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Abstract A new fast direct linear equation solver for the
boundary element method (BEM) is presented in this paper.
The idea of the new fast direct solver stems from the concept
of the hierarchical off-diagonal low-rank matrix. The hier-
archical off-diagonal low-rank matrix can be decomposed
into the multiplication of several diagonal block matrices.
The inverse of the hierarchical off-diagonal low-rank matrix
can be calculated efficiently with the Sherman–Morrison–
Woodbury formula. In this paper, amore general and efficient
approach to approximate the coefficient matrix of the BEM
with the hierarchical off-diagonal low-rank matrix is pro-
posed. Compared to the current fast direct solver based on
the hierarchical off-diagonal low-rank matrix, the proposed
method is suitable for solving general 3-D boundary element
models. Several numerical examples of 3-D potential prob-
lems with the total number of unknowns up to above 200,000
are presented. The results show that the new fast direct solver
can be applied to solve large 3-DBEMmodels accurately and
with better efficiency compared with the conventional BEM.
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1 Introduction

The boundary element method (BEM) [1–6] has been used
to solve different types of problems for decades. One advan-
tage of the BEM is that only the boundary of the domain
is discretized, which reduces the number of elements sub-
stantially. However, the efficiency in solution has been the
most challenging problem for the BEM in analyzing large-
scale problems. The reason is that the conventional BEM
needs long CPU time to calculate the coefficient matrix
and solve the linear system of equations. It also needs
large computer memory to store the coefficient matrix. The
conventional BEM generates a dense and unsymmetrical
coefficient matrix. Calculating the matrix requires O(N 2)

operations and solving the linear systemof equations requires
O(N 3) operations with a traditional direct solver (with N
being the number of equations in the linear system). As N
becomes larger, the required CPU time and computer mem-
ory increase quickly.

In the mid of 1980s, Rokhlin and Greengard [7,8] pro-
posed the fast multipole method (FMM) and it has been
applied to accelerate the solutions of the BEM equations
effectively. The basic idea behind the fast multipole BEM is
to translate the element-to-element interaction to the cell-to-
cell interaction. To implement the translation, a tree structure
is usually built to divide all the elements into some cells and
the multipole expansions of the kernel functions are derived.
An iterative solver is usually used for the fast multipole
BEM, where the matrix-vector multiplication is performed
by calculating the fast multipole expansions and translations.
Thanks to the FMM, the computational complexity of the
BEM can be reduced to near O(N ). The fast multipole BEM
has been further developed for solving potential [9–11], elas-
ticity [12–14], and acoustic problems [15–17] by the authors
and their colleagues, as well as for solving electromagnet-
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ics problems [18–21] by others. Comprehensive reviews and
detailed discussions of the fast multipole BEM can be found
in Refs. [6,22–24].

The adaptive cross approximation (ACA) has also been
used to improve the computational efficiency of the BEM. In
1990s, Hackbusch et al. [25–28] introduced the concept of
the hierarchical matrix (H -matrix). By considering a dense
matrix and dividing it hierarchically into submatrices, Hack-
busch et al. indicated that some of the submatrices can be
well- approximated by low-rank matrices. This type of hier-
archicalmatrices occurs especially in the context of boundary
integral equations (BIEs) [29]. Based on the theory of the
hierarchical matrix, Bebendorf et al. developed the ACA
method and applied it to the BEM [30,31]. Since the ACA
was fully developed from the algebra of the matrix, it is not
necessary to derive the analytical expansions of kernel func-
tions. Therefore, the ACA BEM has also become popular in
many applications [32–35].

The success of the fast multipole BEM and ACA BEM
relies on the development of the iterative solver. Saad [36]
proposed the GMRES solver, which can be applied to solve
a linear system of equations without knowing the matrix
explicitly. With the help of GMRES, the fast multipole BEM
andACABEMonly need to be applied to perform thematrix-
vector multiplication in each iteration. However, the speed
of convergence is always a concern when using an itera-
tive solver. The number of iterations to obtain the solution
depends highly on the condition number of the coefficient
matrix. The smaller the condition number is, the faster the
iterative solver converges. A preconditioner is frequently
used to speed up the convergence. A common choice of the
pre-conditioner for the fast multipole BEM or ACA BEM is
the block-diagonal preconditioner because it is cheap to cal-
culate and store.Manyother efficient preconditioners are also
available [37]. Another drawback of using iterative solvers
is that they cannot handle multiple right-hand side vectors
for a linear system of equations. Therefore, the system needs
to be solved multiple times for all the given right-hand side
vectors (such as load cases).

To avoid the convergence problem with iterative solvers,
many research groups started to develop fast direct solvers for
the densematrix. In recent years,Martinsson’s group [38,39],
Greengard’s group [40–42], and Darve’s group [43,44] pro-
posed various fast direct solvers by utilizing the theory of
H -matrix. The common idea behind these algorithms is
to divide the matrix hierarchically, construct the low-rank
approximation for certain submatrices and perform a fast
update to the solution recursively. One type of the hierar-
chical matrix is called hierarchical off-diagonal low-rank
matrix (or HODLR matrix). The most important feature of
this type of matrix is that all the off-diagonal submatrices
can be approximated by low-rank matrices. Because of this
feature, a HODLR matrix can be decomposed into the mul-

tiplication of several diagonal block matrices. The inverse
of the HODLR matrix can be calculated efficiently with the
Sherman–Morrison–Woodbury formula [45,46].

