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In this paper, a fast multipole boundary element method (BEM) is presented for modeling
crack propagation in two-dimensional (2-D) linear elastic solids. A dual boundary integral
equation (BIE) formulation using a linear combination of the displacement and traction
BIEs is applied to model cracks in this BEM. Constant boundary elements are used to dis-
cretize the BIEs and the fast multipole method (FMM) is applied to accelerate the solution
of the BEM system of equations. Numerical examples of multiple crack propagation in 2-D
elastic domains and under cyclic loading, including perforated plates with multiple holes
and cracks, are presented to show the effectiveness and efficiency of the developed fast
multipole BEM.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The boundary element method (BEM) based on the boundary integral equation (BIE) for elasticity theory [1] has been
applied to solve crack problems for more than three decades (see, e.g., some reviews in Refs. [2–9]). The multidomain
BEM was first introduced to solve crack problems [10] using only the displacement (singular) BIE, in which a cracked body
is divided into subdomains using artificial boundaries connecting the cracks. In the late of 1980s and early 1990s, the traction
(hypersingular) BIE [11–17] was introduced and the displacement discontinuity (or jump) across the crack surfaces is used
as the primary unknown variable to solve the crack problems based on the one crack surface model. This one crack surface
formulation using the traction BIE only has been shown to be equivalent to the displacement discontinuity method (DDM)
proposed by Crouch in 1976 [18], when constant elements are applied for both 2-D and 3-D cases [19–21]. Since then, var-
ious dual BIE formulations [22–28] using different combinations of the displacement and traction BIEs have been applied to
solve crack problems in more general settings. The BEM has also been applied successfully in modeling interface cracks and
cracks in functionally-graded materials (e.g., [29–33]). More comprehensive reviews of the BEM for modeling crack problems
can be found in Refs. [5,6,9].

Although the BEM is accurate in solutions and efficient in meshing for solving crack problems, the computational effi-
ciency had been a huge hurdle for the method for a long time, as the BEM system of equations is dense and nonsymmetrical.
With a direct equation solver, both the computing time and memory storage are of at least O(N2) complexity (with N being
the number of unknowns). To improve the computational efficiency, the fast multipole method (FMM) pioneered by Rokhlin
and Greengard [34–36] has been introduced in the BEM to solve the crack problems. Many large-scale BEM models of mul-
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tiple cracks have been solved successfully using the fast multipole BEM in static and dynamic load cases [37–45], as well as
in the modeling of crack propagations [46]. Detailed reviews and discussions of the fast multipole BEM can be found in Refs.
[9,37,47,48].

In this work, a new fast multipole BEM for modeling large-scale 2-D linear elastic fracture mechanics problems is pre-
sented. A dual BIE formulation using a linear combination of the displacement and traction BIEs is applied on all boundaries
of the problem domain, including surfaces of the cracks. This dual BIE formulation was originated by Burton and Miller [49]
for solving exterior acoustic wave problems to remove the fictitious eigenfrequencies in the BIE solutions, which has also
been found very effective in solving crack problems in the context of potential theory, acoustics and elastodynamics
[26,27,50,51]. Due to the use of the hypersingular BIE which requires C1 continuity of the field at the collocation point
[52], higher-order elements or nonconforming elements have been applied in those works [26,27,50,51]. In this work, how-
ever, constant boundary elements are used to discretize the dual BIEs. Good numerical results have been obtained in deter-
mining the stress intensity factors (SIFs) using constant elements for 2-D crack problems [45]. This work will further show
that the dual BIE formulation discretized with constant elements can also be applied successfully to model crack propagation
problems with the fast multipole BEM. Numerical examples of propagation of multiple cracks in perforated plates with many
holes are given in this paper to show the effectiveness and efficiency of the developed fast multipole BEM.

