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A high-frequency fast multipole boundary element method (FMBEM) based on the
Burton–Miller formulation is proposed for three-dimensional acoustic wave problems
over an infinite plane with impedance boundary conditions. The Green’s function for
the sound propagation over an impedance plane is employed explicitly in the boundary
integral equation (BIE). To deal with the integral appearing in the half-space Green’s
function, the downward pass in the FMBEM is divided into two parts to compute con-
tributions from the real domain to the real and image domains, respectively. A piecewise
analytical method is proposed to compute the moment-to-local (M2L) translator from

the real domain to the image domain accurately. An algorithm based on the multi-level
tree structure is designed to compute the M2L translators efficiently. Correspondingly,
the direct coefficient can also be computed efficiently by taking advantage of the algo-
rithm of the efficient M2L. A flexible generalized minimal residual (fGMRES) is applied
to accelerating the solution when the convergence is very slow. Numerical examples are
presented to demonstrate the accuracy and efficiency of the developed FMBEM. Good
solutions and high acceleration ratios compared with the conventional boundary ele-
ment method clearly show the potential of the FMBEM for large-scale 3D acoustic wave
problems over an infinite impedance plane which are of practical significance.

Keywords: Fast multipole boundary element method; impedance plane; acoustic wave
problems; half-space domain.

1. Introduction

Due to its features of boundary discretization and automatic satisfaction of the
Sommerfeld radiation condition at infinity, the boundary element method (BEM)
is an efficient tool for solving exterior acoustic wave problems. The BEM is a dis-
cretized form of the boundary integral equation (BIE) method and has been well
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studied and used extensively for the numerical solutions of radiation and scatter-
ing problems for full-space acoustics. The half-space BEM which has a significant
practical importance has also been investigated [Seybert and Soenarko (1988); Li
et al. (1994); Brick and Ochmann (2008)]. For the half-space BEM in acoustic sim-
ulations, the discretization of the infinite plane is removed and only the boundaries
of the structure need to be discretized. The main challenge in the half-space BEM
is to find a proper Green’s function satisfying the half-space boundary condition.
Except for the perfectly rigid or soft infinite plane [Seybert and Soenarko (1988)],
no elementary expression is available to the half-space Green’s function for problems
over a general infinite impedance plane.

The general half-space Green’s function (a solution due to a point source over
an infinite impedance plane) which involves a Sommerfeld integral is not practically
useful when incorporated in the BEM. Much research has been devoted to finding a
simple expression of the half-space Green’s function and an efficient way to compute
it. A theoretical analysis of the half-space Green’s function along an impedance
plane was presented by Wenzel [1974], where the Green’s function was separated
into three parts as incident, reflected and radiated wave. Thomasson [1976] found
that the exact solution of waves from a point source over an impedance boundary
given by Ingard [1951] can be rewritten in terms of a single integral along a steepest-
descent contour and a Hankel function which can be easily integrated numerically.
An asymptotic solution of the scalar wave field due to a point source above a locally
reacting plane surface was obtained by a modified saddle point method [Kawai et al.
(1982)], which was proved more accurate than Thomasson’s method [Thomasson
(1976)]. Based on a technique in which the solution of the Helmholtz equation is
expressed as one fold integral with an integrand identified as the solution of the heat
conduction equation for an auxiliary problem, Li et al. [1994] used a new method
to derive the Green’s function for wave propagation above an impedance ground.
Later on, Li and White [1996] developed a very simple method for the efficient
computation of the sound field in the near region above an impedance ground.
Ochmann [2004] proposed a method called complex equivalent source method to
derive the half-space Green’s function which is valid for the infinite plane with
mass-like as well as spring-like impedance. By converting the Sommerfeld integral
into two series representations, Koh and Yook [2006] proposed an exact closed-form
expression of the Sommerfeld integral in the general half-space Green’s function.
Chen and Waubke [2010] reformulated the expression proposed by Li et al. [1994] to
make it suitable for two-dimensional half-space problems over an infinite plane with
spring-like impedance. Even though some of the approaches introduced above are
efficient in computing the half-space Green’s function over an infinite impedance
plane compared with the direct integration method, they are still time-consuming
to be applied in the BEM for solving practical and large-scale problems.

It is well-known that the fast multipole method (FMM) [Greengard and Rokhlin
(1987)] can be applied to reduce the operation counts for the BEM in the
matrix-vector multiplication. Many fast multipole BEM (FMBEM) approaches
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to model full-space acoustic problems have been reported in the literature (see
Refs. Chen et al. [1997], Koc and Chew [1998], Fischer et al. [2004], Darve and
Havé [2004], Shen and Liu [2007], Chen and Chen [2004], Nemitz and Bonnet [2008],
Wu et al. [2012a, 2012b] and Zheng et al. [2012], a review up to 2002 by Nishimura
[2002], a up-to-date review by Liu et al. [2011], and a book by Liu [2009]). Although
the full-space FMBEM has been studied extensively in the literature, there are
few applications of FMBEM for half-space acoustic problems. Yasuda and Sakuma
[2005] proposed a symmetrical FMBEM to efficiently compute the plane-symmetric
acoustic problems. The technique exploited the symmetry of the coefficients matrix
for plane-symmetric model to reduce the computational complexity of matrix-vector
multiplication. Therefore, it can be applied to models with one, two and three sym-
metrical planes. Since the half-space problems of perfectly rigid and soft infinite
plane can be treated as plane-symmetric problems with respect to the infinite plane
when the image model is considered, the symmetric FMBEM is also useful in deal-
ing with half-space acoustic problems. Recently, Yasuda et al. proposed efficient
techniques in the low-frequency FMBEM for the plane-symmetric acoustic prob-
lems [Yasuda et al. (2012)]. Instead of using the image model in FMBEM, Bapat
et al. [2009] developed an adaptive half-space FMBEM which applied the half-space
Green’s functions of perfectly rigid and soft infinite plane explicitly in the BIE for-
mulation. Thus, only the elements on the structure are grouped in the tree structure
which in turn reduces the memory and CPU by about a half. But in practical half-
space acoustic problems, the impedance boundary condition on the infinite plane
which has not been applied with the FMBEM is more general than the perfectly
rigid and soft cases.

