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Abstract A simple multidomain fast multipole boundary
element method (BEM) for solving potential problems is
presented in this paper, which can be applied to solve a
true multidomain problem or a large-scale single domain
problem using the domain decomposition technique. In
this multidomain BEM, the coefficient matrix is formed
simply by assembling the coefficient matrices of each sub-
domain and the interface conditions between subdomains
without eliminating any unknown variables on the inter-
faces. Compared with other conventional multidomain BEM
approaches, this new approach is more efficient with the
fast multipole method, regardless how the subdomains are
connected. Instead of solving the linear system of equa-
tions directly, the entire coefficient matrix is partitioned and
decomposed using Schur complement in this new approach.
Numerical results show that the new multidomain fast mul-
tipole BEM uses fewer iterations in most cases with the
iterative equation solver and less CPU time than the tra-
ditional fast multipole BEM in solving large-scale BEM
models. A large-scale fuel cell model with more than 6 mil-
lion elements was solved successfully on a cluster within 3
h using the new multidomain fast multipole BEM.
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1 Introduction

The multidomain boundary element method (BEM) has
been studied since 1980s. A comprehensive introduction
of the multidomain BEM can be found in Ref. [1]. Many
researchers have proposed different multidomain BEM
approaches for modeling potential problems [2–7], elasto-
static problems [8–15], acoustic problems [16–20], elastody-
namic problems [21–23], fluid mechanics [24–27] and frac-
ture mechanics problems [28–30]. With these approaches,
the entire domain is divided into some subdomains and
the boundary integral equation (BIE) are applied to each
domain. The total number of unknown degrees of freedom
(DOFs) increases because there are some new elements on
the interface.Most approaches use the interface conditions to
eliminate the additionalDOFson the interface [10,31],which
may require extra effort in rearrangement of the coefficient
matrices and make it difficult to apply the fast algorithms
and parallel computing for the general cases. Recently, an
interface integral BEM for multidomain problems is derived
in [2,11]. This method combines the integral equations of all
subdomains and the interfaces. Therefore, only one boundary
integral equation is needed.

Multidomain BEM approaches developed for problems
with different material properties in different subdomains
can also be used to solve problems in domains with a single
material. This approach can be regarded as a domain decom-
position technique for solving large-scale single domain
problems. Rigby andAliabadi [32] used amultidomain BEM
to solve the problems with a uniform material property in
the entire domain and found out that it was faster than the
traditional single domain BEM approach for the cases they
studied. The idea behind this approach is to solve large-
scale single domain problems using the multidomain BEM
approach that can facilitate easy implementation of paral-
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lel computing. Hsiao and Wendland also did some early
exploration [33,34] on the domain decomposition with the
BIE. Recently, Langer and Steinbach [35–37] introduced
the boundary element tearing and interconnecting (BETI)
method and applied the fast multipole method (FMM) [38–
43] to accelerate the solution. Pechstein [44] extended the
BETI method to problems with unbounded domains. Some
researchers also proposed other approaches of the domain
decompositionwith the BEM. Ingber, Tanski andAlsing [45]
proposed a domain decomposition tool for the BEMbased on
a graph partitioning algorithm.Bui andPopov [46] developed
a numerical approach based on the domain decomposition
boundary element method with overlapping subdomains.

In this paper, we present a new and general formulation of
the multidomain fast multipole BEM. In this method, the
BEM coefficient matrix is formed simply by assembling
the local coefficient matrices of each subdomain and the
interface conditions between attached subdomains without
eliminating the unknown variables on the interface. Instead
of solving the large linear system of equations directly, the
entire coefficient matrix is partitioned and decomposed using
Schur complement in this new approach. Compared to most
of the multidomain BEM approaches in the literature, this
new simple approach is shown to be more efficient with the
fast multipole method and suitable for parallel computing,
regardless how the subdomains are attached to each other.

The paper is organized as follows: In Sect. 2, the BEM
formulation for potential problems are reviewed. In Sect. 3,
the new formulation of the multidomain fast multipole BEM
is proposed. The overall algorithm is shown in Sect. 4. Some
numerical examples are given in Sect. 5, and some discus-
sions are provided in Sect. 6.

2 BIE formulation for potential problems

Consider a potential problem in a 2D or 3D domain V with
the boundary S . The governing equation of the potential
problem is:

∇2φ (x) = 0, ∀x ∈ V, (1)

and the boundary conditions are:

φ (x) = φ̄ (x) , ∀x ∈ Sφ,

q (x) = q̄ (x) , ∀x ∈ Sq , (2)

where φ (x) is the potential and q (x) is the normal derivative
of φ (x); φ̄ (x) and q̄ (x) are two given functions on Sφ and
Sq , respectively; S = Sφ ∪ Sq and Sφ ∩ Sq = ∅.

