,592 64π 7721 2527 2478 1586 1.71e�7 2.55e�7 26,860 18,121
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pðdÞi is the potentials evaluated by straightforwardly summation. In
this paper, Nt is chosen as 200. For particle summation problems,
the S2M and L2T matrices are used only once, thus they are not
pre-computed but only computed when they are to be used.

The CPU times and errors are given in Table 1. TM2L and Tup are
the CPU time of the M2L translation and upward pass, respec-
tively;M is the total memory usage. The summations are evaluated
with different controlling accuracies ε and wave number k. It can
be seen that for arbitrary frequencies the M2L translation of the
improved FDA is always 2–3 times faster than that of the original
FDA. The upward passes are accelerated by a factor of about 40%.
Since the translation matrices in the downward pass have the
same size with those in the upward pass, the same improvement
can be expected for the downward pass. The improved FDA can
reduce the memory consumption by about 30%. The resulting
errors are increased slightly, since additional errors are introduced
in the acceleration technique.

5.2. Efficiency and accuracy of the FDBEM

Here the efficiency and accuracy of the FDBEM developed in
this paper are demonstrated by solving a benchmark problem: the
sound radiation of a unit sphere pulsating with radial velocity
q¼ ∂u=∂n¼ 1. This is a Neumann boundary value problem. The
velocity potential u on the spherical surface has analytical solution
u¼ 1=ð1� ikÞ.

Radiation problems with wave numbers k¼ 2π;4π;8π;16π and
32π are solved. For each problem, the spherical surface is dis-
cretized by curved triangular quadratic elements with element
size h¼ λ=5, where λ¼ 2π=k is the wave length. In the problem
with k¼ 2π, the wave length is one half of the diameter of the
sphere. The mesh consists of Ne ¼ 720 elements (see Fig. 7) and
the DOF is N¼ 6Ne ¼ 4320. In the problem with the highest wave
number k¼ 32π, the wave length is 1/32 of the diameter. The
corresponding mesh consists of Ne ¼ 188;796 elements,
N¼1132776 DOFs.

One should notice that this series of wave numbers are exactly
the characteristic frequencies of the unit sphere, at which the BEM
based on the Helmholtz BIE fails to get the correct solution.
However, as it will be shown that our FDBEM can still achieve
highly accurate results. In the FDBEM, the S2M and L2T matrices
are precomputed and saved in memory. The resulting linear
system is solved by the GMRES solver with convergence tolerance
being equal to ε.

The models are solved with different precision, determined by
the controlling accuracy ε, and the results are illustrated in Fig. 8.
Fig. 8(a) illustrates the L2 error behavior of the solution u with the
refinement of mesh and the change of the controlling accuracy ε. It
is seen that the FDBEM can attain the given precision OðεÞ for
ε≳10�6. When ε¼ 10�7, the error of the solution keeps almost
the same with that of ε¼ 10�6, because in this case the error in
the numerical evaluation of the singular and near-singular bound-
ary element integrations becomes dominate. Meanwhile, the error
curves first go down to OðεÞ with the refinement of the meshes,
and then tend to rise slightly with the further refinement of the
mesh. This is because, in the first stage the BEM discretization
error is dominate, and in the second stage the error induced by the
translations in the FDA which is of order Oðε log NÞ [21] becomes
dominate.

The memory consumption, overall CPU time and the CPU time
for each iteration are illustrated in Fig. 8(b), (c) and (d), respec-
tively. For each precision ε, the CPU time for each iteration and the
total memory usage of the FDBEM are of order OðN log NÞ. The
overall CPU time in 8(c) grows almost linearly with N. This is
because a large part of the total CPU time is spent on the
numerical evaluation of the various singular integrals in the
near-field matrix which scales linearly with N. For example, in
the case with ε¼ 1e�3, k¼ 32π and N¼1,132,776, the overall CPU
time is 8181 s, while evaluating the near field part of the matrices
H and G takes 7053 s, which is about 86% of the overall CPU time.

5.3. Large-scale simulations

Finally, the performance of the FDBEM for large-scale simula-
tions is demonstrated by three numerical examples, two with
Neumann boundary conditions and the third with mixed bound-
ary conditions. All of these problems are solved with the control-
ling accuracy and the GMRES converging tolerance being ε¼ 10�3.