In this paper, the half-space FMBEM is extended to acoustic problems over an
impedance half-space plane. A general half-space Green’s function which can degen-
erate to the perfectly rigid and soft cases is used explicitly in the BIE formulation.
To deal with the integral term in the half-space Green’s function, the downward
pass is divided into two parts which consist of contributions from the real domain
to the real and image domains, respectively. A piecewise analytical method is pro-
posed to compute the M2L translator from the real domain to the image domain
accurately and an algorithm based on the multi-level tree structure is designed to
compute the M2L translator efficiently.

The paper is organized as follows: Sec. 2 consists of two parts. First part gives
formulations in BEM for the half-space acoustic problems; second part presents
formulations of plane wave expansion of the half-space Green’s function, and the
formulation of the piecewise analytical M2L translator. Section 3 has three parts.
First part briefly describes expressions of the FMBEM based on the plane wave
expansions of the half-space Green’s function. Second part describes the algorithm
of the half-space FMBEM in detail. A preconditioning method is introduced in the
third part. Several numerical examples are set up to demonstrate the accuracy and
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efficiency of the half-space FMBEM in Sec. 4. Section 5 concludes the paper with
some comments concerning the half-space FMBEM.

2. Formulations

2.1. BIE formulation

Consider a finite body V with boundary surface S, submerged in a semi-infinite
acoustic domain E with density ρ and speed of sound c, as shown in Fig. 1. The
semi-infinite domain E is bounded by an infinite plane S0 which has a locally
reacting acoustic impedance zm and locates at z = 0. The infinite plane separates
the whole space into a upper half-space domain (z > 0) where the finite body
locates, and a lower half-space domain (z < 0). On the plane S0, the boundary
condition can be written as

∂

∂n
ϕ(x) − γϕ(x) = 0, ∀x ∈ S0, (1)

and the governing equation of the time-harmonic (e−iωt, i =
√−1) acoustic wave

field in domain E can be expressed as

∇2ϕ(x) + k2ϕ(x) = 0, ∀x ∈E, (2)

where γ is the acoustic admittance defined as γ = ikρc/zm, ∇2 is the Laplace
operator, ϕ(x) is the sound pressure at point x, and k is the wave number defined
by k = ω/c, with ω being the angular frequency.

It is well known that harmonic acoustic wave problems can be formulated by an
integral representation at an observation point x in domain E as follows:

ϕ(x) =
∫

S

[
G(x,y)q(y) − ∂G(x,y)

∂n(y)
ϕ(y)

]
dS(y) + ϕI(x), ∀x ∈ E, (3)

in which q(y) is the normal gradient of sound pressure, defined as q(y) =
∂ϕ(y)/∂n(y) where the unit normal vector n(y) on boundary S is defined to point
outwards from E as shown in Fig. 1. ϕI(x) appears only for scattering problems. In

V S

E

x

y
z

0

y

n(y)x

0=zn

0S

Fig. 1. Geometry of the half-space problem.
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scattering problems, ϕI(x) represents the incident wave (which should satisfy the
half-space boundary condition, Eq. (1)), and ϕ(x) represents the total wave which
is composed of incident wave and scattering wave.

For half-space problems with a mass-like impedance infinite plane, the Green’s
function can be expressed as [Ochmann (2004)]

G(x,y) =
eikr(x,y)

4πr(x,y)
+

eikr(x,y)

4πr(x,y)
+ 2γ

∫ 0

−∞
e−γη eikr(x+ηẑ,y)

4πr(x + ηẑ,y)
dη, (4)

where r(x,y) = |x − y| means distance between two points x and y, x is the mirror
point of point x in the lower half-space domain, and ẑ = (0, 0, 1) is a unit vector
in z direction, as shown in Fig. 2. The real part of γ is less than zero (Re{γ} < 0)
which is the guarantee of convergence of the integral in the Green’s function for
mass-like impedance plane or physically absorbing plane. Obviously, two extreme
cases that the infinite plane is rigid and soft correspond to γ → −0 and γ → −∞,
respectively. For spring-like impedance plane, another version of Green’s function
should be applied [Ochmann (2004)]. In this paper, we only consider the FMBEM
for acoustic problems over the mass-like impedance plane which exists widely in
engineering. The same method can be easily applied to half-space acoustic problems
over a spring-like impedance plane [Ochmann (2004)].

To facilitate the derivation, the three terms appearing in the Green’s function
G(x,y) are denoted as

G1(x,y) =
eikr(x,y)

4πr(x,y)
, (5)

x

zx

η

y

x
n

Fig. 2. Geometry of the half-space problem, the circles representing point x + ηẑ at some specific
locations of η.
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G2(x,y) =
eikr(x,y)

4πr(x,y)
, (6)

G3(x,y) = 2γ

∫ 0

−∞
e−γη eikr(x+ηẑ,y)

4πr(x + ηẑ,y)
dη. (7)

Moving the point x to the boundary S will lead to a BIE. Note that the jump
of the left hand side of Eq. (3) in BIE (Eq. (8)) is due to the term G1(x,y) and
free of the other two terms of the Green’s function. Suppose that the boundary
is discretized using N constant triangular elements (S =

∑N
j=1 ∆Sj). Then, the

BIE having explicit evaluation of the singular integral for acoustic problems over
an impedance plane can be expressed as [Matsumoto et al. (2010)]

c(xi)ϕ(xi) +
∫

S\∆Si

∂G(xi,y)
∂n(y)

ϕ(y)dS(y)

=
∫

S\∆Si

G(xi,y)q(y)dS(y) + Ṙxiq(xi) + ϕI(xi), (8)

in which S\∆Si =
∑N,j �=i

j=1 ∆Sj denotes the discretized boundary S excluding the
boundary element ∆Si on which the point xi is located, and

c(xi) =
1
2

+
∫

∆Si

∂

∂n(y)
[G2(xi,y) + G3(xi, y)]dS(y), (9)

Ṙxi = α̇(xi) +
∫

∆Si

[G2(xi,y) + G3(xi,y)]dS(y), (10)

where the constant α̇(xi) = i
2k (1− 1

2π

∑3
m=1

∫ θm
2

θm
1

eikR(θ)dθ). An efficient and accu-
rate method [Wu et al. (2013)] is available to computing the line integral with
respect to the angle θ in α̇. The configuration of the θm