With the help of Green’s second identity, the correspond-
ing conventional boundary integral equation (CBIE) for
potential problems is [43]:

1

2
φ (x) =

∫
S
G (x, y) q (y)dS

−
∫
S
F (x, y) φ (y)dS, x ∈ S, (3)

where G (x, y) is the fundamental solution, with x being the
source (collocation) point and y the field (integration) point.
For 3D potential problems, we have:

G (x, y) = 1

4πr
, r = |x − y| . (4)

F (x, y) is the normal derivative of G (x, y) at the field (inte-
gration) point y.

Taking the normal derivative ofEq. (3) atx gives the hyper-
singular boundary integral equation (HBIE):

1

2
q (x) =

∫
S
K (x, y) q (y)dS

−
∫
S
H (x, y) φ (y)dS, x ∈ S, (5)

where

K (x, y) = ∂G (x, y)
∂n (x)

, H (x, y) = ∂F (x, y)
∂n (x)

.

It has been demonstrated that (see, e.g., Ref. [43]) a lin-
ear combination of CBIE and HBIE (dual BIE formulation)
provides better conditioning for solving regular domain prob-
lems as well as crack or thin-shape domain problems. In this
paper, only the CBIE formulation is employed.

3 New multidomain BEM formulation

For the conventional BEM for single-domain problems, the
entire boundary S is discretized with some boundary ele-
ments. The next step is to calculate the coefficient matrix and
right-hand-side vector. The last step is to solve it by using a
direct solver. The conventional BEM works well when the
size of the problem is not large (for example, with the number
of DOFs less than ten thousands). Fast algorithms such as the
fast multipole method [38–43] and adaptive cross approxi-
mation (ACA) method [47] can speed up the BEM in solving
large-scale problems (for example, with a few million DOFs
on a PC) without constructing the coefficient matrix explic-
itly. However, the BEM is still difficult to be applied to solve
the problems with a larger number of DOFs (such as 100
million DOFs). The reason is that for large-scale problems,
the conditioning of the coefficient matrix often deteriorates,
which can lead to large numbers of iterations using iterative
solvers and propagation of the errors.

A natural idea of solving larger scale problems is to use
the domain decomposition concept or themultidomainBEM.
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Fig. 1 Finite domain decomposition

In the following we first describe a new multidomain BEM
formulation and then discuss its implementation.

First, we divide the entire problem domain V into M non-
overlapping subdomains Vi as (Fig. 1):

V =
M⋃
i=1

Vi , Si = ∂Vi .

where Si is the boundary of the subdomain Vi ; Si j is the
interface of Vi and Vj . Let Ssi be the boundary of subdomain
Vi excluding the interface and SIi as the group of all the
interfaces of subdomain Vi . For subdomain Vi , the local field
φi satisfies the governing equation (1) in domainVi . The local
boundary conditions for φi are:

φi (x) = φi (x) , ∀x ∈ Sφ
i = Si ∩ Sφ,

qi (x) = qi (x) , ∀x ∈ Sqi = Si ∩ Sq , (6)

for i = 1, 2, . . ., M , where qi is the normal derivative of φi .
Additional interface conditions are required to relate the new
unknown variables on the interfaces. For potential problems,
the interface conditions on interface Si j are:

φi (x) = φ j (x) , qi (x) = −q j (x) , ∀x ∈ Si j . (7)

Note that the interface conditions are not unique. That is, any
linearly independent combinations of the two expressions
in Eq. (7) can be used as the interface conditions. Different
forms of the interface conditions can influence the condition-
ing of the final coefficient matrix. In this work, the following
form of the interface conditions is applied:

φi (x) − φ j (x) − qi (x) − q j (x) = 0,

−φi (x) + φ j (x) − qi (x) − q j (x) = 0, x ∈ Si j . (8)

Now the original single-domain problem is divided into a
group of local problems in M subdomains. Applying the BIE
(Eqs. (3) or (5), or a linear combination of the two) for each

subdomain, the final coefficient matrix of the BEMequations
can be arranged without eliminating the duplicated DOFs on
the interfaces as follows:

Subdomain V1

Subdomain V2

Subdomain V3

...

Subdomain VM

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 AI
1 0 0 0 0 · · · 0 0

0 I1,1 0 I1,2 0 I1,3 · · · 0 I1,M

0 0 A2 AI
2 0 0 · · · 0 0

0 I2,1 0 I2,2 0 I2,3 · · · 0 I2,M

0 0 0 0 A3 AI
3 · · · 0 0

0 I3,1 0 I3,2 0 I3,3 · · · 0 I3,M
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 · · · AM AI
M

0 IM,1 0 IM,2 0 IM,3 · · · 0 IM,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λS
1

λI
1

λS
2

λI
2

λS
3

λI
3

...