5.3.1. Unit sphere scattering problem
The first example is a scattering problem with a sound-hard

unit sphere, thus the boundary condition is of Neumann type, with
q¼ ∂u=∂n¼ 0. The velocity potential of the incident plane wave is
defined as uincðxÞ ¼ eikx�d , with the propagating direction being
d¼ ð1;0;0Þ, see Fig. 9(a) for the coordinate system. The wave
number is set to be k¼157.1, so that the diameter D of the sphere is
of 50 wavelengths long, and the non-dimensional wave number is
kD¼314.2. The analytical solution of the scattered acoustic velo-
city potential on the spherical surface is given by

usðθÞ ¼ ∑
1

m ¼ 0
� imð2mþ1Þ j

0
mðkÞ
h0mðkÞ

� �
hmðkÞ � Pmð cos θÞ; ð43Þ

where θ is the angle between Ox
�!

and d, jm is the spherical Bessel
function of the first kind, hm is the spherical Hankel function of the
second kind, and Pm is the Legendre polynomial of order m. Then
the analytical solution can be achieved by u¼ uincþus.

The spherical surface is discretized into 668,352 curved trian-
gular quadratic elements, and the DOFs N¼4,040,112. It takes
about 8.1 h to solve this problem. The CPU time for each iteration
is about 243.7 s. The memory usage is 27.7 GB. The GMRES solver
converged within Nit ¼ 14 iterations. The acoustic velocity poten-
tial of the total sound field u on the surface is illustrated in Fig. 9
(a), and the comparison between the analytical solution and our
numerical results of the scattered field us on the surface is
illustrated in Fig. 9(b). It is shown that our numerical results agree
very well with the analytical solution.

Fig. 7. The spherical surface is discretized with 720 triangular quadratic elements
for k¼ 2π.
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5.3.2. Submarine scattering problem
The second example is also a scattering problem with the same

incident plane wave as that in Section 5.3.1. The scatter is a sound
hard submarine with length D¼80 m. The wave number is set to
be k¼12.5, thus the non-dimensional wave number kD¼1000 and
the length of the submarine is 159 wavelengths. The surface of the

submarine is discretized into 670,564 curved triangular quadratic
elements, so the DOFs N¼4,023,384. It takes 9.3 h to solve this
problem. The CPU time for each iteration is 250 s. The GMRES
solver converges within 42 iterations. The total memory usage is
24 GB. The acoustic velocity potential of the total field u on the
surface is illustrated in Fig. 10.
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Fig. 8. Numerical results of the unit sphere radiating problem. (a) Relative error versus the DOF, (b) memory consumption versus the DOF, (c) computational time versus the
DOF and (d) iteration time versus the DOF.

Fig. 9. Results of the unit sphere scattering problem. (a) The real part of total acoustic field and (b) the amplitude of the scattering field.
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5.3.3. A two-sphere problem with mixed boundary conditions
The model of the third example consists of two spheres, as

shown in Fig. 11. The blue one is a unit sphere lies at ð�2; �2;0Þ,
oscillating in x direction with velocity v¼ ð1;0;0Þ, thus the
boundary condition on its surface is of Neumann type with
q¼ v � n. The purple sphere lies at ð2;2;0Þ with radius R¼1.2. It
is sound soft, thus the boundary condition on its surface is of
Dirichlet type with u¼0. The sound pressure of the incident plane
wave is defined by pincðxÞ ¼ 200eikx�d , with the propagating direc-
tion being d¼ ð0;1;0Þ. The density of the acoustic medium is
ρ¼ 1:225, and the sound speed is c¼340. The maximum length of
the model is D� 7:86. The wave number is set to be 20π, thus the
non-dimensional wave number kD� 494. The surfaces are meshed
with 266,544 curved triangular quadratic elements, so the DOFs is
N¼1,599,264. It takes 4.8 h to solve this problem. The CPU time for
each iteration is about 188 s. The GMRES solver converged with 26
iterations. The total memory usage is 9.9 GB. Then the acoustic

pressure distribution on the boundary and on a plane in the
acoustic field is evaluated, and are illustrated in Fig. 12.

6. Conclusion

The fast directional algorithm (FDA) recently developed in [29]
is a highly efficient method for the evaluation of potential
summations with Helmholtz kernels. In this paper, a FDA acceler-
ated BEM, denoted by FDBEM, for solving Burton–Miller BIE in a
broad frequency range is developed and implemented. The
Nyström method based on curved quadratic elements is used to
discretize the BIE, by which (1) the edge and corner problems are
completely avoided, (2) high accuracy can be achieved and (3) the
resulting linear system is more like a summation that is suitable
for FDA acceleration. The FDA for the potential summations with
the kernels of the Burton–Miller formulation is proposed. The
computational efficiency of the FDA is further elevated by exploit-
ing the low-rank property of the translation matrices.

By using the FDBEM, large-scale wideband acoustic problems
can be solved with controllable accuracy up to 10�6. The compu-
tational time and memory requirements are of order OðN log NÞ. A
representative acoustic scattering problem with dimensionless
wave number kD being up to 1000 and the DOF being up to
4 million has been successfully solved within 10 h on a computer
with one core and the memory usage is 24 GB.
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