1 and θm
2 (m = 1, 2, 3) is

described in Matsumoto et al. [2010] and Wu et al. [2013].
Equation (8) is usually referred to as the conventional BIE (CBIE) which suffers

from the nonuniqueness for exterior acoustic problems when the frequency coin-
cides with the corresponding eigenfrequency of interior problems. To remove the
nonuniqueness, Burton and Miller [1971] proposed a method by combining the CBIE
and the normal derivative of the CBIE (HBIE). Under the condition that boundary
is discretized using N constant triangular elements, the HBIE [Matsumoto et al.
(2010)] can be expressed in the form of Eq. (8) as

ċ(xi)q(xi) +
∫

S\∆Si

∂2G(xi,y)
∂n(xi)∂n(y)

ϕ(y)dS(y)

=
∫

S\∆Si

∂G(xi,y)
∂n(xi)

q(y)dS(y) + Rxiϕ(xi) + qI(xi), (11)
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where

ċ(xi) =
1
2

+
∫

∆Si

∂2

∂n(xi)∂n(y)
[G2(xi,y) + G3(xi,y)]dS(y), (12)

Rxi = α(xi) +
∫

∆Si

∂

∂n(xi)
[G2(xi,y) + G3(xi,y)]dS(y), (13)

with α(xi) = − 1
2 (ik − 1

2π

∑3
m=1

∫ θm
2

θm
1

eikR(θ)

R(θ) dθ) and its computation is also des-
cribed in Wu et al. [2013].

For an exterior ac1oustic problem, Eqs. (8) and (11) have a different set of
fictitious frequencies at which a unique solution cannot be obtained. However, they
will always have only one solution in common. A linear combination of Eqs. (8) and
(11) (CHBIE), as given below, should give a unique solution for all frequencies:

[c(xi) − βRxi ]ϕ(xi) +
∫

S\∆Si

[
∂G(xi,y)

∂n(y)
+ β

∂2G(xi,y)
∂n(xi)∂n(y)

]
ϕ(y)dS(y)

= [Ṙxi − βċ(xi)]q(xi) +
∫

S\∆Si

[
G(xi,y) + β

∂G(xi,y)
∂n(xi)

]
q(y)dS(y)

+ ϕI(xi) + βqI(xi), (14)

where β is a coupling constant that can be chosen as i/k [Kress (1985)].
Rewrite Eq. (11) in a matrix form as

N∑
j=1

fijϕj =
N∑

j=1

gijqj + ϕI
i + βqI

i , for node i = 1, 2, . . . , N, (15)

where

fij =



∫
∆Sj

[
∂G(xi,y)

∂n(y)
+ β

∂2G(xi,y)
∂n(xi)∂n(y)

]
dS(y), i �= j[

1
2
− βα(xi)

]
+

∫
∆Si

(
∂

∂n(y)
− β

∂

∂n(xi)

)
× [G2(xi,y) + G3(xi,y)]dS(y), i = j,

(16)

and

gij =



∫
∆Sj

[
G(xi,y) + β

∂G(xi,y)
∂n(xi)

]
dS(y), i �= j

[
α̇(xi) − β

2

]
+

∫
∆Si

(
1 − β

∂2

∂n(xi)∂n(y)

)
× [G2(xi,y) + G3(xi,y)]dS(y), i = j,

(17)
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in which ∆Sj represents the triangular element j (in the case of using constant
element).

Assume that the boundary conditions on the surface are:{
ϕ(x) = ϕ(x), ∀x ∈SI ,

q(x) = q(x), ∀x ∈SII ,
(18)

where S = SI ∪SII , and the barred quantities indicate given values on the boundary.
By substituting boundary condition Eq. (18) into Eq. (15), and moving the unknown
terms to the left-hand side and known terms to the right-hand side, Eq. (15) can
be written as

a11 a12 · · · a1N

a21 a22 · · · a11

...
...

. . .
...

aN1 aN2 . . . aNN




λ1

λ1

...
λN

 =


b1

b2

...
bN

, or Aλ = b, (19)

where A is the system matrix, λ is the unknown vector, b is the product of
known boundary value vector and corresponding coefficient matrix plus the pos-
sible incident-wave term. It is worthy of noting that getting the system matrix in
the conventional BEM approach is extremely time-consuming due to computation
of the integral in the Green’s function. Even though some methods were proposed
to compute the Green’s function efficiently [Koh and Yook (2006); Sarabandi et al.
(2002)], the efficiency issue is still a big obstacle in applying BEM to half-space
acoustic problems over an impedance plane.

To solve Eq. (19) efficiently with an iterative solver, a FMBEM is derived for
half-space acoustic wave problems over an impedance plane.

2.2. The expansion formulations

There are generally three types of FMBEM for acoustic problems, termed as low
frequency, high frequency and wideband FMBEM, respectively. The low frequency
FMBEM is based on the multipole expansion [Shen and Liu (2007)] of the Green’s
function which is not efficient for high frequency problems. The high frequency
FMBEM is based on the plane wave expansion (also referred to as the diagonal form
expansion) [Rahola (1996)] of the Green’s function which suffers from numerical
instability for low frequency problems. The wideband FMBEM [Cheng et al. (2006);
Gumerov and Duraiswami (2009)] is a hybrid form of the low frequency and high
frequency FMBEM which is stable and efficient for wide range of frequencies. Since
the multipole expansion of the low frequency form cannot handle the G3(x,y) term
in the Green’s function easily and efficiently, the expansion based on the plane wave
form [Rahola (1996)] is derived in this section for the Green’s function in Eq. (4).

Figure 3 illustrates the tree structure for the well separated source point y and
field point x. The plane wave expansions of terms G1(x,y) and G2(x,y) can be
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x

z
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x

η
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η∆2

η∆

0
~
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η∆2 1
~

cx

2
~

cx

+
+

+...

cx

h

h

Fig. 3. Geometry of the multipole expansion.

expressed as

G1(x,y) =
ik

16π2

∫
σ1

I(σ̂,x,xc)T (σ̂,xc,yc)O(σ̂,yc,y)dσ, (20)

G2(x,y) =
ik

16π2

∫
σ1

I(σ̂,x,xc)T (σ̂,xc,yc)O(σ̂,yc,y)dσ, (21)

in which xc is an expansion point near x and yc is that near y, x and xc are mirror
points of points x and xc, respectively. The translation, inner and outer functions
in Eq. (20) are defined by

T (σ̂,xc,yc) =
∞∑

l=0

il(2l + 1)hl(ku)Pl(û · σ̂), (22)