λS
M

λI
M

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1

0

b2

0

b3

0

...

bM

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

where λS
i and λI

i are vectors of unknowns on Ssi and
SIi for subdomain Vi , respectively. Because both potential
and its normal derivative are unknown on the interfaces,
λI
i can be further divided as two components: λI

i,φ and

λI
i,q , where λI

i,φ is the unknown potential on the interfaces

and λI
i,q is the unknown normal derivatives of potential

on the interfaces. Ai and AI
i are the coefficient matrices

corresponding to the unknown vectors λS
i and λI

i , respec-
tively. bi is the right-hand-side vector. Ii, j are the matrices
associated with the interface conditions. It is worth to men-
tion that Ii, j usually are not the identity matrices. The
entries of Ii, j consist of 0, 1 or −1. The exact form of
Ii, j depends on the choice and implementation of inter-
face conditions. In this paper, the first and second equations
of Eq. (8) are arranged under the subdomain Vi and Vj ,
respectively, in Eq. (9). Using fast multipole method to
solve Eq. (9) iteratively may need a good preconditioner
to achieve high efficiency. In [48], Zhang et al. proposed
a re-numbering strategy to improve the conditioning of
the coefficient matrix for multidomain problems. In this
paper, a new approach of matrix decomposition is proposed
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to improve the efficiency of solving multidomain prob-
lems.

Based on the locations of the source point and field point,
Ai and AI

i can be partitioned in the following form:

[
Ai AI

i

] =
[
ASS
i ASI

i
AI S
i AI I

i

]
(10)

where ASS
i is obtained by calculating the integral when both

the source point x and field point y are on SSi ;A
SI
i is obtained

by calculating the integral when the source point x is on SSi
and field point y is on SIi ; A

I S
i is obtained by calculating the

integral when the source point x is on SIi and field point y
is on SSi ; A

I I
i is obtained by calculating the integral when

both the source point x and field point y are on SIi . Set the
number of elements on SSi and SIi as nSi and n

I
i , respectively.

ni = nSi + nIi . The sizes of ASS
i , ASI

i , AI S
i and AI I

i are
nSi × nSi , n

S
i × 2nIi , n

I
i × nSi and nIi × 2nIi , respectively.

ASI
i and AI I

i are further divided into two submatrices as
follows:

ASI
i =

[
ASI
i,φ ASI

i,q

]
, AI I

i =
[
AI I
i,φ AI I

i,q

]
,

where ASI
i,φ and ASI

i,q are nSi × nIi matrices; AI I
i,φ and AI I

i,q are

nIi ×nIi matrices;ASI
i,φ andAI I

i,φ are the matrices correspond-
ing to the unknown potential on the interfaces of subdomain
Vi . ASI

i,q and AI I
i,q are corresponding to the unknown normal

derivative of potential on the interfaces of subdomain Vi .
Define

A′
i =

[
ASS
i ASI

i,φ
AI S
i AI I

i,φ

]
, A′ I

i =
[
ASI
i,q

AI I
i,q

]
(11)

As it is stated before, the first and second equations of Eq.
(8) are arranged under the subdomain Vi and Vj , respec-
tively, in Eq. (9). Therefore, Ii, j also can be divided into

two submatrices as: Ii, j =
[
(−1)δi j+1 Iφi, j −Iqi, j

]
where δi j

is the Kronecker delta function. The coefficients in front of
unknown potential and normal derivative of potential on the
interfaces are arranged in Iφi, j and Iqi, j , respectively. If sub-

domain Vi and Vj do not have interfaces, all entries of Iφi, j
and Iqi, j are zero. Otherwise, some entries of Iφi, j and I

q
i, j are

1. There is at most one non-zero entry in each row of Iφi, j and

Iqi, j . It is worth to mention that Iφi, j and Iqi, j also usually are
not identity matrices.

We re-arrange Eq. (9) as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A′
1 0 0 · · · 0 A′ I

1 0 0 · · · 0
0 A′

2 0 · · · 0 0 A′ I
2 0 · · · 0

0 0 A′
3 · · · 0 0 0 A′ I

3 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 · · · AM 0 0 0 · · · A′ I
M

Iφ1,1 −Iφ1,2 −Iφ1,3 · · · −Iφ1,M −Iq1,1 −Iq1,2 −Iq1,3 · · · −Iq1,M
−Iφ2,1 Iφ2,2 −Iφ2,3 · · · −Iφ2,M −Iq2,1 −Iq2,2 −Iq2,3 · · · −Iq2,M
−Iφ3,1 −Iφ3,2 Iφ3,3 · · · −Iφ3,M −Iq3,1 −Iq3,2 −Iq3,3 · · · −Iq3,M

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

−IφM,1 −IφM,2 −IφM,3 · · · −IφM,M −IqM,1 −IqM,2 −IqM,3 · · · −IqM,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1

λ2

λ3
.
.
.

λM

λI
1,q

λI
2,q

λI
3,q
.
.
.

λI
M,q

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1
b2
b3
.
.
.

bM

0
0
0
.
.
.

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

where λi =
{

λS
i

λI
i,φ

}
; Iφi, j and I

q
i, j are the matrices represent-

ing the interface conditions of subdomains Vi and Vj .
Define

B =

⎡
⎢⎢⎢⎢⎢⎣

A′
1

A′
2

A′
3

. . .

A′
M

⎤
⎥⎥⎥⎥⎥⎦

,

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

A′ I
1

A′ I
2

A′ I
3

. . .