2. BIE formulation

We first review the direct BIE formulation for modeling crack problems under static loading. We start with the following
direct displacement BIE (conventional BIE or CBIE) for a 2-D elastic body containing cracks [1]:
1
2
uðxÞ ¼

Z
S
½Uðx; yÞtðyÞ � Tðx; yÞuðyÞ�dSðyÞ; 8x 2 S; ð1Þ
where S is the entire boundary of the problem domain (including all crack surfaces and the outer boundary of the domain, if
present); x and y are the source point and field point, respectively; u and t are the displacement and traction vector, respec-
tively; U and T are 2 � 2 matrices from the displacement and traction kernels in the Kelvin’s solution, respectively [37]. It is
assumed that the surface is smooth at the source point x. For completeness, we list the expressions for the two kernels (U
and T) in index notation for the plane strain condition [37]:
Uijðx; yÞ ¼ 1
8plð1� mÞ ð3� 4mÞdij log 1

r

� �
þ r;ir;j

� �
; ð2Þ

Tijðx; yÞ ¼ � 1
4pð1� mÞr

@r
@n

½ð1� 2mÞdij þ 2r;ir;j� � ð1� 2mÞðr;inj � r;jniÞ
� �

; ð3Þ
in which l is the shear modulus, m is Poisson’s ratio, r is the distance between the source point x and field point y,
ð Þ;i ¼ @ð Þ=@yi, dij is the Kronecker d symbol, and ni is the direction cosine of the normal.

For a crack with two surfaces denoted as Sþ and S� (Fig. 1), if we let S� collapse onto Sþ to form a one surface model for the
crack, the displacement BIE (1) collocated on the crack surface Sþ is reduced to the following [26,53]:
1
2
RuðxÞ ¼

Z
Sþ
½Uðx; yÞRtðyÞ � Tðx; yÞDuðyÞ�dSðyÞ; 8x 2 Sþ; ð4Þ
where Du ¼ ujSþ � ujS� , Ru ¼ ujSþ þ ujS� , and Rt ¼ tjSþ þ tjS� . Additional terms from integrals on the outer boundary or other
crack surfaces may appear on the right-hand side of the equation. Note that Eq. (4) is insufficient when it is applied alone to
solve a crack problem, as it contains both the displacement sum and displacement discontinuity across the crack surfaces
(There are two unknown functions). Therefore, the traction (hypersingular) BIE was introduced in late of 1980s in the
BEM for modeling crack problems. The direct traction BIE (hypersingular BIE or HBIE) is [7,22,37]:
1
2
tðxÞ ¼

Z
S
½Kðx; yÞtðyÞ �Hðx; yÞuðyÞ�dSðyÞ; 8x 2 S; ð5Þ
where K and H are 2 � 2 matrices from the two new kernels in the Kelvin’s solution [37]. The two kernels (K and H) for the
case of plane strain are given in the following [37]:
n-
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Fig. 1. A crack in a 2-D elastic domain (crack surface S ¼ Sþ [ S�).
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Kijðx; yÞ ¼ 1
4pð1� mÞr ½ð1� 2mÞðdijr;k þ djkr;i � dikr;jÞ þ 2r;ir;jr;k�nkðxÞ; ð6Þ
Hijðx; yÞ ¼ l
2pð1� mÞr2 2

@r
@n

½ð1� 2mÞdikr;j þ mðdijr;k þ djkr;iÞ � 4r;ir;jr;k� þ 2mðnir;jr;k þ nkr;ir;jÞ
�

�ð1� 4mÞdiknj þ ð1� 2mÞð2njr;ir;k þ dijnk þ djkniÞ
�
nkðxÞ: ð7Þ
When S� is collapsed onto Sþ to form a one surface model for a crack, the traction BIE (5) is reduced to the following
[7,13–15,24–27]:
1
2
DtðxÞ ¼

Z
Sþ
½Kðx; yÞRtðyÞ �Hðx; yÞDuðyÞ�dSðyÞ; 8x 2 Sþ; ð8Þ
where Dt ¼ tjSþ � tjS� . Traction BIE (8) is ideal for solving the displacement discontinuity (or jump) for crack problems
(Fig. 2a), which can then be applied to calculate the stress intensity factors, when the traction is specified on the crack sur-
faces or load at other boundaries are given. For pure crack problems, for example, multiple cracks in an infinite elastic
domain (no outer boundary), this approach (Fig. 2a) using the HBIE (8) only is also more efficient as it contains only displace-
ment discontinuity and only one surface needs to be discretized for each crack. Therefore, the number of unknowns can be
reduced by one half in the BEM based on HBIE (8).