To the authors’ best knowledge, all the current fast direct
solvers based on the HODLR matrix have been tested for
solving 1-D and 2-D problems. No general 3-D BEMmodels
using the fast direct solver based on the HODLRmatrix have
been reported in the literature. In this paper, we present a new
fast direct solver based on the HODLR matrix for solving
general 3-D BEM models. The paper is organized as fol-
lows: In Sect. 2, the BIE for potential problems is reviewed.
In Sect. 3, the hierarchical off-diagonal low-rank matrix is
introduced. In Sect. 4, the formulation of the new fast direct
solver is proposed. In Sect. 5, numerical examples are pre-
sented to show the accuracy and efficiency of the new fast
direct solver. In Sect. 6, conclusions and discussions on the
future improvements of the new fast direct solver are pro-
vided.

2 Boundary integral equations for potential
problems

Consider a potential problem in a 2-D or 3-D domain V
with the boundary S. The governing equation for a potential
problem is:

∇2φ (x) = 0, ∀x ∈ V, (1)

and the boundary conditions are:

φ (x) = φ̄ (x) , ∀x ∈ Sφ,

q (x) = q̄ (x) , ∀x ∈ Sq , (2)

where φ (x) is the potential and q (x) is the normal derivative
of φ (x); φ̄ (x) and q̄ (x) are given functions on Sφ and Sq ,
respectively; S = Sφ ∪ Sq and Sφ ∩ Sq = ∅.

With the help of Green’s second identity, the conventional
boundary integral equation (CBIE) for the potential problem
is [6]:

c (x) φ (x) =
∫
S
G (x, y) q (y)dS

−
∫
S
F (x, y) φ (y)dS, x ∈ S, (3)

where G (x, y) is the fundamental solution, with x being the
source (collocation) point and y the field (integration) point.
The value of the coefficient c (x) depends on the smoothness
of the curve (2-D) or surface (3-D) near point x. When the
boundary is smooth at x, c (x) = 1/2. For 3-D potential
problems, we have:
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G (x, y) = 1

4πr
, r = |x − y| . (4)

F (x, y) is the normal derivative of G (x, y) at the field point
y.

To solve the BIE, the boundary S is discretized into N
boundary elements. The final linear system of equations can
be written as:

Aλ = b (5)

whereA is the coefficient matrix, λ is the vector of unknowns
on the boundary, and b is the right-hand side vector.

3 Hierarchical off-diagonal low-rank matrix

In Sect. 1, we mentioned that most of the current fast direct
solvers are based on the theory of H -matrix. In Ref. [29],
Ambikasaran presented the classification of H -matrix and
the relationships between different types of H -matrix. One
type of H -matrix is called the hierarchically off-diagonal
low-rank (HODLR)matrix. If a densematrix is hierarchically
divided and all the off-diagonal submatrices can be well-
approximated by low-rank matrices, we call it as a HODLR
matrix. In this section, the definition of the HODLR matrix
is reviewed.

3.1 Definition of HODLR matrix

The HODLR matrix is a type of matrix that the off-diagonal
submatrices can be approximated by low-rankmatrices. Here
are examples of the HODLR matrix:

K ≈ K1 =
[

K1
1 U1

1

(
V1
1

)T
U1
2

(
V1
2

)T
K1

2

]

K ≈ K2 =

⎡
⎢⎢⎢⎢⎣

[
K2

1 U2
1

(
V2
1

)T
U2
2

(
V2
2

)T
K2

2

]
U1
1

(
V1
1

)T

U1
2

(
V1
2

)T
[

K2
3 U2

3

(
V2
3

)T
U2
4

(
V2
4

)T
K2

4

]

⎤
⎥⎥⎥⎥⎦ .(6)

In the first equation of Eq. (6),K is approximated byK1.K1

is divided into four submatrices. K1
1 and K1

2 are two diago-
nal submatrices. Twooff-diagonalmatrices are approximated
by the multiplication of two matrices U1

i and V
1
i (i = 1, 2),

respectively. U1
i and V1

i (i = 1, 2) ∈ R
Ni×pi where pi �

Ni . K1 is called as a 1-level HODLR matrix. In the second
equation of Eq. (6), K1

1 and K1
2 are further divided into four

submatrices, respectively. After two divisions, K is approx-
imated by K2, which is called as a 2-level HODLR matrix.
In this paper, the superscripts of a matrix denote the level of
the matrix. In general, Kl is called l-level HODLR matrix.
The i th diagonal submatrix of l-level HODLR matrix can
be written as:

Kl
i =

[
Kl

2i−1 Ul
2i−1

(
Vl
2i−1

)T
Ul
2i

(
Vl
2i

)T
Kl

2i

]
(7)

where i = 1, 2, 3, . . . , 2l−1. Kl
2i and Kl

2i−1 are square
matrices. Their dimensions are Nl

2i and Nl
2i−1, respectively.

Ul
2i and Vl

2i are Nl
2i × pl2i matrices. Ul

2i−1 and Vl
2i−1 are

Nl
2i−1 × pl2i−1 matrices. Usually, we have pl2i−1 � Nl

2i−1
and pl2i � Nl

2i . It is worth to mention that Nl
2i and Nl

2i−1
are not necessarily equal, so are pl2i and pl2i−1. This defini-
tion is different from the definition in Ref. [43] where the
dimensions of Ul

2i , V
l
2i , U

l
2i−1 and Vl

2i−1 are all N/2l × p.
This modification does not affect the following matrix fac-
torization and makes the definition of HODLR matrix more
general and flexible, especially when N is not the power of
2.