A′ I
M

⎤
⎥⎥⎥⎥⎥⎥⎦

,

F = [
F1 F2 F3 · · · FM

]
,

C = [
C1 C2 C3 · · · CM

]
,

Fi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Iφ1,i
−Iφ2,i

...

Iφi,i
...

−IφM,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Ci =

⎡
⎢⎢⎢⎣

−Iq1,i
−Iq2,i

...

−IqM,i

⎤
⎥⎥⎥⎦ (13)

for i = 1, 2, . . .M . We also define

λ =

⎡
⎢⎢⎢⎢⎢⎣

λ1

λ2

λ3
...

λM

⎤
⎥⎥⎥⎥⎥⎦

,

λI =

⎡
⎢⎢⎢⎢⎢⎢⎣

λI
1,q

λI
2,q

λI
3,q
...

λI
M,q

⎤
⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎣

b1
b2
b3
...

bM

⎤
⎥⎥⎥⎥⎥⎦

.

For convenience, we use Bi and Ei to denote A′
i and A′ I

i ,
respectively.With these definitions, Eq. (12) can be rewritten
in the following form:

Aλ′ =
[
B E
F C

]{
λ

λI

}
=
{
b
0

}
. (14)

Applying LDU decomposition [49] to matrix A yields:

A =
[
B E
F C

]

=
[

I
FB−1 I

] [
B
S

] [
I B−1E

I

]
≡ LADAUA (15)

where S is the Schur complement matrix defined as

S = C − FB−1E. (16)

Set λ′ = U−1
A u′. By pre-multiplying L−1

A to Eq. (14), one
obtains:

DAu′ = L−1
A

{
b
0

}
, or

[
B
S

]{
u
uI

}
=
{

b
−FB−1b

}
,

(17)

where

u′ ≡
{
u
uI

}
, L−1

A =
[

I
−FB−1 I

]
,

U−1
A =

[
I −B−1E

I

]
.

SinceDA is a block-diagonalmatrix, solvingEq. (17) ismuch
easier than solving Eqs. (12) or (14). This is called Schur

complement approach. The main difficult part of the solution
is to find the inverse of B matrix, which will be addressed in
the following. After Eq. (17) is solved for y, the next step is
to recover the original solution using the following equation:

{
λ

λI

}
= U−1

A u′ =
[
I −B−1E

I

]{
u
uI

}

=
{
u − B−1EuI

uI

}
(18)

It is worth of mentioning that u has already been determined
when the right-hand-side of Eq. (17) is calculated. Therefore,
we focus on solving equation:

SuI = −FB−1b (19)

Based on Eqs. (13) and (16), Eq. (19) is decomposed as:

M∑
i=1

SiuI
i =

M∑
i=1

(
Ci − FiB

−1
i Ei

)
uI
i = −

M∑
i=1

FiB
−1
i bi

(20)

Assume Biwi = EiuI
i . However, for domains without

Dirichlet boundary conditions, the equation Biwi = EuI
i

is not unique solvable. Langer et al. [35–37] proposed an
approach to solve this problem. Assume that the subdomains
i = 1, …, p are lack of the Dirichlet boundary conditions.
For these subdomains, matrix Bi is modified as:

B′
i = Bi + βieieTi (21)

where βi is a positive constant and usually set to be 1, and
ei = (1, . . . , 1)T ∈ Rni . The corresponding Schur comple-
ment matrix is also modified as: S′

i = Ci − Fi
(
B′

i
)−1 Ei .

Therefore, Eq. (19) is modified as:

S̃uI = −FB̃−1b (22)

where

S̃ = [
S′

1 · · · S′
p Sp+1 · · · SM

]

B̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

B′
1

. . .

B′
p

Bp+1
. . .

BM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

WithEq. (21),B′
iwi = EiuI

i is unique solvable.After adding
βieieTi to matrix Bi , we have:

B′
iwi = Biwi + βieieTi · wi = EiuI

i .
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Tomake sure that the solution vectorwi does not change after
adding βieieTi , an additional orthogonal condition is needed:
eTi · wi = 0 . To satisfy this orthogonal condition, wi is also
modified as:

wi = (
B′

i
)−1 EiuI

i + γiei f or i = 1, 2, 3, . . . , p (24)

where γi is a parameter to be determined. Therefore, the left-
hand-side of Eq. (22) becomes:

S̃uI
i =

p∑
i=1

CiuI
i − Fi

(
B′

i
)−1 EiuI

i − γiFiei

+
M∑

i=p+1

CiuI
i − Fi (Bi )

−1 EiuI
i

=
p∑

i=1

S′
iuI

i − γiFiei +
M∑

i=p+1

SiuI
i

=
p∑

i=1

S′
iuI

i +
M∑

i=p+1

SiuI
i −

p∑
i=1

γiGi (25)

where Gi is

Gi = Fiei =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Iφ1,iei
−Iφ2,iei

...

Iφi,iei
...