I(σ̂,x,xc) = eik(x−xc)·σ̂, (23)

O(σ̂,yc,y) = eik(yc−y)·σ̂, (24)

respectively, where u = |xc − yc| and û = (xc − yc)/u, Pl is the lth order Leg-
endre function, σ̂ = σ̂(θ, φ) = (sin θ cosφ, sin θ sin φ, cos θ) in which θ and φ are
polar coordinates of point σ on the unit sphere σ1. The translation, inner and outer
functions of Eq. (21) are same as that of Eq. (20) with x substituted by x and xc

substituted by xc. It should be noted that the l in Eq. (22) has to be properly trun-
cated to avoid the numerical instability. The plane expansion for the term G3(x,y)
is not straightforward. Since there is a η-shift for x in z direction in G3(x,y), proper
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shift for the local expansion center xc is needed to offset the shift of x. By following
the plane wave expansion form of terms G1(x,y) and G2(x,y) and reordering the
integrals with respect to η and the unit sphere σ1, G3(x,y) can be written as

G3(x,y) =
2ikγ

16π2

∫
σ1

[∫ 0

−∞
e−γηI(σ̂,x + ηẑ, x̃c(ζ))T (σ̂, x̃c(ζ),yc)dη

]
×O(σ̂,yc,y)dσ, (25)

in which the shifted local expansion center x̃c(ζ) is taken as

x̃c(ζ) = xc + ζẑ, (26)

and ζ is a variable to be selected on condition that the plane wave expansion does
exist for G3(x,y) which implies |x̃c(ζ) − yc| > |(x + ηẑ − x̃c(ζ)) + (yc − y)| for a
specific or a range of η.

Obviously, if we set ζ = η, Eq. (25) can be computed by Eq. (21) but with the
translation functions defined as

T (σ̂,xc,yc) =
∫ 0

−∞
e−γηT (σ̂, x̃c(η),yc)dη. (27)

The translator is a summation of translators from a real cell to all image cells located
along a line in the mirror space below the plane. Gaussian quadrature method can
be used to compute the translator. But it is either inefficient or inaccurate. To
avoid the direct numerical method in computing the integral with respect to the
variable η, a piecewise analytical method is proposed to compute the translator
accurately.

Divide the range of η into pieces as [−∞, 0] =
⋃∞

n=0[−2(n + 1)∆η,−2n∆η] in
which ∆η is a positive real number. For the nth piece, the variable ζ is changed to
ζn. As shown in Fig. 3, to ensure |x̃c(ζn)− yc| > |(x + ηẑ − x̃c(ζn)) + (yc − y)| for
∀ η ∈ [−2(n + 1)∆η,−2n∆η], ζn is set as

ζn = −(2n + 1)∆η. (28)

Therefore, Eq. (25) can be rewritten as

G3(x,y) =
2ikγ

16π2

∞∑
n=0

∫ −2n∆η

−2(n+1)∆η

∫
σ1

e−γηI(σ̂,x + ηẑ, x̃c(ζn))

×T (σ̂, x̃c(ζn),yc)O(σ̂,yc,y)dσdη. (29)

Substituting Eqs. (23) and (28) into Eq. (29), and using the fact ẑ · σ̂ = cos θ yields

G3(x,y) =
ik

16π2

∫
σ1

I(σ̂,x,xc)T (σ̂,xc,yc)O(σ̂,yc,y)dσ, (30)
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where

T (σ̂,xc,yc) =



4∆ηγ
∞∑

n=0

eik(2n+1)∆ηcosθT (σ̂, x̃c(ζn),yc), |µ| = 0

2γ

µ
(eik∆ηcosθ − e−ik∆ηcosθ+2γ∆η)

∞∑
n=0

×T (σ̂, x̃c(ζn),yc)e2nγ∆η, |µ| �= 0,

(31)

in which µ = ikcosθ − γ. Therefore, analytical translator is obtained and no inte-
gration is needed any more for the variable η in every piece. But, it should be noted
that diameter of the sphere containing the image cell is 2

√
(d + ∆η)2 + 2d2. It is

larger than the diameter of real cell, 2
√

3d. The evaluation of G3(x,y) based on the
plane wave expansion (Eq. (30)) is illustrated in Fig. 3 in which the local expansion
center x̃c(ζn) is denoted as x̃cn.

To let the size of the image cell approximate to that of the real cell which will
facilitate the determination of the interaction and adjacent list of an image cell, ∆η

should be close to zero. But the smaller ∆η is, the more pieces are generated, which
will lead to increase of the CPU time in computation of translators. To make sure
that the image cell has no big difference in size by comparing with the real cell,
∆η should be set to a relatively small constant, such as ∆η = 0.125d which is the
constant used in the following simulations. But, if the size of the cell is very small
(deep tree structure), it is not efficient to compute the translators with Eq. (31)
either since the number of pieces of η in the range [η′, 0] is very large, in which η′

is the truncated lower integral limit for the variable η. To avoid this drawback, an
algorithm based on the tree structure is developed to speed up computation of the
translators which will be described in Sec. 3.2.

It is easy to get from the above derivation that the three terms in Green’s func-
tion share the same expansion formation and just with the difference in translation
functions which are favorable in the code implementation. Another advantage of
the plane expansion is that normal derivative of the Green’s function only results
in a difference in the outer function as

O(σ̂,yc,y) = −ik(n · σ̂)eik(yc−y)·σ̂. (32)

3. FMBEM Algorithm of the Half-Space Acoustic Problem

With all formulas introduced in Sec. 2, we are able to construct the three-
dimensional FMBEM algorithm for half-space acoustic wave problems. A flexible
generalized minimum residue method (fGMRES) is used in the FMBEM to solve the
equation iteratively, in which the FMM is applied to accelerating the multiplication
of matrix A and vector λ (Eq. (19)).
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3.1. Formulations of moment, translation and final evaluation

In the computation of entries, fij and gij , in the system matrix A, the lower limit of
variable η in term G3(x,y) should be truncated to a proper number η′. A method
to truncate η for a given tolerance εη is to determine a constant η′ satisfying
|γe−γη′ | = εη. To determine the truncation number in translators, the following
empirical formula [Coifman et al. (1993)] is applied

pl = kDl + c0 log(kDl + π), (33)

where Dl is the diameter of the image cell at level l, and c0 is a number to determine
the desired accuracy which is chosen as 5 in the numerical examples. The integration
over the unit sphere at level l is computed by pl-points Gaussian quadrature method
in the θ direction and 2pl-points square quadrature in the φ direction [Rahola
(1996)].