However, for more general cases, such as structures containing both cracks and voids, and within a finite domain with
loads applied on the outer boundary, general forms of the displacement BIE (1) and traction BIE (5) need to be applied. This
is the emergence of the so called dual BIE formulations for crack problems [5–7,26–28]. Fig. 2b shows the most commonly
used dual BIE approach [25] in the literature for modeling cracks using the two-surface models. In this approach, the dis-
placement BIE (CBIE) is collocated on one side of the crack, and the traction BIE (HBIE) is collocated on the other. The CBIE
is also applied on other non-crack surfaces. This dual BIE approach has been applied in many works for modeling crack prop-
agation problems.

Another dual BIE approach is shown in Fig. 2c, which uses a linear combination of the CBIE and HBIE as follows:
CBIEþ bHBIE ¼ 0; ð9Þ
where b is a coupling coefficient. This dual BIE formulation, which is applied to the entire boundary (including all crack sur-
faces), was originally proposed by Burton and Miller [49] for solving exterior acoustic wave problems to overcome the fic-
titious eigenfrequency difficulties in the BIEs. We have applied this dual BIE formulation in solving crack problems in 3-D
elastodynamics [27] and 2-D elastostatics for calculating SIFs [45]. In those earlier studies, the coupling coefficient b was
chosen to be a constant for a given BEM model. This dual BIE approach is easier to implement, as one does not need to dis-
tinguish the two crack surfaces, and the other boundary surfaces. The same dual BIE formulation is applied uniformly
throughout the model, and therefore the BEM input data is also simplified. In addition, better conditioning of the BEMmatri-
ces can be expected, as the scales of the coefficients computed from the two crack surfaces are in the same order. This is in
contrast to the dual BIE using the CBIE on one side of the crack and the HBIE on the other (Fig. 2b), where the coefficients can
have differences of several orders in values if real material constants are used in the BEM model.

In this study, we propose a new adaptive coefficient b in the dual BIE formulation (9), which is found to be more efficient
than using a constant b. The following formula is used to determine the value of b at each collocation point x:
b ¼ bðxÞ ¼ hðxÞ
E

; ð10Þ
where hðxÞ is the size of the element on which the collocation point x is located, and E is the Young’s modulus. The rationale
behind this choice is that traction BIE (5) is obtained by taking the derivatives of the displacement BIE (1) and multiplying
the results by the Young’s modulus tensor. Therefore, in order to make the two terms in dual BIE (9) have the same unit and
order of magnitude, choice of b as given in Eq. (10) seems to be a natural one.

Constant line elements are applied in the discretization of dual BIE (9) for modeling cracks in 2-D, and the solution of the
BEM system of equations is accelerated by the fast multipole method (see Refs. [37,54] for details). The constant elements
have been shown to be able to provide results of the SIFs within 1% of accuracy for various verification cases [45]. The use of
constant elements with the traction BIE has also been shown [19–21] to be equivalent to the displacement discontinuity
method [18], which has been used widely in rock mechanics for modeling cracks. Although constant elements have lower
accuracy compared with the linear or quadratic elements, they do offer many advantages, including: (1) They are easier
to implement as analytical integration of all integrals are readily available in the literature (e.g., Ref. [37]) and therefore
no numerical integration is needed; (2) The smoothness requirement on the HBIE [52] is satisfied at the collocation points;
and (3) No need to deal with any corner problems. In this study, the crack-tip opening displacement (CTOD) is used in eval-
uating the SIFs, which are used to determine the propagation direction of each crack tip. For completeness, the formulas in
fracture mechanics used in this work are summarized in the subsequent section.
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Fig. 2. Three different approaches in modeling cracks by using the BIEs.
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3. Formulas for determining crack propagation direction

First, the following formulas are used to compute the stress intensity factors:
KI ¼ l
1þ j

ffiffiffiffiffiffiffi
2p
r

r
Dv ; KII ¼ l

1þ j

ffiffiffiffiffiffiffi
2p
r

r
Du; ð11Þ
for mode I and mode II, respectively, in which j ¼ 3� 4m for plane strain, and j ¼ ð3� mÞ=ð1þ mÞ for plane stress. These for-
mulas are evaluated at nodes near the crack tip and in the local coordinate system xy (Fig. 3).

