
Boundary Element Solver for Coupled Conduction-Radiation Heat
Transfer in Nonhomogeneous Media

Yaochuang Han∗ and Yufeng Nie†

Northwestern Polytechnical University, Xi’an, 710129 Shaanxi, People’s Republic of China

and

Yijun Liu‡

University of Cincinnati, Cincinnati, Ohio 45221-0072

DOI: 10.2514/1.T5414

In the present Paper, a boundary element solver is developed for the simulation of coupled conduction-radiation

heat transfer in three-dimensional nonhomogeneous participating media. First, the boundary integral equations

for radiation heat transfer in nonhomogeneous participating media are formulated. By using a simple variable

transformation and with the aid of the Newton iterative scheme, the boundary integral equation for the nonlinear

energy equation is obtained. For this strongly coupled system, a two-level iterative scheme is developed. Then, the

boundary element method is adopted to discretize the resulting coupled system of integral equations. For the

nonconvex geometries, a developed element-subdivision technique is adopted to handle with the visibility factor

appearing in the radiative integral equations. Numerical examples show that the present algorithm is effective and

efficient.

Nomenclature

B = unit sphere in three-dimensional case
b = radiosity
Eb = blackbody emissive power
G = incident radiation
I = radiation intensity,W∕�m2 ⋅ sr�
Ib = blackbody intensity of radiation
i = irradiation
k = thermal conductivity,W∕�m ⋅ K�
n = unit outward normal vector
q = radiation heat flux, W∕m2

r = distance between two points, m
S = boundary of domain
T = temperature, K
V = computational domain
β = extinction coefficient, σa � σs, m

−1

ε = emissivity
ρ = surface reflectance
σ = Stefan–Boltzmann constant, 5.669 × 10−8 W∕�m2 ⋅ K4�
σa = absorption coefficient, m−1

σs = scattering coefficient, m−1

τ = transmissivity
ϕ = angle between incident direction and normal n
χ = visibility factor
Ω = single scattering albedo
ω = unit direction vector

I. Introduction

I T IS an indisputable fact that coupled conduction-radiation heat
transfer (CRHT) dominates the energy transport in various high-

temperature industrial applications, such as combustion chambers,
furnaces, the exhaust plume, and so on. In the practical engineering

environment, the distribution of the properties in the media are
always nonhomogeneous. However, in the last few decades, most of
the research for CRHT was carried out based on the homogeneous
media. As shown in the work by Li et al. [1], the spatial variation of
radiative property may significantly affect the radiative transfer, and
therefore a homogeneous medium is not always a proper assumption
in order to obtain accurate results for the radiation transport problems
in practical applications.
The boundary element method (BEM) is a well-established

numerical method, which is developed based on the boundary
integral equation. During the last few decades, it has received great
success in analyzing a large class of problems in science and
engineering, and the interest in its application is still growing. Heat
radiation is one of the physical phenomena governed by an integral
equation in essence. So, it is a natural idea that heat radiation is
simulated by the BEM in comparison to other numerical methods.
Unfortunately, the wealth of this interesting problems does not seem
to be favored by scholars, probably, in part, because of the inherent
disadvantages of the BEM. The application of the BEM in radiative
heat transfer analysis started in the 1990s. The first monograph was
published by Bialecki [2] in 1993. The BEM solver for coupled
conduction-radiation problems has been discussed in [3,4]. Qatanani
et al. [5] also adopted theGalerkin BEM to simulate the radiative heat
energy exchange in transparent media, and some mathematical
results were presented. However, in this literature, the scattering
effect is neglected. Themathematical difficulty involved in scattering
is substantial. Sun et al. [6] used the BEM to simulate thermal
radiation problems in a gray, absorbing, emitting, and isotropic
scattering medium. The Galerkin BEM was developed for the
computation of thermal radiation exchange in a diffuse, gray
enclosure by Li et al. [7].
The BEM is an effective technique for the linear homogeneous

boundary value problem with constant coefficients. How to solve
efficiently the nonlinear and nonhomogeneous problems has always
been a serious challenge for the BEM. To date, the research on this
topic can be divided into two types. The first type is to look for
fundamental solutions for the nonlinear and nonhomogeneous
problems, such as [8,9]. However, explicit fundamental solutions can
only be obtained for very limited problems. The generalized
fundamental solutions, which are thermal conductivity dependent,
were used by Kassab and Divo [10] to achieve boundary integral
equations for this class of problems. Their technique used a
generalized forcing function rather than the Dirac delta function to
derive the fundamental solutions. However, this technique is difficult
to handlewith the heat conduction equationwith the heat source term.
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Besides, this method also suffered some queries in [11,12]. The
Green function for heat conduction in an anisotropic nonhomogene-
ous medium, in which the conductivities vary exponentially in one
fixed but arbitrary direction, was constructed in [13]. Mikhailov [14]
used the specially constructed localized parametrices to obtain the a
localized boundary-domain integral or integrodifferential equation
for stationary heat transfer with variable coefficients. With the aid of
the radial integration method and the specially constructed
parametrix (Levi function), AL-Jawary and Wrobel [15] developed
a boundary-only integral equation technique for nonhomogeneous
heat conduction problems with variable coefficients.
Another alternative methodology was developed by using