The moment of half-space acoustic problems is the same as that in the free-space
problem and defined by

M(σ̂,yc) =
∫

∆Sj

O(σ̂,yc,y)q(y)dS(y), (34)

M(σ̂,yc) = −ik

∫
∆Sj

(n · σ̂)O(σ̂,yc,y)ϕ(y)dS(y), (35)

for the single and double potential, respectively. The analytical integration method
[Wu et al. (2012a)] and anti-symmetry [Wu et al. (2012b)] property can be applied
to computing the moment more efficiently.

To perform the M2L translation from one real cell to all image cells of one real
cell at once, translators of terms G2(x,y) and G3(x,y) can be combined as

T̃ (σ̂,xc,yc) = T (σ̂,xc,yc) + T (σ̂,xc,yc), (36)

in which T (σ̂,xc,yc) is expressed in Eq. (22) and T (σ̂,xc,yc) is computed by
Eq. (31). Correspondingly, the two set of local expansion coefficients are

L(σ̂,xc) = T (σ̂,xc,yc)M(σ̂,yc), (37)

L(σ̂,xc) = T̃ (σ̂,xc,yc)M(σ̂,yc). (38)

Since xc can be obtained from xc, the local expansion coefficient L(σ̂,xc) is assigned
to the cell whose center is xc. The local expansion coefficients L(σ̂,xc) and L(σ̂,xc)
can share common memory when the downward pass is divided into two parts and
evaluated separately. In the upward and downward passes, the methods used to
perform M2M and L2L are described in detail in Wu et al. [2012a, 2012b].

The final evaluation is computed by

f(x) =
ik

16π2

∫
σ1

[I(σ̂,x,xc)L(σ̂,xc) + I(σ̂,x,xc)L(σ̂,xc)]dσ. (39)
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3.2. FMBEM algorithm

Readers are assumed to have good knowledge of the FMBEM for acoustic prob-
lems before proceeding further for the algorithm of half space acoustics. Otherwise,
please refer to tutorial references for more details about FMBEM [Sakuma and
Yasuda (2002); Liu and Nishimura (2006)]. As described in Sec. 3.1, the upward
pass (computation of moments and M2M translation) of the half-space FMBEM is
the same as that in the full-space FMBEM. In the downward pass for the half-space
problem, the L2L translation and final evaluation share the same procedure with
the full-space FMBEM while the M2L translation needs more attention. To effi-
ciently compute the M2L translations, M2L is divided into two parts: other is from
the real domain to the real domain which is same as that in the full-space FMBEM,
and the other is from the real domain to the image domain in which the translators
involve the integral of η. Because the relative positions of interaction cells are fixed
and at most 316 for the full-space FMBEM, a scheme of precomputing and storing
the M2L translators to reduce the CPU time in the M2L translation was developed
[Wu et al. (2012a, 2012b)]. From a practical point of view, it is more imperative to
precompute and store the M2L translators for the half-space problems especially
for the M2L translation from real cells to image cells, as indicated in Eq. (31).

A few terms are defined here to facilitate the description of the algorithm for
translations from real domain to image domain. The mirror cell of one real cell
centered at xc is referred to as the cell centered at xc. The real cell centered at xc

is also named as the original cell of the mirror cell. A real cell and a mirror cell are
said to be adjacent cells at one level l if they have at least one common projected
vertex in the xoy plane and the distance between their centers in z direction is less
than twice of the cell’s side length. A real cell and a mirror cell are well separated
at level l if they are not adjacent cells but their parent cells are adjacent cells at
level l − 1. Obviously, if a real cell is a well-separated cell of one mirror cell then
it is also a well-separated cell of all image cells below the mirror cell, as shown in
Fig. 3. The list of all the well-separated real cells of a mirror cell at level l is called
the interaction list of the mirror cell. Far cells of a mirror cell are real cells whose
parent cells are not adjacent to the parent cell of the mirror cell. Since the center
of the mirror cell can be obtained through its original cell, the tree structure is
only created for the real domain [Bapat et al. (2009)]. Therefore, the interaction
and adjacent lists and the local expansion coefficients of a mirror image cell are all
assigned to its original cell. Definitions of those terms for cells in the real domain
are same to that in the full-space FMBEM.

If mirror cell is used to represent its image cells in the determination of well-
separated and adjacent real cells, the translators Eq. (31) should be evaluated with
n up to an integer N = 	η′/2∆η
(“	∗
 means round to nearest integer”) for a well-
separated real cell of a mirror cell. Correspondingly ∆η in the Eq. (31) should be
changed to η′/2N . Since ∆η is level-dependent, the higher the level l is, the larger
the N is. Therefore, it may be very expensive to compute the M2L translators from
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a well-separated real cell to a mirror cell and all its image cells at higher level l.
Since the distance from the adjacent cells of a mirror cell to image cells below the
mirror cell is η-dependent, as shown in Fig. 3 at a level l, if 2h − η ≥ dl in which
dl is the length of cell’s side, M2L can still be performed from adjacent cells to
image cells below the mirror cell with η ≤ 2h − dl. Note that η ≤ 0, define a level-
dependent ηl as min(2h − dl, 0) in which dl is the length of cell’s side at level l. In
the sense of multi-level tree structure, M2L should be performed from the adjacent
cells to image cells below the mirror cell with η in the range of [ηl−1, ηl] at level l.
h is said to be large enough at level l if ηl−1 = 0. A η-dependent well-separated cell
of a mirror cell is termed as an adjacent real cell of the mirror cell which is well
separated from image cells below the mirror cell with η in the range of [ηl−1, ηl].
Correspondingly, the list of all the η-dependent well-separated cells of a mirror cell
is called the η-dependent interaction list of the mirror cell, the η-dependent far cells
of a mirror cell are real cells whose parent cells are η-dependent well-separated to
the parent cell of the mirror cell. The mirror cell is also used to represent its image
cells in the definition of η-dependent well-separated and far cells.

The upward pass and downward pass of the half-space FMBEM are as follows:

Upward Pass : The moments and M2M translation are same as that in the full-
space FMBEM [Liu and Nishimura (2006)], but the tracing up procedure should be
performed from the bottom level to root level (level 0).