Then, the crack propagation angle (turning angle) h (Fig. 3) is determined from the following equation:
KI sin hþ KIIð3 cos h� 1Þ ¼ 0: ð12Þ

We apply the following formula for h, which is a solution of the above equation:
h ¼ 2 tan�1
KI �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

I þ 8K2
II

q
4KII

0
@

1
A ¼ 2 tan�1 �2KII

KI þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

I þ 8K2
II

q
0
B@

1
CA: ð13Þ
The second expression in Eq. (13) is good when either KI ¼ 0 or KII ¼ 0 (but not both).
The effective stress intensity factor Keff of each crack tip is given by
Keff ¼ KI cos3
h
2

� �
� 3KII cos2

h
2

� �
sin

h
2

� �
; ð14Þ
at each crack propagation step. If the maximum effective SIF is larger than the material toughness KIC , then the analysis is
stopped since unstable crack propagation will occur.

Under cyclic loading with constant amplitude, the fatigue crack growth rate can be determined by using the Paris law
[55]:
da
dN

¼ CDKm; ð15Þ
where a is the crack length, N is the number of load cycles, and C and m are two material constants.
In this study, we assume that the range of the applied cyclic load is from 0 to P (maximum value of the load). That is,

Kmax ¼ Keff ; and Kmin ¼ 0, and therefore DK ¼ Keff . Then, from the Paris law (Eq. (15)), the crack propagation length of each
crack tip can be calculated using the following relation for multiple crack cases:
Dai ¼
Ki

eff

Kmax
eff

 !m

Damax; ð16Þ
where Dai is the propagation length of the ith crack tip, Ki
eff is the effective SIF of the ith crack tip, Kmax

eff is the maximum value

of all Ki
eff , and Damax is the propagation length of the crack tip with Kmax

eff . In this study, Damax is fixed and given for each anal-
ysis. In general, the chosen value of Damax should be smaller than 1/10th of the value of the original crack length, in order to
have converged results of the computed crack propagation path [46,56,57]. With obtained Dai and h, each crack tip propa-
gates accordingly in the following increment.
Element 

Node 

x 

y Δa

θ

Fig. 3. Constant elements at a crack tip.
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Six new elements (three on each crack surface) are added at each propagated crack tip for the following calculation. In
addition, if the distance between a crack tip and the boundary of the domain or another crack surface is estimated to be
smaller than the propagation length of that crack tip, then that crack tip will not propagate in the following increments.
4. Numerical examples

Several examples of predicting propagation of cracks in 2-D elastic bodies are presented in this section to demonstrate the
effectiveness and efficiency of the developed fast multipole BEM. In all the examples, the dual BIE (Fig. 2c) is applied with an
adaptive b (Eq. (10)). Plane stress condition is assumed. The tolerance for convergence of the iterative solver used in the FMM
is chosen to be 1.0E-5. The solutions were done on a Dell XPS 8900 desktop PC with an Intel� CoreTM i7-6700 processor and
16 GB RAM.
4.1. A plate with a center crack

A rectangular plate with a center crack of 8 mm long and an inclination of 45 deg, as shown in Fig. 4, is considered first.
The plate is subjected to a cyclic tension load of 10 MPa on the top and constrained on the bottom. The Young’s modulus is
72 GPa, Poisson’s ratio is 0.33, fracture toughness is 3288.76 N=mm1:5, and Damax is chosen to be 0.5 mm. There are 500 con-
stant elements in the BEM model initially, of which 100 elements are on the crack surfaces. The predicted crack propagation
paths after 35 incremental steps when the crack reaches the boundary of the plate using the FMM BEM and conventional
BEM are shown in Fig. 5a and b, respectively, which are in good agreement, as expected. Fig. 5c shows the stress contour plot
of ry after 16 increments of the propagation.
4.2. A plate with two edge cracks