3.2 HODLR matrix factorization

In this section, we discuss the factorization of HODLR
matrix. The overall idea is to factor the dense matrix K
into the multiplication of several diagonal-block matrices
Kl (l = 1, . . . , lm). The HODLR matrix at level lm can be
written as:

Klm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣ Klm

1 Ulm
1

(
Vlm
1

)T

Ulm
2

(
Vlm
2

)T
Klm

2

⎤
⎥⎦ Ulm−1

1

(
Vlm−1
1

)T · · · · · ·

Ulm−1
2

(
Vlm−1
2

)T

⎡
⎢⎣ Klm

3 Ulm
3

(
Vlm
3

)T

Ulm
4

(
Vlm
4

)T
Klm

4

⎤
⎥⎦ · · · · · ·

...
...

. . . · · ·
...

...
...

⎡
⎢⎣ Klm

2lm−1
Ulm
2lm−1

(
Vlm
2lm−1

)T

Ulm
2lm

(
Vlm
2lm

)T
Klm

2lm

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)
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The first step of factorization is to factor the diagonal-
block matrices at level lm:

Klm =

⎡
⎢⎢⎢⎣
Klm

1
Klm

2

Klm
2lm

⎤
⎥⎥⎥⎦ (9)

After Klm is factorized, we get the HODLR matrix at level
lm − 1:

Klm−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣ I Ũlm

1

(
Vlm
1

)T

Ũlm
2

(
Vlm
2

)T
I

⎤
⎥⎦ Ũlm−1

1

(
Vlm−1
1

)T · · · · · ·

Ũlm−1
2

(
Vlm−1
2

)T

⎡
⎢⎣ I Ũlm

3

(
Vlm
3

)T

Ũlm
4

(
Vlm
4

)T
I

⎤
⎥⎦ · · · · · ·

...
...

. . . · · ·
...

...
...

⎡
⎢⎣ I Ũlm

2lm−1

(
Vlm
2lm−1

)T

Ũlm
2lm

(
Vlm
2lm

)T
I

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

where Ũl
i indicates the matrix Ul

i is updated after factoring
out Klm . Define

Klm−1
i =

⎡
⎢⎣ I Ũlm

2i−1

(
Vlm
2i−1

)T

Ũlm
2i

(
Vlm
2i

)T
I

⎤
⎥⎦ i = 1, 2, 3, . . . , 2lm−1

(11)

Equation (10) can be re-written as:

Klm−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Klm−1
1 Ũlm−1

1

(
Vlm−1
1

)T · · · · · ·
Ũlm−1
2

(
Vlm−1
2

)T
Klm−1

2 · · · · · ·
.
.
.

.

.

.
. . . · · ·

.

.

.
.
.
.

.

.

. Klm−1
2lm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12)

Now,we can factor the diagonal-blockmatrices at level lm−1
and obtain the HODLR matrix at level lm − 2:

Klm−1 = Klm−1Klm−2

=

⎡
⎢⎢⎢⎢⎣

Klm−1
1

Klm−1
2

. . .

Klm−1
2lm−1

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I Ũlm−1
1

(
Vlm−1
1

)T · · · · · ·
Ũlm−1
2

(
Vlm−1
2

)T
I · · · · · ·

...
...

. . . · · ·
...

...
... I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(13)

By keeping factorizing out the block-diagonal matrices at
each level, the HODLR matrix at level lm can be written as
(Fig. 1):

Klm = KlmKlm−1 . . .K0 (14)

Therefore, the solution of the equation Kx = b is given
as: x = K−1

0 . . .K−1
lm−1K

−1
lm

b. For Klm , each diagonal block

is a small matrix so that K−1
lm

is easy to calculate. For
Kl (l = 0, 1, . . . , lm − 1), the i th diagonal block has the fol-
lowing general form:

Kl
i =

⎡
⎢⎣ I Ũl+1

2i−1

(
Vl+1
2i−1

)T

Ũl+1
2i

(
Vl+1
2i

)T
I

⎤
⎥⎦

= I +
[
Ũl+1
2i−1 0
0 Ũl+1

2i

] ⎡
⎢⎣ 0

(
Vl+1
2i−1

)T

(
Vl+1
2i

)T
0

⎤
⎥⎦

= I + Ul
i

(
Vl
i

)T
(15)

where

Ul
i =

[
Ũl+1
2i−1 0
0 Ũl+1

2i

]
and Vl

i =
[

0 Vl+1
2i

Vl+1
2i−1 0

]
.
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= × × ×

K 3K 3K 2K 1K 0K

Fig. 1 HODLR matrix decomposition

To calculate the inverse matrix of Kl
i , consider solving a

system of the form:

(
I + UVT

)
x = b (16)

where I ∈ R
n×n is an identity matrix, U,V ∈ R

n×p,x,b ∈
R
n×r and p ≤ r < n . The Sherman–Morrison–Woodbury

formula [45,46] gives:

x = b − U
(
I + VTU

)−1
VTb (17)

The computational cost for solving (16) using (17) isO (prn),
which is much smaller than solving (16) by using LU decom-
position directly.

4 Formulations of the new fast direct BEM solver

From the previous section, the HODLR matrix can be
inverted easily because of the low-rank structure of all the
off-diagonal submatrices. To develop the fast direct solver
based on the HODLR matrix, we need an efficient approach
to calculate the low-rank approximation of the off-diagonal
submatrices.