−IφM,iei

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

Equation (25) can be re-written in matrix form as:

S̃uI + Gγ = −FB̃−1b (27)

where

G = [
G1 G2 G3 · · · Gp

]
γ = [−γ1 · · · −γp

]T

In order to separate uI and γ , an orthogonal projection

is defined as P = I − G
(
GTG

)−1
GT. By applying this

approach, Eq. (27) becomes:

PS̃uI = −PFB̃−1b (28)

Once Eq. (28) is solved, the constant vector γ is recovered
as:

γ =
(
GTG

)−1
GT

(
−FB̃−1b − S̃uI

)
(29)

The details of this approach is available in Ref. [35–37].
Calculating and storing matrix P explicitly may need long

time and large computer memory. However, it is not neces-
sary to do it because Gi is a sparse vector. Define V A

i as
a set which includes all the subdomains having interfaces
with subdomain Vi . These subdomains are called “adjacent”
subdomains herein. Therefore, Iφj,iei = 0 for ∀ j /∈ V A

i . If

j ∈ V A
i , the kth entry of Iφj,iei is:

(
Iφj,iei

)
k

=
{
0 k /∈ E A

j,i
1 k ∈ E A

j,i

where E A
j,i is defined as a set which includes all the indexes

of elements on Si j for subdomain Vi . Therefore, we have:

ni∑
k=1

(
Iφj,iei

)
k
·
(
Iφj,iei

)
k

= n j
i

wheren j
i is the total number of elements on Si j for subdomain

Vi .
The exact form of GT

i G j is:

GT
i G j =

M∑
k=1

(−1)δki+1
(
Iφk,iei

)T · (−1)δk j+1
(
Iφk, je j

)

=
M∑
k=1

(−1)δki+1+δk j+1
nk∑
l=1

(
Iφk,iei

)
l
·
(
Iφk, je j

)
l

(30)

If i = j ,

GT
i Gi =

M∑
k=1

(−1)2δki+2
nk∑
l=1

(
Iφk,iei

)
l
·
(
Iφk,iei

)
l

=
M∑
k=1

nk∑
l=1

(
Iφk,iei

)
l
·
(
Iφk,iei

)
l
=

M∑
k=1

nki = 2nIi (31)

If i 
= j and j ∈ V A
i ,

GT
i G j =

M∑
k=1

(−1)δki+1
(
Iφk,iei

)T · (−1)δk j+1
(
Iφk, je j

)

=
M∑
k=1

(−1)δki+1+δk j+1
nk∑
l=1

(
Iφk,iei

)
l
·
(
Iφk, je j

)
l

= (−1)δ j i+1+δ j j+1
n j∑
l=1

(
Iφj,iei

)
l

·
(
Iφj, je j

)
l
+ (−1)δi i+1+δi j+1
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1r

2r

intr

Fig. 2 Double shell model

ni∑
l=1

(
Iφi,iei

)
l
·
(
Iφi, je j

)
l

= −nij − n j
i = −2n j

i (32)

If i 
= j and j /∈ V A
i , GT

i G j = 0. Eqs. (30)–(32) indicate
that GTG is a p × p sparse matrix and can be constructed
directly by the number of elements on the interface. Usually,
GTG and its inverse are relatively small matrices. Therefore,

instead of storing matrix G,
(
GTG

)−1
is stored.

4 Algorithm

The overall algorithm starts with calculating the right-hand-
side vector of Eq. (27) with fast multipole method. The next
step is to call GMRES [50] to solve Eq. (28). For each iter-

ation, the matrix-vector multiplication S̃z
k · zk is needed,

where zk is an input vector of kth iteration.

1k

2k

3k

2

1

φ

φ

Fig. 3 Three block model

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 0.5 1 1.5 2 2.5 3

Po
te

nt
ia

l (
Te

m
pe

ra
tu

re
)

x

N=900

N=3600

N=8100

Analytical solution

Fig. 4 Solutions of potential along the x direction of the three block
model

Instead of calculating matrix S̃ explicitly, we use fast mul-
tipole method to calculate matrix-vector product Ezk first.
After that, solve the equation B̃wk = Ezk for wk . Two dif-
ferent methods are used in this paper:

Table 1 Numerical results of the double shell model

No. of ele-
ments (N )

Heat flux on inner boundary Temperature on interface Heat flux on interface Heat flux on outer boundary

Absolute
value

Relative error
(%)

Absolute
value

Relative error
(%)

Absolute
value

Relative error
(%)

Absolute
value

Relative error
(%)

360 −112.752 3.356 72.735 0.010 175.877 3.181 623.514 2.880

1584 −109.718 0.575 72.739 0.016 171.449 0.584 609.794 0.616

3672 −109.219 0.118 72.736 0.012 170.854 0.235 607.964 0.314

6624 −109.188 0.089 72.739 0.016 170.701 0.145 607.569 0.249

10,500 −109.086 0.004 72.747 0.028 170.627 0.101 607.698 0.270

Analytical solution −109.091 72.727 170.454 606.0606
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Fig. 5 Long-bar model divided
into 72 and 576 subdomains