Downward Pass: Firstly, perform the downward pass from the level 2 to the bottom
level for cells in the real domain. It is the same procedure as that in the full-space
FMBEM. Secondly, perform the downward pass from the level 0 to the bottom level
for cells from the real domain to the image domain. At a level l, the following steps
are carried out:

Step I: Performing the L2L translation for mirror cells if level l > 0 which sums
contributions from all far and η-dependent far cells of the mirror cells, as shown
in Fig. 4. If a cell is a leaf cell, the final evaluations of the contributions from all
far and η-dependent far elements to the elements in the mirror cell are computed
with Eq. (39) for G2 and G3. Contributions from elements in adjacent cells to the
element in the cell are evaluated with direct method for G2 and G3. Note that G3

is just computed with η in the range of [ηl, 0] when h is not large enough at the
level l, which is more efficient than the original range [η′, 0].

Step II: Performing the M2L translation for mirror cells if h is not large enough
at the level l which sums the contributions from cells in the interaction and
η-dependent interaction list. We can find further that the interaction list of a mirror
cell does exist only if the original cell of its parent cell locates at the bottom layer
of the tree structure in z direction, as shown in Fig. 4. Therefore, there are at most
98(72 × 2) possible relative positions of M2L translations from real cells to mirror
image cells at each level. It is permissible and favorable to precompute and store
the translators for the M2L translations from real cells to mirror cells. Note that
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M2L translation

η−M2L translation

L2L translation

Level l Level l +1

Far cell of the mirror cell                 Mirror cell                    Adjacent cell of the mirror cell

Fig. 4. (Color online) M2L and L2L from real cells to image cells, in which M2L translation covers
[ηl, 0] and η-M2L translation covers [ηl−1, ηl] at level l for the variable η.

M2L translators of interaction list of a mirror cell consists of translators of G2 and
G3 with η in the range of [ηl−1, 0]. But that of η-dependent interaction list only
includes translators for G3 with η in the range of [ηl−1, ηl], and the translator is
expressed as

T (σ̂,xc,yc) =



4∆̃ηγ
Ñ∑

n=0

eik(2n+1)βcosθT (σ̂, x̃c(ζn),yc), |µ| = 0

2γ

µ
e−iγηl

(eik f∆ηcosθ − e−ik f∆ηcosθ+2γβ)
Ñ∑

n=0

×T (σ̂, x̃c(ζn),yc)e2nγ f∆η, |µ| �= 0,

(40)

in which Ñ = 	(ηl − ηl−1)/2∆η
, ∆̃η = (ηl − ηl−1)/2Ñ and ζn = ηl − (2n + 1)∆̃η.
According to the above algorithm, there are at most 22l+1 cells in the image

domain needing M2L translation at level l which is smaller than the most 23l cells
in the real domain from l≥ 1. In addition, there are at most 72(62 × 2) M2L trans-
lations (summation of M2L and η-dependent M2L, as illustrated in the right figure
in Fig. 4) from real cells to a mirror cell in contrast to the most 189 M2L trans-
lations of cell in the real domain. Therefore the CPU time cost in the downward
pass for cells in the image domain is less than that for real cells. Figure 4 gives a
simple explanation of the M2L, L2L translations from real cells to image cells in two
dimensions.
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3.3. Preconditioning

The coefficient matrix of the BEM is sometimes ill-conditioned, resulting in a poor
rate of convergence for the solution using iterative solvers. Therefore, precondition-
ing for the FMBEM is crucial to its convergence and computing efficiency. To have
a preconditioner for the half-space problem, a right preconditioned fGMRES [Saad
(1993)] is used in which the preconditioning process is performed with the GMRES.
The fGMRES satisfies the residual norm minimization property over the precondi-
tioned Krylov subspace just as in the standard GMRES algorithm. It also enables
one to utilize the memory more efficiently since the vectors that are normally not
being used in a given fGMRES step can be fully exploited to compute a precon-
ditioned vector via the inner GMRES. The tolerance of the inner GMRES is set
larger than the tolerance of fGMRES. The inner GMRES solution is faster than the
outer fGMRES, as the inner loop is terminated after a few iterations.

4. Numerical Examples

To the best knowledge of the authors, we are not aware of the existence of an exact
analytical solution to either radiation or scattering from a sphere (or any other
body) in the three-dimensional half space over an infinite impedance plane. Since
FMBEM is a fast approximation to the conventional BEM (CBEM) within a given
tolerance, the accuracy of the proposed FMBEM is compared with the CBEM.
In the evaluation of G3(x,y) using direct numerical method, an exact closed-form
expression [Koh and Yook (2006)] is used. It can be expressed in our symbols as

G3(x,y) = − γ

2π
e−γ(zx+zy)

{
± iπJ0(2

√
c1c2 )

+
iπ

2
[H(2)

0 (2
√

c1c2 ) − E+
0 (w, 2

√
c1c2 )]

}
, (41)

in which zx and zy are the z coordinates of point x and y, J0 is Bessel func-
tion of the first kind, H

(2)
0 is Hankel function of the second kind, E+

0 is incom-
plete cylindrical function in Poisson form [Agrest and Maksimov (1971)], c1 =
i
2 (k + iγ)[r(x,y) − (zx + zy)], c2 = − i

2 (k − iγ)[r(x,y) + (zx + zy)] and w = π
2 +

iln(−√
c2/c1). In Eq. (41), the “+” is for Re(−1/c2) > 0 and “−” for Re(−1/c2) <

0 where Re means the real part of a complex number. There are asymptotic expan-
sions for the three special functions in Eq. (41) but only for very special cases.
In the interest of generality, Eq. (41) is used to evaluate G3(x,y) directly in the
CBEM. It is worth noting that the exact closed-form suffers from numerical instabil-
ity whenever e−γ(zx+zy) → +∞. Therefore, direct numerical quadrature [Greengard
et al. (2011)] has to be applied in the computation of G3(x,y) for the case when
e−γ(zx+zy) is very large, such as the case γ = −104 in Example 4.1.

The half-space FMBEM has been implemented in a code using Fortran 95. In all
examples, constant triangular elements are used in the meshing. Maximum number
of elements assigned in a leaf is set to 20. 12-points Gaussian quadrature is applied
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to computing the fij and gij . The tolerance εη for the determination of η′ is set to
10−8 in all examples. The fGMRES solver is preconditioned with GMRES and will
stop the iterative process when the residual reaches 10−4. And the inner GMRES
will stop the preconditioning process when its residual reaches 10−1. The solution
of the CBEM is obtained with the GMRES solver without preconditioning. All
results reported below are obtained on a desktop PC with a 64-bit Intel r© CoreTM2
DuoCPU and 8GBRAM, but only one core is used in the computation.