In this example, a rectangular plate with two 2 mm long edge cracks, which are offset by 2 mm vertically on the opposite
sides, is considered (Fig. 6). A tension load of 10 MPa is applied on the top of plate, and the plate is supported on the bottom.
The Young’s modulus is 72 GPa, Poisson’s ratio is 0.33, fracture toughness is 3288.76 N=mm1:5, and Damax is 0.2 mm. The BEM
mesh has 500 elements initially with 50 elements on each crack. Fig. 7a and b show the predicted propagation paths of the
cracks after 58 increments of the cracks using the FMM BEM and conventional BEM, respectively. Again, both are in good
agreement and they are consistent with results reported in the literature [58] or observed for similar cases. Fig. 7c shows
the stress contour plot of ry after 27 increments of the propagation.
4.3. A cracked plate with one hole

A rectangular plate with one hole of diameter 10 mm and one 6 mm long edge crack, as shown in Fig. 8, is studied next. A
tension load of 10 MPa is applied on the top of plate, and the plate is fixed on the bottom. The Young’s modulus is 72 GPa,
Poisson’s ratio is 0.33, fracture toughness is 3288.76 N=mm1:5, and Damax is 0.7 mm. The BEM model has 500 elements ini-
tially with 50 elements on the crack and 50 elements on the hole. Fig. 9 shows comparison of the result of the propagation
path of the crack after 45 increments of the crack using the FMM BEM and compared with the test result and XFEM result
reported in Ref. [59]. Very good agreement among the BEM, experimental and XFEM results are observed.
4.4. A cracked plate with four holes

A rectangular plate with four holes of diameter 10 mm and one 6 mm long edge crack, as shown in Fig. 10, is studied next.
The plate is subjected to a tension load of 10 MPa and supported on the bottom. The Young’s modulus is 72 GPa, Poisson’s
ratio is 0.33, fracture toughness is 3288.76 N=mm1:5, and Damax is 0.8 mm. The mesh has 650 elements initially with 50 ele-
ments each on the crack and on each hole. Fig. 11 show the results of crack propagation path after 70 increments using the
FMM BEM and conventional BEM, respectively. Fig. 11c shows the stress contour plot of ry after 68 increments of the
propagation.
4.5. A cracked plate with three holes

A rectangular plate [56,57] with three holes of diameter 12.7 mm and one 38.1 mm long edge crack is analyzed. The plate
is subjected to a point load of 4.448 kN on the center of the top edge and boundary conditions shown in Fig. 12. The Young’s
modulus is 2.068 GPa, Poisson’s ratio is 0.3, fracture toughness is 81.016 GPa

ffiffiffiffiffi
m

p
and Damax is 2.2 mm. The initial mesh has

2340 elements with 100 elements on the crack and 200 elements on each hole. Fig. 13 shows the results of crack propagation
path after 41 increments using the FMM BEM and compared with the test result and BEM result reported in Refs. [56,57].
Good agreement is observed in this case.



80
 m

m
 

40 mm 

10 MPa 

Fig. 4. A plate with a center crack (inclination of 45 deg and length of 8 mm).
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4.6. A perforated plate with one edge crack

A perforated plate with 30 holes of diameter 10 mm and one 10 mm long edge crack, as shown in Fig. 14, is analyzed
under a tension load of 10 MPa on the top. The plate is simply supported on the bottom. The Young’s modulus is 72 GPa,
Poisson’s ratio is 0.33, fracture toughness is 3288.76 N=mm1:5 and Damax is 0.6 mm. The initial mesh has 6900 elements with
200 elements on each hole and 100 elements on the crack. Fig. 15 shows the results of the crack propagation path using both
the FMM BEM and conventional BEM. For the FMM BEM it takes 23 min (total elapsed time) to finish the calculation for 100
Fig. 5. Crack propagation path of the plate with a center crack: (a) FMM BEM; (b) conventional BEM; and (c) stress contour plot (after 16 increments).
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Fig. 6. A plate with two edge cracks (length of 2 mm).
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increments (Fig. 15a), while for the conventional BEM it takes 30 min to finish the calculation for 100 increments (Fig. 15b,
on the Dell XPS 8900 desktop PC. The final crack propagation path was obtained using the FMM BEM (Fig. 15c), which is
bended downward slightly. This may due to the fact that the boundary conditions are not symmetric about the center line
in the vertical direction, although the geometry is symmetric.
Fig. 7. Crack propagation path of the plate with two edge cracks: (a) FMM BEM; (b) conventional BEM; and (c) stress contour plot (after 27 increments).