Table 2 Efficiency of different methods for long-bar models

Single domain FMM BEM Solve Eq. (9) directly by using FMM 

N Time Iteration N M Time Iteration 

7600 24s 18 21600 72 1m58s 129 

30400 2m52s 19 86400 72 18m32s 324 

121600 20m53s 34 172800 576 >1h >500 

486400 2h38m 55 691200 576 >4h >500 

New formulation-LU New formulation-FMM 

N M Time 
Memory 

(MB) 
Iteration N M Time 

Memory 

(MB) 
Iteration 

21600 72 25s 1107 22 21600 72 9m2s 1067 22 

86400 72 1m47s 1902 26 86400 72 1h15m 1114 26 

172800 576 3m31s 1657 27 172800 576 1h19m 1229 27 

691200 576 17m11s 8394 34 691200 576 8h20m 1956 37 

(a) Calculate B̃i by using the conventional approach. Use
LU decomposition to solve B̃iwk

i = Eizki . This can be
done effectively, if the size of B̃i is moderate (e.g., less
than ten thousands for current PCs). This approach is
called as “New Formulation-LU”.

(b) Use fast multipole method to solve B̃iwk
i = Eizki itera-

tively, if the size of B̃i is large. This approach is called
as “New Formulation-FMM”.

The next step is to substitute wk = B̃−1Ezk into the
expression of S (Eq. (16)) and complete the matrix-vector
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Table 3 Errors of long-bar models with new formulation-LU

N M Error (%)

φ q

21,600 72 0.131 6.579

86,400 72 0.066 4.965

172,800 576 0.118 6.797

691,200 576 0.061 5.628

product as Szk = Czk − Fwk . Note that C and F are sparse
matrices. Therefore, both C and F are not stored explic-
itly. Only the locations of nonzero elements are stored. The
last step of each iteration is to apply the projection P for
those subdomains without Dirichlet boundary conditions.
After Eq. (28) is solved, the original solution is obtained as
λ′ = U−1

A u′. For the subdomain without Dirichlet boundary
condition, calculate the constant γ and recover the original
solution.

5 Numerical results

Several numerical examples are given to show the accuracy
and efficiency of the new formulation of domain decompo-
sition or multidomain BEM derived in this paper. For the

first two cases, only LU decomposition is used to solve
B̃wk = Ezk . Triangular constant elements are used in the
discretization and all integrals are done analytically. The tol-
erance for convergence of the GMRES iterative solver is set
at 1.0E−6. The numbers of CPU cores used in the first two
examples are equal to the numbers of subdomains of the
corresponding models. For the long-bar model and Menger
sponger model, 12 CPU cores are used. For the single fuel
cell model, 12 CPU cores are used as well. For the model
with 25 fuel cells, 32 CPU cores are used.

5.1 A double shell model

The first case is a double-shell model. Two shells with dif-
ferent heat conduction coefficients are combined together.
There are two subdomains in this model. The inner bound-
ary of the outer shell attaches to the outer boundary of the
inner shell. Figure 2 shows the geometry of the model. φ1,
q1 and φ2, q2 are the temperature and normal heat flux
on the inner and outer boundaries, respectively. k1 and k2
are the heat conduction coefficients of the inner and outer
shells, respectively. r1 and r2 are the radii of inner and outer
boundaries of the model. rint is the radius of the interface.
This is an axisymmetric problem and the analytical solu-
tion of the temperature field inside the shells can be found
to be:

Fig. 6 Menger sponge model
divided into 20, 400 and 8000
subdomains
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Table 4 Efficiency of different methods for solving Menger sponge models

Single domain FMM BEM Solve Eq. (9) directly by using FMM 

N Time Iteration N M Time Iteration 

3600 28s 28 6000 20 21s 59 

14400 2m3s 26 24000 20 1m37s 75 

52800 16m33s 50 120000 400 8m24s 85 

211200 1h41m 85 480000 400 40m52s 105 

 2400000 8000 2h43m 98 

New formulation-LU New formulation-FMM 

N M Time 
Memory 

(MB) 
Iteration N M Time 

Memory 

(MB) 
Iteration 

6000 20 10s 1093 19 6000 20 1m43s 1047 19 

24000 20 38s 1308 26 24000 20 9m52s 1131 25 

120000 400 3m23s 1452 34 120000 400 45m55s 1151 34 

480000 400 15m26s 5760 44 480000 400 4h24m 1471 45 

2400000 8000 1h03m 9563 41 2400000 8000 >12h  - 

φ(r) =
{ A1

r + B1 r1 ≤ r ≤ rint
A2
r + B2 rint ≤ r ≤ r2

(33)

where

A1 = φ1 − φ2((
1
r1

− 1
rint

)
− k1

k2

(
1
r2

− 1
rint

)) ,

A2 = φ1 − φ2(
k2
k1

(
1
r1

− 1
rint

)
−
(

1
r2

− 1
rint

)) ,

B1 = φ1 − A1

r1
, B2 = φ2 − A2

r2
.