In Ref. [42], Lai et al. developed a fast direct solver based
on the HODLR matrix to solve the high-frequency electro-
magnetic scattering problems for 2-D large cavity. The ACA
is used to calculate the low-rank approximation of all the
off-diagonal submatrices in Lai’s paper. However, in the tra-
ditional ACA BEM, the ACA is only used to approximate
a certain type of the submatrices. In the common algorithm
of ACA BEM, a tree structure is constructed by dividing all
the elements into some clusters recursively. The clusters in
the lowest level are usually called leaves of the tree struc-
ture. The division of the elements partitions the coefficient
matrix. If two different clusters (a cluster pair) at the same
level are well-separated geometrically, we consider that the
corresponding off-diagonal submatrix can be approximated
by low-rank matrices accurately and efficiently. To identify
this kind of cluster pairs, an admissible condition is exam-
ined for every two clusters at the same level. If the admissible
condition is satisfied, the corresponding coefficient subma-
trix is approximated by the ACA. Otherwise, this examining

process is executed for the clusters at the lower levels. If
two clusters at the lowest level of the tree structure still do
not satisfy the admissible condition, the corresponding coef-
ficient submatrix is calculated directly. Therefore, only the
submatrices capturing the interaction of two admissible clus-
ters are approximated by the ACA in the traditional ACA
BEM. Generally, two different clusters in the higher levels
of the tree structure are too close to satisfy the admissible
condition. Directly using the ACA to approximate the corre-
sponding submatrices will affect the efficiency and result in
larger errors. Therefore, it is not reasonable to use theACA to
approximate all of the off-diagonal submatrices in a general
case.

In this section, we propose a more general and efficient
approach to approximate all the off-diagonal submatrices.
With this approach, the ACA is only used to approxi-
mate the submatrices capturing the interaction of admissible
cluster pairs. For the off-diagonal submatrices capturing
the interaction of inadmissible cluster pairs, the random-
ized interpolative decomposition is applied to calculate their
approximations. The resulting new fast direct solver is suit-
able for solving general 3-D BEM models.

4.1 BEM matrix approximation

For the new fast direct solver of BEM, a binary tree is also
built to divide the boundary elements into some clusters.
Since not all the off-diagonal sub-matrices can be well-
approximated by the ACA directly, we calculate η for every
two clusters in the same level as following:

η = min {diam t, diam s}
dist (t, s)

,

where t and s are two clusters; diam t is the diameter of
cluster t , so as to cluster s; dist (t, s) is the distance of the
centers of the two clusters. When η is smaller than a given
value, the corresponding two clusters are admissible. Oth-
erwise, the corresponding two clusters are inadmissible and
we will continue to calculate η for the children of the two
clusters in the next level.

Assume that the binary tree has two levels.We also assume
that every two different clusters in the first level of the tree
structure do not satisfy the admissible condition and every
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two different clusters in the second level satisfy the admissi-
ble condition. Therefore, the coefficient matrix of the BEM
can be written as:

K ≈ K2

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[
K2

1 U2
1

(
V2
1

)T
U2
2

(
V2
2

)T
K2

2

] ⎡
⎢⎣U2

1,1

(
V2
1,1

)T
U2
1,2

(
V2
1,2

)T

U2
2,1

(
V2
2,1

)T
U2
2,2

(
V2
2,2

)T

⎤
⎥⎦

⎡
⎢⎣U2

3,1

(
V2
3,1

)T
U2
3,2

(
V2
3,2

)T

U2
4,1

(
V2
4,1

)T
U2
4,2

(
V2
4,2

)T

⎤
⎥⎦

[
K2

3 U2
3

(
V2
3

)T
U2
4

(
V2
4

)T
K2

4

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(18)

Note that the partition shown in Eq. (18) is different

from Eq. (6). The off-diagonal submatrices U1
1

(
V1
1

)T
and

U1
2

(
V1
2

)T
of Eq. (6) are also divided in Eq. (18) because the

corresponding cluster pairs do not satisfy the admissible con-
dition. For Eq. (18), it is not as easy as Eq. (6) to calculate
the inverse of the matrix. Therefore, we present an approach
to convert Eqs. (18) to (6).

Assume two clusters t and s in level l are not admissible.
t1 and t2 are the children of cluster t ; s1 and s2 are the children
of cluster s. Assume the numbers of elements in t1, t2, s1 and
s2 are nt1 , nt2 , ns1 and ns2 , respectively.K

l
t,s is the coefficient

matrix capturing the interaction of clusters t and s. Kl
t,s is

divided into four submatrices:Kl+1
t1,s1 ,K

l+1
t1,s2 ,K

l+1
t2,s1 andK

l+1
t2,s2

based on the division of cluster t and s. Assume t1 and s1,
t1 and s2, t2 and s1, and t2 and s2 are all admissible. The
low-rank approximation ofKl+1

ti ,s j can be written as:K
l+1
ti ,s j =

Ul+1
ti ,s j

(
Vl+1
ti ,s j

)T
(i, j = 1, 2). The dimensions of Ul+1

ti ,s j and

Vl+1
ti ,s j are assumed as nti ×kti ,s j and ns j ×kti ,s j , respectively.