10 MPa 

16
0 

m
m

 

40 mm 

10
 m

m
 

Fig. 8. A plate with one hole (radius of 5 mm) and one edge crack (length of 6 mm).
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4.7. A perforated plate with two edge cracks

In this example, the setup is the same as the previous one, except for the position and number of cracks. Two cracks are
located on the edges of two holes as shown in Fig. 16. Fig. 17 shows the results of the crack propagation paths after 45 incre-
ments using both the FMM BEM and conventional BEM. The wall-clock times used for solving the models with the FMM BEM
and conventional BEM are 9 min and 15 min, respectively.
Fig. 9. Crack propagation path of the cracked plate with one hole: (a) FMM BEM result (after 45 increments); (b) test sample [59]; (c) test result [59]; (d)
XFEM result [59].
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Fig. 10. A plate with four holes (radius of 5 mm) and one edge crack (length of 6 mm).

Fig. 11. Crack propagation path of the cracked plate with four holes: (a) FMM BEM; (b) conventional BEM; and (c) stress contour plot (after 68 increments).
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4.8. A perforated plate with three edge cracks

A perforated plate with 110 holes of diameter 10 mm and three 10 mm long edge cracks, as shown in Fig. 18, is considered
next. The plate is subjected to tension of 100 MPa on the top edge and supported on the bottom edge. The Young’s modulus is
2.1 GPa, Poisson’s ratio is 0.3, fracture toughness is 3288.76 N=mm1:5 and Damax is 0.5 mm. The value of m in the Paris law
and used Eq. (16) is set at 2. The mesh has 23900 elements with 200 elements on each hole and 100 elements on each crack.
The effective stress intensity factor exceeds the material toughness at 224 increment and the program stops using 227 min of
wall-clock time. Fig. 19 shows the final crack propagation paths calculated by the FMM BEM. The conventional BEM cannot
solve the model because of memory size of the PC used.
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Fig. 12. A plate with three holes (diameter of 12.7 mm) and one edge crack (length of 38.1 mm) and under a bending load [56,57].

Fig. 13. Crack propagation path of the cracked plate with three holes: (a) FMM BEM result; (b) test result [56,57]; (d) conventional BEM result [56,57].

10 Y.J. Liu et al. / Engineering Fracture Mechanics 172 (2017) 1–16
4.9. Multiple randomly distributed and oriented cracks in an infinite domain

Finally, 100 cracks which are randomly distributed inside a square region in the 2-D infinite domain (Fig. 20) are consid-
ered to show the capability of fast multipole BEM in dealing with multiple cracks. The crack length is 20 mm for all cracks.
The size of the square region is 800 mm by 800 mm. A remote tension load of 10 MPa is applied in the vertical direction. For
the domain, the Young’s modulus is 2.1 GPa, Poisson’s ratio is 0.3, material toughness is 3288.76 N=mm1:5,m = 2, and Damax is
1.2 mm. There are 100 elements on each cracks; 10000 elements in total. Fig. 21 shows the results of 100 increments using
the FMM BEM and obtained with a total elapsed time of 5 h 33 min on the Dell XPS 8900 desktop PC. It is noticed that some
of the cracks which are almost parallel to the load direction do not propagate in this case, while those perpendicular to the
load direction propagate the most.
5. Discussions