4.1. Sphere models

The first case is sound scattering from a sphere of radius a in close proximity
to an infinite impedance plane. The distance between the infinite plane and the
center of the sphere is set to 1.01a and 1.25a, respectively. Acoustic admittance
of the impedance plane is γ = −0.914 + 0.397i at ka = 2. The surface of the
sphere is assumed to be rigid. A plane wave traveling along z axis (e−ikz) above
the impedance plane results in ϕI = e−ikz +λeikz where λ = (ik− γ)/(ik+ γ). The
half-space FMBEM is compared with the CBEM in the boundary solutions. The
boundary solutions of the sphere with total number of elements ranging from 1,200
to 10,000 are computed with FMBEM and CBEM.

The L2 relative error of the FMBEM with respect to CBEM are at the level of
10−6 which proves the accuracy of the half-space FMBEM. CPU times are plotted
in Fig. 5. It clearly demonstrates the efficiency of the half-space FMBEM. The
speed-up ratio of the half-space FMBEM is higher than that of the full-space one
because computation of coefficients matrix in the conventional BEM is more time-
consuming than that of the full space CBEM. As shown in Fig. 5, the CBEM
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Fig. 5. (Color online) CPU time comparison between FMBEM and CBEM.
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takes almost 9 h to solve the mesh with 10,000 elements and most of the time is
spent on computing system matrix. It is even worse if a direct solver (such as LU
decomposition method or Gaussian elimination method) is used in the CBEM. High
time consumption is the reason why only meshes with number of elements less than
10,000 are used in this comparison. It is also one of the reasons why the CBEM is
prevented from the analysis of half-space problems over an impedance plane even
for a small model. Figure 5 illustrates that CPU time used by the FMBEM for the
sphere with distance between the infinite plane and its center being 1.01a is more
than that for the sphere with the distance being 1.25a. It is caused by the fact that
the closer the model is to the plane, the more direct coefficients between elements
in the real domain and elements in the image domain involving G3(x,y) need to be
computed.

There is no analytical result available to validate the solution of the FMBEM
for large scale problems. For a model at a specific frequency, the numerical solutions
given by the FMBEM should converge to the exact value by keeping refining the
mesh. In this case, a plane wave is also assumed to travel along z axis (e−ikz) above
the impedance plane. The distance between the infinite plane and the center of the
sphere is set to 1.1a. Acoustic admittance of the impedance plane is γ = −0.278 +
0.549i. ka is chosen to be 10, 15, 20, 25, respectively. For each ka, seven different
meshes varying from 6,348 to 602,112 are used to demonstrate the convergence
of solutions, as shown in Fig. 6. The relative error means the error of maximum
absolute sound pressures obtained with other meshes with respect to that computed
with the finest mesh (number of element is 602,112). The CPU time used to solve
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Fig. 6. (Color online) Convergence of the maximum absolute sound pressure for different ka and
number of elements.
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Fig. 7. (Color online) CPU time used to solve the scattering sphere for different ka and number
of elements.

the problems is plotted in Fig. 7 which shows the efficiency of the FMBEM for large
scale problems.

The efficiencies demonstrated in Fig. 7 are for cases when the dimensionless fre-
quency ka is fixed while the dimensionless element size is decreasing. The FMBEM
is not as efficient as that depicted in Fig. 7 if the dimensionless element sizes are
fixed in meshing for different frequencies. It can be easily validated by comparing
the CPU time used for the cases ka = 20 and ka = 10 in the following way. If the
dimensionless element size is fixed, the element size in the case ka = 20 is half of
that in the case ka = 10. Generally, one triangular element in the case ka = 10 will
turn into four elements in the case ka = 20. Therefore, lines crossing the lines of
ka = 10 and 20 in Fig. 7 with the x coordinate of intersection point with the line
ka = 20 being four times as that of the intersection point with the line ka = 10
can roughly represent efficiencies of FMBEM for cases with the fixed dimensionless
element size. Obviously, slopes of those lines are bigger than that shown in Fig. 7.
It implicates the efficiency of the FMBEM for fixed dimensionless element size is
slower. However, efficiencies of the FMBEM are amazing for both cases since the
BEM can hardly be applied for practical half-space problems with an impedance
plane as demonstrated in Fig. 5.

Next, we study two extreme cases using the half-space FMBEM. The distance
between the infinite plane and the center of the sphere is set to 1.01a. In this case,
the sphere is assumed to pulsate with a uniform velocity at ka = 5. The sphere
is meshed with 10,800 triangular elements. The perfectly rigid and soft cases are
computed with the CBEM with the corresponding half-space Green’s functions,

1350090-19

In
t. 

J.
 C

om
pu

t. 
M

et
ho

ds
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

H
A

N
G

H
A

I 
JI

A
O

 T
O

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

02
/0

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



3rd Reading

October 29, 2013 16:24 WSPC/0219-8762 196-IJCM 1350090

H. Wu et al.

Table 1. Results of FMBEM for approximating the perfectly rigid and soft plane
with different impedance.

Cases Impedance γ CPU time (Sec.) Relative error (L2)

Perfectly rigid plane –1.0E–02 9.898E+01 6.321E–03
–1.0E–03 6.601E+02 6.486E–04
–1.0E–04 4.511E+03 1.014E–04

Perfectly soft plane –1.0E+02 3.146E+01 9.682E–02
–1.0E+03 3.569E+01 5.332E–03
–1.0E+04 3.555E+01 7.356E–04

G(x,y) = G1(x,y)+G2(x,y) and G(x,y) = G1(x,y)−G2(x,y), respectively. The
approximation to the half space problems over perfectly rigid and soft planes by
assigning to γ large numbers and small numbers, respectively (Table 1) are com-
puted with the half-space FMBEM. Results are listed in Table 1. The relative error
means the L2 relative error of the boundary solution given by FMBEM with respect
to that given by CBEM. The relative errors demonstrate that the boundary solu-
tions obtained by the half-space FMBEM do approximate to results for a perfectly
rigid and soft plane by assigning to γ to their corresponding limits, as shown in
Table 1. The phenomena are as expected since the perfectly soft and hard Green’s
functions can be obtained from Eq. (4) with γ approaching −0 and −∞, respec-
tively. It should be noted that the CPU time used by the FMBEM for perfectly soft
plane is more than that for the perfectly rigid plane which is due to the different
lower integral limit truncation η′ for the two types of extreme impedance. To make
sure |γe−γη′ | = εη for the given tolerance, |η′| has to be very large if |γ| is very small
(such as the case γ = −10−4). Therefore, it is very time-consuming to precompute
the M2L translators from the real domain to the image domain.