Therefore, we have the approximation of Kl
t,s as:

Kl
t,s =

[
Kl+1

t1,s1 Kl+1
t1,s2

Kl+1
t2,s1 Kl+1

t2,s2

]
=

⎡
⎢⎣Ul+1

t1,s1

(
Vl+1
t1,s1

)T
Ul+1
t1,s2

(
Vl+1
t1,s2

)T

Ul+1
t2,s1

(
Vl+1
t2,s1

)T
Ul+1
t2,s2

(
Vl+1
t2,s2

)T
⎤
⎥⎦

=
[
Ul+1
t1,s1 Ul+1

t1,s2
Ul+1
t2,s1 Ul+1

t2,s2

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
Vl+1
t1,s1

)T
(
Vl+1
t2,s1

)T
(
Vl+1
t1,s2

)T
(
Vl+1
t2,s2

)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= Ul
t,s

(
Vl
t,s

)T
(19)

With Eq. (19), if two clusters t and s are not admissible,
the approximation of Kl

t,s is expressed with the low-rank
approximation matrices in the lower level. However, directly
using Eq. (19) as the approximation of an off-diagonal sub-
matricesKl

t,s may not be efficient. As we mentioned before,
the Sherman–Morrison–Woodbury formula is very efficient
when the second dimensions of U and V are much smaller

than their first dimensions. However, the second dimensions
of Ul

t,s and Vl
t,s are kt1,s1 + kt1,s2 + kt2,s1 + kt2,s2 , which

might be large. Therefore, in order to improve the effi-
ciency, the randomized interpolative decomposition [47–50]

is applied to
(
Vl
t,s

)T
to find a new approximation ofKl

t,s . For
convenience, the randomized interpolative decomposition is

applied to
[
Vl+1
t1,s1 Vl+1

t2,s1

]T
and

[
Vl+1
t1,s2 Vl+1

t2,s2

]T
separately:

[
Vl+1
t1,s1 Vl+1

t2,s1

]T = [
Pl+1
t1,s1 Pl+1

t2,s1

]T (
Vl+1
s1

)T
[
Vl+1
t1,s2 Vl+1

t2,s2

]T = [
Pl+1
t1,s2 Pl+1

t2,s2

]T (
Vl+1
s2

)T (20)

where Vl+1
s1 and Vl+1

s2 are ns1 × ks1 and ns2 × ks2 matrices,
respectively. Usually, ks1 < kt1,s1 + kt2,s1 and ks2 < kt1,s2 +
kt2,s2 . Substituting Eq. (20) into Eq. (19) gives:

Kl
t,s =

[
Ul+1
t1,s1 Ul+1

t1,s2
Ul+1
t2,s1 Ul+1

t2,s2

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
Vl+1
t1,s1

)T
(
Vl+1
t2,s1

)T
(
Vl+1
t1,s2

)T
(
Vl+1
t2,s2

)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
[
Ul+1
t1,s1 Ul+1

t1,s2
Ul+1
t2,s1 Ul+1

t2,s2

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
Pl+1
t1,s1

)T
(
Pl+1
t2,s1

)T
(
Pl+1
t1,s2

)T
(
Pl+1
t2,s2

)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[(
Vl+1
s1

)T
(
Vl+1
s2

)T
]

=
⎡
⎢⎣Ul+1

t1,s1

(
Pl+1
t1,s1

)T
Ul+1
t1,s2

(
Pl+1
t1,s2

)T

Ul+1
t2,s1

(
Pl+1
t2,s1

)T
Ul+1
t2,s2

(
Pl+1
t2,s2

)T
⎤
⎥⎦

[ (
Vl+1
s1

)T
(
Vl+1
s2

)T
]

= Ul ′
t,s

(
Vl ′
t,s

)T
(21)

where the ranks of Ul ′
t,s and Vl ′

t,s are ks1 + ks2 , and ks1 +
ks2 < kt1,s1 + kt1,s2 + kt2,s1 + kt2,s2 . Equation (21) gives a
new approximation ofKl

t,s with lower-rankmatricesUl ′
t,s and

Vl ′
t,s . The value of ks1+ks2 is controlled by the tolerance of the

randomized interpolative decomposition. To achieve higher
accuracy, we can use smaller tolerance, which could take
longer time to calculateUl ′

t,s andV
l ′
t,s and use more computer

memory to store them. However, if a larger tolerance is used
to achieve higher efficiency,Kl

t,s might not be approximated

accurately by Ul ′
t,s and Vl ′

t,s . A numerical example will be
used to show the appropriate choice of the tolerance later.

With Eq. (21), Eq. (18) can be re-written as a HODLR
matrix:

K ≈ K2 =

⎡
⎢⎢⎢⎢⎣

[
K2

1 U2
1

(
V2
1

)T
U2
2

(
V2
2

)T
K2

2

]
U1′
1

(
V1′
1

)T

U1′
2

(
V1′
2

)T
[

K2
3 U2

3

(
V2
3

)T
U2
4

(
V2
4

)T
K2

4

]

⎤
⎥⎥⎥⎥⎦ .

Now, we can decompose the coefficient matrix in the BEM
and calculate its inverse as a HODLR matrix.
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4.2 Algorithm

The entire algorithm has two steps: assembling and factor-
ization. The assembling step starts with building a binary tree
structure to divide all the elements into some clusters. The
next step is to check if two clusters in the same level satisfy
the admissible condition from the top of the tree structure. If
two clusters satisfy the admissible condition, theACA is used
to approximate the coefficient matrix capturing the interac-
tion of these two clusters. Otherwise, the checking process
will continue to the children of these two clusters in the next
level of the tree structure. If two clusters in the lowest level
of the tree structure still do not satisfy the admissible condi-
tion, the corresponding coefficient matrix will be calculated
directly. This process is similar to the setup step of the ACA
BEM. After the low-rank approximations are calculated for
the admissible submatrices, we use Eq. (21) to calculate the
approximation for the off-diagonal submatrices capturing the
interaction of inadmissible clusters.