From Eq. (33), we obtain the analytical solution of the heat
flux along the radial direction:

q =
{

−k1
A1
r2

r1 ≤ r ≤ rint
−k2

A2
r2

rint ≤ r ≤ r2
. (34)

Assume r1 = 0.3, r2 = 0.5, and rint = 0.4, and the heat
conduction coefficients k1 = 1.0 and k2 = 0.5. The temper-
ature on the inner and outer boundary are given as: φ1 = 50
and φ2 = 100.

Table 1 shows the numerical results of the heat flux and
temperature on the interface and boundary. It can be seen that
the numerical results converge to the analytical solution as the
number of elements of the BEM model increases. This test
shows that the multidomain BEM is effective and accurate.

5.2 A block model

The next example is three connected blocks with different
heat conduction coefficients (Fig. 3). There are three subdo-
mains in this model. We assume k1 = 1.0, k2 = 0.5 and
k3 = 1.5. The boundary conditions applied are: φ1 = 1 and
φ2 = −1 at the two ends. Figure 4 shows that the analytical
solution and numerical results of the potential along the x
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Fig. 7 Single-domain and multi-domain models of a single solid oxide fuel cell

direction match very well with each other for different num-
ber of elements (N ) used. This further verifies the proposed
multidomain BEM formulation and its implementation.

5.3 A long-bar model

Next, the efficiency of the new proposed formulation is
compared with the traditional fast multipole BEM for single-
domain problems. Figure 5 shows a long-bar model divided
into 72 and 576 subdomains. All the subdomains have the
samematerial property. The boundary condition is also given
as: φ1 = 1 and φ2 = −1 at the two ends as shown in Fig. 5.

Table 2 shows the elapsed wall-clock time and the number
of iterations for different approaches. It can be seen that solv-
ing Eq. (9) directly using fast multipole method needs most
iterations to obtain the solution. With Schur complement
approach, the number of iterations reduce significantly and
is smaller than that of the traditional single-domain fast mul-
tipole BEM for most cases. When we compare the efficiency
of the two different approaches of solvingBwk = Ezk , using
fast multipole method takes much longer time than using the
LU decomposition. The reason is that fast multipole method
needs some iterations to solve Bwk = Ezk for every matrix-
vector multiplication Szk . However, for LU decomposition,
the matrix B only needs to be decomposed once.

Table 3 shows the error of the numerical results of the new
proposed formulation with LU decomposition. The error is
calculated as:

error =
√

‖unum − uexact‖2
‖uexact‖2

.

For all cases, the errors of φ are smaller than 1% and the
errors of q are close to 5%, which demonstrates the accu-
racy of the new proposed formulation. It is worth to note that
the error of q is higher than that of φ. This is the issue of
using constant elements because constant elements cannot
give the results of q accurately around the corners and edges
of a model.

5.4 Menger sponge models

In this example, the new formulation of the multidomain fast
multipole BEM is used to solve the potential problem of a
Menger spongemodel (Fig. 6). The sponger model is divided
into 20, 400 and 8000 subdomains. Each subdomain has the
same property. The boundary condition is given by imposing
φ = x + y + z on all boundary surfaces and the normal
derivative of potential q is sought. The efficiencies of the
four different approaches are compared in

Table 4, which shows that using Eq. (9) directly to solve
the problem still needs most iterations and Schur comple-
ment reduces the number of iterations significantly. The
approach with LU decomposition still takes less time but
needs much larger memory storage than the one with fast
multipole method. The largest BEM model solved has 2.4
million unknowns and solved in 1 h 3 min on a multicore
CPU computer at Ohio Supercomputer Center.

5.5 Solid oxide fuel cell models

In this example, the new formulation of the multidomain fast
multipole BEM is used to solve large-scale heat conduction
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Fig. 8 Temperature distributions of the single fuel cell models with three different methods

problems of the solid oxide fuel cells. The geometry of a
single cell is shown on the left of Fig. 7. The length of the
single cell is 0.3m. The diameters of anode and cathode are
0.15 and 0.084m, respectively. Both the width and height
of the single cell are 0.21m. Notice that there are 1000 side
holes on both the inner and outer surfaces of the cell, which
makes themodeling especially challenging for both the BEM
and FEM.