4.2. Scattering from multiple objects

A scattering model of multiple objects with rigid surface located below an
impedance plane is studied next. The model contains a group of 60 fish and has
overall dimension of 1.0 m × 1.05 m× 0.8 m in x, y and z direction, respectively. The
distance from the top of the model to the xoy plane as shown in Fig. 8 is 1.0m.
A plane wave traveling along z axis (eikz) below the impedance plane results in
ϕI = eikz+λe−ikz where λ = (ik + γ)/(ik− γ). The dimensionless frequency ka (a is
the maximum side length of the model) is 81.0. The admittance γ is −0.104 + 0.323i.
Every fish is meshed with 8,980 triangular elements, in which the smallest trian-
gle is 2.71×10−2 wavelengths, and the largest one is 8.05×10−2 wavelengths. So
the total number of elements is 538,800. It takes 4.85 h to reach the solution with
fGMRES. The boundary solution is plotted in Fig. 8. To validate the accuracy of
the half-space FMBEM, a matrix-vector product is compared with CBEM. Due to
the time issue, the CBEM is only applied to computing the b =A:,1λ1 in which
A:,1 is the first row of the coefficient matrix A and λ1 is the first entry of the
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Fig. 8. (Color online) Scattering of a multiple fish model.

Table 2. CPU time and relative error of matrix-vector multiplication between the
CBEM and half-space FMBEM. The CPU time used by the CBEM is extrapolated

from that used in computation of b =A:,1λ1.

Examples 4.2 4.3

CBEM FMBEM CBEM FMBEM

CPU time (Sec.) 7.195E+08 9.094E+01 3.516E+06 3.11E+01
Relative error (L2) 3.035E−04 2.149E−04

unknown vector λ as shown in Eq. (19). The relative error and CPU time used in
computing one matrix-vector are listed in Table 2. The relative error indicates the
difference between the vector b = A:,1λ1 computed by the half-space FMBEM and
CBEM, and the CPU time of the CBEM for one matrix-vector product equals to
multiplication of the seconds used in the computation of the vector b =A:,1λ1 and
the number of elements.

4.3. A compressor casing model

A compressor casing model is used to further demonstrate applicability of the
half-space FMBEM. The compressor casing is excited by a unit harmonic force
at ka = 19.1 (a is the maximum side length of the model). The boundary veloc-
ity is obtained by using a commercial FEM software. The radiating compressor
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(a) (b)

Fig. 9. (Color online) Difference of the field pressure of a vibrating compressor casing computed
by (a) the full-space FMBEM and (b) the half-space FMBEM.

is placed over an infinite plane with the minimum distance from the compressor
to the plane being 0.025m. The radiation of the compressor is computed by the
half-space FMBEM over an impedance plane with γ being −4.82 + 11.14i. The
compressor is meshed with 107,468 triangular elements in which the smallest tri-
angle is 1.61×10−2 wavelengths, and the largest one is 4.73×10−2 wavelengths.
The corresponding full space FMBEM is also applied to solving the same model
but with the infinite plane removed to show the influence of the impedance plane
on the sound pressure. Field pressure obtained by the two methods is plotted in
Fig. 9. The half-space FMBEM and the full-space FMBEM takes a total of 894 and
567 seconds to get the solution, respectively. Same as the previous example, CPU
time and relative error of the matrix-vector multiplication of half-space FMBEM
for this case are also examined and listed in Table 2. Compared with the results
obtained with the full-space FMBEM, both the distribution and maximum value of
the field pressure computed with the half-space FMBEM are varied. This means the
influence of the impedance plane is not negligible for this case. The problem is fre-
quently encountered in engineering when experiments need to be set up to validate
the numerical simulations which are analyzed under the free-space assumption. For
these cases, the half-space FMBEM becomes useful in checking the influence of the
reflecting plane on pressure at the measurement positions.

5. Conclusion and Discussion

A half-space FMBEM is developed for three-dimensional acoustic wave problems
over an infinite plane with an impedance boundary condition. In the half-space
FMBEM, the downward pass is divided into two parts which are used to compute the
contributions from the real domain to the real and the image domains, respectively.
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This makes the number of M2L from the real domain to the image domain be
at most equal to 72. It is smaller than the number of 189 of M2L from the real
domain to the real domain. A piecewise analytical method is proposed to compute
the M2L translator from the real domain to the image domain accurately and
an algorithm based on the multi-level tree structure is designed to compute the
M2L translators efficiently. The level-dependent computation of the M2L translators
for the cells from the real domain to the image domain is also advantageous to
the computation of direct coefficient because the integral appearing in the half-
space Green’s function only needs to be evaluated in the range of [ηl, 0] instead of
[η′, 0] (generally |ηl| � |η′|) at level l. Numerical examples clearly demonstrate the
accuracy and efficiency of the developed half-space FMBEM.

The Burton–Miller formulation is implemented in the half-space FMBEM to
overcome the nonuniqueness for exterior acoustic problems. Theoretically, the half-
space FMBEM based on Burton–Miller formulation should give the unique solution
for all frequencies. But we cannot numerically demonstrate that, because the ficti-
tious frequencies even for the exterior acoustic problem of a sphere over an infinite
impedance plane are not clear now. Although the FMBEM algorithm introduced
in this paper is based on the Green’s function of the infinite plane with mass-
like impedance, it can be readily modified to the half-space problems of infinite
plane with spring-like impedance which has a similar Green’s function [Eq. (37)
in Ochmann (2004)] but in a different form. A unified expression of the half-space
Green’s function was also introduced by Ochmann [Eq. (41) in Ochmann (2004)]
which is convergent for both mass-like and spring-like impedance but is expressed
in z-complex plane. Based on the unified half-space Green’s function, a general half-
space FMBEM of the infinite plane with impedance boundary condition may also
be obtained.
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