The next step is factorization. Assume maximum number
of tree level is lmax .We start from level lmax:

1. Apply the inverse ofKlmax to the right-hand-side.Because
Klmax is calculated directly, LU decomposition is used to
calculate its inverse. Go to the upper level.

2. In the upper level l = 1, 2, . . . , lmax−1, after the inverse
matrices of level l + 1 are applied to the right-hand-side,
the diagonal block of Kl has the following structure:

Kl
i =

⎡
⎢⎣ I Ũl+1′

2i−1

(
Vl+1′
2i−1

)T

Ũl+1′
2i

(
Vl+1′
2i

)T
I

⎤
⎥⎦

=
[
I
I

]
+

[
Ũl+1′
2i−1 0
0 Ũl+1′

2i

] ⎡
⎢⎣ 0

(
Vl+1′
2i−1

)T

(
Vl+1′
2i

)T
0

⎤
⎥⎦

= I + Ul
i

(
Vl
i

)T
(22)

In order to apply the inverse of Kl
i , the Sherman–

Morrison–Woodbury formula is used:

(
Kl

i

)−1 = I − Ul
i

(
I+

(
Vl
i

)T
Ul
i

)−1 (
Vl
i

)T
(23)

3. Since the diagonal blocks at level l are applied to the right-
hand-side, the diagonal block at level l − 1 also has the
above form. Therefore, Sherman–Morrison–Woodbury
formula will be used to obtain the inverse ofKl−1

i again.
This upward procedure continues until reaching the top
level of the tree structure.

1r

2r
1 1,qφ

2 2,qφ

Fig. 2 A spherical shell model

5 Numerical examples

In this section, four different numerical examples are pre-
sented to show the accuracy and efficiency of the proposed
fast direct solver for the BEM. Solutions of all the exam-
ple problems are obtained using a single-core computer with
Intel Xeon 2.4GHz CPU. No parallel computing is applied
for all the examples. Constant triangular elements are used
and all integrals are evaluated analytically. The default toler-
ance of row and column selection in the ACA is set at 10−4

. In all the following examples, the L2 error is defined as:

L2 error =
√

‖xnum − xexact‖2
‖xexact‖2

.

5.1 Thin spherical shell model

The first example is a thin spherical shell model (Fig. 2)
with the different tolerance ε of the randomized interpolative
decomposition. The inner and outer radius of the shell are
r1 = 0.5 and r2 = 0.6, respectively. The model is discretized
with increasing numbers of elements. Two types of boundary
conditions are considered for this model. As the first type of
the boundary condition, the potential φ is given on the inner
surface and the normal derivative of the potential q is given
on the outer surface. For the second type of the boundary
condition, the potential φ are given on both the inner and
outer surfaces. Both the conventional BEM solver and the
new fast direct solver are used to solve the BEM models.

The L2 errors of these two methods are shown in Table 1.
From Table 1, we can see that the tolerance ε of the random-
ized interpolative decomposition substantially influences the
L2 error of the new fast direct BEM solver. When the tol-
erance is 10−5, the L2 error of the new fast direct solver is
very close to that of the conventional BEM. When the tol-
erance is 10−4, the L2 error of the new fast direct solver is
close to that of the conventional BEM only for the model
with 2560 elements. When the tolerance is 10−3, the L2
error of the new fast direct solver is much larger than that
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Table 1 L2 error of the new fast direct BEM solver for solving the
spherical shell model with different tolerances of the interpolative
decomposition

N Tolerance ε for
interpolative
decomposition

Boundary condition
φ1 = 100, q2 = 50

Boundary
condition φ1 =
100, φ2 = 50

L2 error L2 error

q (%) φ (%) q (%)

2560 10−3 2.100 0.107 0.976

10−4 0.424 0.017 0.462

10−5 0.413 0.018 0.457

Conventional BEM 0.412 0.015 0.453

10,240 10−3 3.704 0.207 1.616

10−4 0.402 0.009 0.205

10−5 0.156 0.003 0.161

Conventional BEM 0.153 0.003 0.160

40,960 10−3 7.211 0.250 2.546

10−4 0.701 0.010 0.209

10−5 0.091 0.001 0.059

Conventional BEM 0.056 0.001 0.057

of the conventional BEM. Therefore, the new fast direct
solver can obtain accurate results when the tolerance ε of the
randomized interpolative decomposition is 10−5. We choose
10−5 as the default tolerance of the randomized interpolative
decomposition for the following examples if no exception is
mentioned.

5.2 Torus model

The second example is a torus model. The distance from the
center of the tube to the center of the torus is R = 5. The
radius of the tube is r = 2. The center of the torus is located at
the origin of the Cartesian coordinate system. The boundary
condition is given as:

φ = sinh

(√
2

4
x

)
sin

( y

4

)
sin

( z
4

)

+ sin
( x
4

)
sinh

(√
2

4
y

)
sin

( z
4

)

+ sin
( x
4

)
sin

( y

4

)
sinh

(√
2

4
z

)
,

which is a harmonic function. In this case, the tolerance of
the randomized interpolative decomposition is set at 10−4

for the models with more than 102,400 elements.
Figure 3 compares the L2 errors of the conventional BEM

and the new fast direct BEM solver. From Fig. 3, we can
see that the L2 error of the new fast direct solver is very
close to that of the conventional BEM, which indicates that
the new fast direct solver is almost equally accurate as the
conventional BEM. Figure 4 shows the contour plot of the
normal derivative of the potential on the surface of the torus
with 230,400 elements solved by the new fast direct solver.
From Fig. 4, the contour plot of the normal derivative of the
potential has symmetric pattern, as expected. Therefore, it
is demonstrated that the new fast direct solver can solve the
problem as accurately as the conventional BEM (with the
traditional direct solver).