First, the heat conduction problem of a single fuel cell
is calculated by using the new multidomain fast multipole
BEM, conventional single-domain fast multipole BEM and
finite element method (ANSYS®). The multidomain model

of a single fuel cell is created by dividing the cell into 20
subdomains along Y axis, which is shown on the right of
Fig. 7. Each subdomain has 13,534 elements. The single-
domain BEM model has a total of 214,136 elements. The
finite element model has a total of 365,339 linear tetrahedron
elements. The boundary conditions of themodel are given as:
linearly distributed temperature on the anode from the near
end to the far end with the range of 1000–750K; linearly
distributed temperature on the cathode from the near end to
the far end with the range of 600–400K; zero heat flux on
all the other surfaces. The heat conduction coefficient is 90.5
W/(m.K).
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Fig. 9 Heat flux distributions of the single fuel cell models with two the different methods
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Fig. 10 Temperature distribution along Edge A

Figures 8 and 9 show the contour plots of the computed
temperature and heat flux distributions on the surfaces of the
cell. Figure 10 shows the computed temperature variations
along EdgeA (the narrow top surface, shown in Fig. 7). From
Figures 8 and 10, it is observed that the temperature distri-
butions obtained by the three different methods agree very
well to each other. From Fig. 9, it can be seen that the heat
flux distributions obtained by the single-domain FMMBEM
and newmulti-domain FMMBEMare also very close to each
other. In Fig. 10, the difference between the results of the new
multidomain fast multipole BEM and the results of the con-
ventional single-domain fast multipole BEM is within 1%.
The difference between the results of the new multidomain
fast multipole BEM and the results of the FEM is within 3%.
The difference in the results of the new multidomain BEM
and the single domainBEM ismost likely caused by the addi-
tional elements or discretization introduced on the interfaces.
The difference in the results of the two BEM approaches and
the FEM (Fig. 10) is most likely a convergence issue. Due to

the limitation of the ANSYS® academic license and the PC
hardware, further refined FEM models were not attempted.

Next, a larger BEM model with 25 fuel cells is calcu-
lated by using the new multidomain fast multipole BEM.
The boundary conditions are the same as the single fuel cell
model. The total number of elements (DOFs) is 6,767,000.
The entire model is divided into 500 subdomains and each
subdomain has 13,534 elements. LU decomposition is used
for solvingBwk = Ezk . Themodel is solved on a clusterwith
32 cores at the Ohio Supercomputer Center and it took about
2 h 56 min to solve the BEM model using the new multido-
main fast multipole BEM (with 43 iterations and a tolerance
of 10E−4). The temperature distribution of the model are
shown in Fig. 11. The conventional single-domain fast mul-
tipole BEM was also attempted in solving this large model.
However, after using 96 CPU hours on the same cluster, it
was terminated by the system and failed to deliver the results.
The iteration number is 43 and residual is still at 0.25E−2
when the job was stopped. Due to limitations on request-
ing longer CPU times on the cluster, no further run was
attempted. This partially verified the fact the new multido-
main BEM approach proposed in this paper can significantly
improve the conditioning of the system of equations and thus
can significantly accelerate the solutions of large-scale BEM
models.

6 Discussions

In this paper, a new formulation of multidomain fast mul-
tipole BEM is proposed. Unlike the traditional BEM for
single-domain problems, themultidomainBEMdecomposes
the entire domain into some subdomains. Additional inter-
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Fig. 11 Temperature
distribution on surfaces of the
5×5 fuel cell model (with a total
number of 6,767,000 elements)

face conditions are added to relate the variables on the
interface. This approach increases the total number of ele-
ments and the coefficientmatrix becomes larger (SeeEq. (9)).
Instead of solving the large linear system of equations
directly, we partition and decompose the entire coefficient
matrix. By eliminating part of the unknown variables, solv-
ing the original entire linear system turns out to be equivalent
to solving a smaller linear system with Schur comple-
ment.

The numerical results show that, the new multido-
main fast multipole BEM is accurate and solutions with
iterative solvers can be obtained using fewer iterations
compared to solving Eq. (9) directly. Compared to the
traditional single-domain fast multipole BEM, the new mul-
tidomain fast multipole BEM also uses fewer iterations
for most cases. Based on the derivations shown in this
paper, the new formulation is suitable for parallel com-
puting, which reduces the communication between differ-
ent subdomains to the minimum. It is demonstrated that
the new multidomain fast multipole BEM is capable of
solving large-scale problems with complex geometries effi-
ciently.

The key step to achieve the efficiency of the new formu-
lation is how to solve B̃wk = Ezk . In this study, we use
two different methods. One is to use conventional BEM to

calculate B̃ and store it. The LU decomposition is called
later to solve B̃wk = Ezk . Another approach is to apply
fast multipole method to solve it. However, both methods are
not perfect. With the first approach, the new multidomain
fast multipole BEM can solve the problem quickly. How-
ever, it requires large amount of computer memory because
it requires storing the matrix B̃ of each subdomain. The
second approach does not need large amount of computer
memory. However, it takes longer time to obtain the solu-
tion due to the iterative solution process. A potential and
new approach is to use a fast direct solver which does not
need to store the entire coefficient matrix or obtain the solu-
tion iteratively. Another possible approach to improve the
efficiency of the new multidomain fast multipole method
is to improve the conditioning of matrix S̃ by using the
re-numbering technique in Ref. [48] or a more efficient
preconditioner. Extensions of the newmultidomain fast mul-
tipole BEM to solving large-scale elasticity, acoustic and
elastodynamic problems will be straightforward and can
potentially lead the BEM to interesting areas of new appli-
cations.
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