A fast multipole BEM for solving 2-D multiple crack propagation problems is presented in this paper. The BEM is based on
a dual BIE formulation which uses a linear combination of the displacement BIE and the traction BIE. This dual BIE formu-
lation is applied on all the boundaries of the problem domain and therefore it is easier to implement and use in practice. An
adaptive approach is applied in determining the coupling coefficient in this dual BIE formulation, which can provide better
conditioning for the BEM system of equations. Constant line elements are applied to discretize the BIE equations (which is
equivalent to the DDM [18,19,21]). The developed method is validated or verified by using several example problems. The
fast multipole BEM results are compared with either experimental results or other FEM/BEM results. Good agreements
among these results are observed in the simple cases studied. For the cases with more complicated geometries, the fast mul-
tipole BEM results are also deemed reasonable. The developed program (FastBEM Fracture 2-D) available online can be
downloaded and used by researchers and engineers to apply this new BEM tool to determine SIFs and to predict the prop-
agation paths of multiple cracks in 2-D elastic domains.
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It is true that more constant elements on each crack surface are needed in modeling crack problems, as compared with
quadratic elements commonly used in the BEM. Good results in modeling cracks have been shown in Ref. [45] for computing
the SIFs and in this paper for predicting the crack propagation paths using constant elements. The increased cost with more
DOFs in using constant elements is offset by the simplicity and efficiency of the developed BEM code, since all integrals (non-
singular, nearly-singular, singular and hypersingular ones) are evaluated using analytical integration results [37]. In model-
ing multiple crack interaction problems, it is very likely to have many nearly-singular integrals where the collocation points
are close to elements of integration, which demand delicate and special treatments in the code if quadratic elements are
used. Furthermore, the smoothness requirement [52] on using the traction BIE is satisfied automatically by using constant
elements, and no corner problems need to be dealt with in the BEM code. All these features of using constant elements and
the dual BIE formulation make the fast multipole BEM and its parallel implementation especially effective and efficient.
Fig. 15. Crack propagation path of the perforated plate with one edge crack: (a) after 100 increments, FMM BEM; (b) after 100 increments, conventional
BEM; (a) after 483 increments, FMM BEM.
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Fig. 16. A perforated plate with two edge cracks on the holes (radius of holes = 5 mm and crack length = 10 mm).
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One can certainly implement quadratic or other higher-order elements to further improve the accuracy of the BEM. How-
ever, the efficiency of the BEM will suffer due to the need to deal with special situations like corner problems and singular
and nearly-singular integrals (for which analytical integration results are not available yet, in general). Furthermore, in order
to meet the smoothness requirement on the traction BIE, some form of the non-conforming elements [13,15,26] will need to
be applied, which can no longer guarantee the continuity of the fields between two adjacent elements, similar to the case
with constant elements. Therefore, the expected effectiveness and efficiency of using higher-order elements in this case is
compromised. Just like the DDM, the BEM with constant elements is believed to be a simpler, more effective and efficient
Fig. 17. Crack propagation path of the perforated plate with two edge cracks: (a) FMM BEM; (b) conventional BEM.
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Fig. 18. A perforated plate with three edge cracks (radius of holes = 5 mm and crack length = 10 mm).

Fig. 19. Crack propagation paths of the perforated plate with three edge cracks (after 224 increments, FMM BEM).
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tool for modeling crack problems, as long as a sufficient number of elements are used and a fast solution method for the BEM
is employed.

To improve the solution efficiency of the developed BEM, other fast solution methods, such as the adaptive cross approx-
imation (ACA) [60,61] and fast direct solvers can be applied to solve the dual BIE formulations for crack problems. Parallel
computing techniques can also be implemented in the code to speed up the solutions on multicore CPU machines and clus-
ters. Extension of the fast multipole BEM to modeling of propagations of multiple cracks in 3-D elastic solids is underway and
the results will be reported in a subsequent paper.
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Fig. 20. Multiple randomly distributed and oriented cracks in an infinite domain (100 cracks of length 20 mm).

Fig. 21. Crack propagation path of the multiple cracks in the infinite domain: (a) after 50 increment steps; (b) after 100 increment steps.
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