Fig. 3 Relative error of the
new fast direct BEM solver and
conventional direct BEM solver
for solving the torus model
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Fig. 4 Contour plots of the normal derivative of potential on the surface
of the torus model

Figures 5 and 6 show the CPU time of the new fast direct
solver and the conventional BEM for setup and solving the
equations, respectively. For the new fast direct solver, the
CPU time of setup refers to the CPU time of calculating
the right-hand side vector and approximating the coefficient
matrix. For the conventional BEM, the CPU time of setup
includes the CPU of calculating right-hand side vector and
calculating the coefficient matrix directly. The trend lines of
the CPU time are also shown. From Fig. 6, we can see that
the new fast direct BEM solver uses less CPU time to solve
equations for BEM models with more than 10,000 DOFs.
The trend line of the new fast direct solver indicates that the
complexity of the new fast direct solver for solving equations
is nearly O (N log N ), which is much lower than that of the
conventional BEM. Therefore, the new fast direct solver will

be more advantageous for solving equations as the model
size becomes larger. However, the CPU time of these two
methods for setup (Fig. 5) are close for this model. We will
discuss this phenomenon later. Regarding the total CPU time
for solving the problem, the new fast direct BEM solver will
be faster than the conventional BEMbecause of its advantage
in solving the system of equations.

Figure 7 shows the used computer memory by using the
two methods. The trend lines of used computer memory are
also shown. From Fig. 7, the new fast direct solver uses fewer
computer memory to obtain the solution for BEM models
with more than 10,000 DOFs. The trend line of the fast direct
solve indicates that the used computer memory of the new
fast direct solver increases almost linearly, which is much
slower than the conventional BEM. Therefore, as the model
becomes larger, the new fast direct BEM solver should be
more efficient than the conventional BEM.

5.3 Long-bar model

Asimple long-barmodel is considered in this section (Fig. 8).
Unlike the torusmodel, the boundary of the long-barmodel is
not smooth. The length of themodel is L = 9. The height and
width of the bar are 1. The model is centered at the origin
of the Cartesian coordinate system. The length axis of the
long-bar model is parallel to the surface x + y = 0. In this
setup, the boundary condition is given using the following
function:

φ = 2x3 + 2y3 + 2z2 − 3
(
x2y + xy2

)
− 3

(
x2z + xz2

)

−3
(
y2z + yz2

)
,

Fig. 5 CPU time of the new
fast direct BEM solver and
conventional direct BEM solver
for setup in the torus model
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Fig. 6 CPU time of the new
fast direct BEM solver and
conventional direct BEM solver
for solving equations in the
torus model
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Fig. 7 Computer memory used
by the new fast direct BEM
solver and conventional direct
BEM solver for solving the
torus model
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which is also a harmonic function.
Table 2 shows the L2 errors of the conventional BEM

and the new fast direct solver with increasing numbers of
elements. From Table 2, we observe that the L2 errors of the
two methods are also close to each other. Figure 9 shows
the contour plot of the normal derivative of the potential on
the surface of the long-bar model with 68,400 elements. The
plots are almost identical and show the same pattern as the
number of the elements increases. Therefore, the new fast

direct BEM solver also can solve problems with non-smooth
boundaries accurately.

5.4 Eleven sphere model

In this example, we use the new fast direct solver to analyze
the 11 perfectly conducting sphere model used in Ref. [10]
(Fig. 10). The radii of the center large sphere and ten small
spheres are 3 and 1, respectively. The ten small spheres are
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Fig. 8 A long-bar model

Table 2 L2 error of the conventional BEMand the new fast direct BEM
solver for solving the long-bar model

Number of elements L2 error

The conventional
BEM (%)

The new fast
direct solver (%)

1900 9.310 9.308

7600 6.512 6.513

17,100 5.300 5.297

30,400 4.583 4.587

68,400 3.737 3.740

Fig. 9 Contour plot of the normal derivative of the potential on the
surface of the long-bar model

5φ =

5φ =−

Fig. 10 11 sphere electric conductor model

located uniformly on a circle with radius being 5 and co-
centered with the large sphere. A constant electric potential
φ = 5 is applied to the center large sphere and five small
spheres. The other five small spheres are given a constant
electric potential φ = −5. The dielectric constant is set to be
1.

Both the conventional BEM and the new fast direct solver
are used to solve the problem. Table 3 shows the maximum
andminimumvalues of the charge density (q) on the surfaces
of the spheres. From Table 3, we can see that the maximum
and minimum values of the charge density solved by the
new fast direct solver gradually converge and have the same
first three significant digits as the values solved by using the
conventional BEM. The contour plot of the charge density
on the surface are shown in Fig. 11 with 4800 elements on
each sphere. As the number of elements increases, the plot
exhibits almost the same pattern as it should be. Therefore,
it is verified that the new fast direct BEM solver can solve
larger scale problems accurately.

Regarding the efficiency, the new fast direct solver
requires about 1 h 37 min and 22 GB computer memory
to solve the problem with 10,800 elements per sphere (Total
DOFs = 118,800). However, the conventional BEM needs
more than 48 GB computer memory and 4 h CPU time
to solve it. Due to limitation of requesting larger computer
memory on the cluster, no further run was attempted. This
confirms that the new fast direct solver is more efficient than
the conventional BEM.

Table 4 shows the maximum and minimum values of the
charge density calculated by using the new fast direct solver
with different tolerances of selecting row and column in the
ACA that is used to compute the submatrices. The tolerance
for randomized interpolation decomposition is still 10−5. The
model with 4800 elements per sphere is used. The CPU time
of the new fast direct solver and the conventional BEM are
also shown. As the tolerance of selecting rows and columns
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Table 3 Results for the 11-sphere model using the conventional BEM and new fast direct BEM solver

Model Charge density on the surface of sphere

Maximum Minimum

Element/sphere Total DOFs Conventional BEM New fast direct solver Conventional BEM New fast direct solver

768 8448 10.9927 10.9938 −16.3394 −16.3395

1200 13,200 11.1176 11.1197 −16.4825 −16.4810

1728 19,008 11.1596 11.1646 −16.5618 −16.5621

3072 33,792 11.2314 11.2393 −16.6411 −16.6422

4800 52,800 11.2641 11.2731 −16.6744 −16.6791

10,800 118,800 – 11.3095 – −16.7254

Fig. 11 Contour plot of the charge density on the surface of the
11-sphere model

in the ACA becomes smaller, the maximum and minimum
values of the charge density converge and havemore identical
significant digits compared to the results of the conventional
BEM. When the tolerance of row and column selection in
ACA is 10−8, the first five significant digits of the maximum
and minimum values are identical, and the total CPU time of
the new fast direct solver is only about one half of the CPU
time of the conventional BEM. It is demonstrated again that
the new fast direct solver can obtain accurate results and is
more efficient than the conventional BEM for larger scale
BEM models.

It is worth mentioning that in Table 4, the new fast direct
BEM solver not only saves CPU time in solving the equa-
tions, but also saves about 30% CPU time in setup of the
equations. However, for the torus model (Sect. 5.2), the CPU
time of the new fast direct solver and the conventional BEM
for setup are close. This phenomenon indicates that the CPU
time of the new fast direct solver for setup depends on the
model and boundary conditions. Generally, the more fre-
quently and efficiently the ACA is used in the setup, the more
CPU time one can save. For the models requiring larger CPU

time for setup, we can use parallel computing to accelerate
the setup process. Therefore, the efficiency of the new fast
direct solver will not be constrained by the setup.

6 Discussions

In the paper, a new fast direct solver for the BEM is pre-
sented. The new fast direct solver is based on the structure
of the HODLR matrix. The most important feature of a
HODLR matrix is that all the off-diagonal submatrices
can be well-approximated by low-rank matrices. Therefore,
a HODLR matrix can be factorized into the multiplica-
tion of some diagonal-block matrices. The inverse of a
HODLRmatrix could be easily obtained by using Sherman–
Morrison–Woodbury formula. However, most of the coef-
ficient matrices arising from the BEM are not HODLR
matrices. In this paper, a simple approach is used to trans-
fer the BEM coefficient matrix to the HODLR matrix. The
numerical results show that the new fast direct solver can
deliver accurate results with less CPU time and use smaller
computer memory compared to the conventional BEM using
traditional direct equation solvers.

The accuracy and efficiency of the new fast direct solver
depend on the tolerance of the randomized interpolative
decomposition. To improve the efficiency without losing the
accuracy too much, the adaptive tolerance strategy could be
used. In fact, the tolerance is not necessary to be a constant
in Eq. (20). We could use different tolerance values based
on the size of the matrices. We could also consider to apply
other efficient methods to find Vl+1

s1 and Vl+1
s2 in Eq. (20).

The aim is to find the optimal value of ks1 and ks2 so that Eq.
(20) is approximated accurately and the Sherman–Morrison–
Woodbury formula can be performed efficiently.

To further improve the efficiency of the new fast direct
BEM solver, parallel computing can be applied, which is rel-
atively easy to implement and should speed up the matrix
formation calculation and the solution readily. Extension of
the new fast direct BEM solver to 3-D elastostatic problems
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Table 4 Maximum and minimum values of the charge density on the surface of the spheres with different tolerance for the ACA in computing the
low rank submatrices

Elements per sphere/total DOFs Tolerance for the ACA Max Min CPU time (s)

Setup Solution of equations Total

4800/52,800 10−4 11.2732 −16.6790 806 376 1182

10−6 11.2648 −16.6741 846 438 1284

10−8 11.2644 −16.6742 927 522 1449

Conventional BEM 11.2641 −16.6744 1142 2113 3255

should be straightforward. Another promising application of
the fast direct solver is to solve problems with multiple right-
hand side vectors, such as the capacity extraction formultiple
conductors in electrostatic problems [51,52]. After the coef-
ficient matrix is decomposed and the corresponding inverse
matrix is calculated, solving the problemwith multiple right-
hand side vectors is equivalent to perform the matrix-matrix
multiplication once for the fast direct solver. In contrast, the
fast BEM based on the FMM or ACA with iterative solvers
can only handle one right-hand side vector each time, and
the system of equations needs to be solved multiple times for
multiple right-hand side vectors. Therefore, the fast direct
solver can be more efficient for solving the problems with
multiple right-hand side vectors.
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