fundamental solutions for linear homogeneous problems. In [16], a
novel simple boundary element technique was presented for dealing
with problems of potential flow in some special nonhomogeneous
media, in which the governing equations can be transformed to the
Laplace, Helmholtz, or modified Helmholtz equations. Gao [17] and
Yang et al. [18] adopted the Green function for Laplace’s equation
and the radial integral method to obtain the boundary integral
solution for nonhomogeneous heat conduction problems.
To the best of our knowledge, as far as analysis of CRHT in

nonhomogeneous media using the BEM is concerned, no study has
been reported so far. The present Paper is therefore aimed at extending
the application of the BEM to solve CRHTin three-dimensinonal (3D)
complex geometries containing a nonhomogeneous medium.
The Paper is organized as follows. In Sec. II, the boundary integral

equations for radiative transfer and conduction heat transfer are
derived. In Sec. III, the procedure of numerical implementation is
described in detail. Numerical examples are presented in Sec. IV. The
results of the numerical examples suggest that the pure BEMhave the
ability to handle the coupled radiation-conduction problems
effectively. Finally, some conclusions are presented.

II. Mathematical Formulas

Denote by V ⊂ R3 the bounded domain with boundary S. The
diffuse boundary is assumed, which means the surface of which the
outgoing intensity is independent of direction. Additionally, let
the media be gray; then the physical quantities are independent of the
wavelength.

A. Boundary Integral Equations for Heat Radiation

The radiative intensity at p along directionω can bewritten as, see
Fig. 1 [19],

I�p;ω� � I�r;ω�τ�r;p� �
Z
Lrp

H�r 0�τ�r 0;p� dL�r 0� (1)

where the source term is

H�r 0� � σa�r 0�Ib�r 0� �
σs�r 0�
4π

G�r 0� (2)

G�r 0� �
Z
B
I�r 0;ω� d�ω� (3)

Let σa�r 0�, σs�r 0� denote the absorption coefficient and scattering
coefficient of the media at r 0. Ib is the blackbody intensity of

radiation and is calculated by

Ib�r 0� �
1

π
Eb�r 0� (4)

where Eb denotes the blackbody emissive power and can be

computed from the Stefan–Boltzmann law

Eb�r 0� � σT4�r 0� (5)

where σ denotes the Stefan–Boltzmann constant and T�r 0� is the

temperature at r 0.
Functions τ�r;p� and τ�r 0;p� in Eq. (1) are termed trans-

missivities and are defined as

τ�r;p� � exp

�
−
Z
Lrp

β�r 0� dL�r 0�
�

(6)

τ�r 0;p� � exp

�
−
Z
Lr 0p

β�r 0 0� dL�r 0 0�
�

(7)

where β�r 0� denotes the extinction coefficient of the meida at r 0
and β � σa � σs.
The irradiatiation for any boundary point r is defined as

i�r� �
Z
nr⋅ω>0

I�r;ω� cosϕr dω (8)

where ϕr denotes the angle between the incident direction ω and the

normal nr.
Then, the radiative heat flux at the r in direction nr can be

obtained as

q�r� � εri�r� − εrEb�r� (9)

where εr denotes the emissivity at boundary point r.
The radiosity at boundary point r is obtained by

b�r� � εrEb�r� � ρri�r� (10)

where ρr denotes the reflexivity at r and is defined as ρr � 1 − εr.
Combining Eqs. (9) and (10), we have

b�r� � Eb�r� �
1 − εr
εr

q�r� (11)

Thanks to the diffuse boundary, the resulting intensity leaving the

surface is given by [19]

I�r� � b�r�∕π (12)

Then, the outgoing intensity can be evaluated as

I�r� � 1

π

�
Eb�r� �

1 − εr
εr

q�r�
�

(13)

Substitute Eq. (13) into Eq. (1), and the result reads

I�p;ω� � 1

π

�
Eb�r� �

1 − εr
εr

q�r�
�
τ�r;p�

�
Z
Lrp

H�r 0�τ�r 0;p� dL�r 0� (14)
Fig. 1 Illustration of radiative intensity at p in direction ω.
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With the aid of Eqs. (8), (9), and (14), the radiative heat flux can be

obtained as follows:

q�p�� εpEb�p� �
εp
π

Z
np⋅ω>0

�
Eb�r��

1− εr
εr

q�r�
�
τ�r;p�cosϕp dω

�
Z
np ⋅ω>0

�Z
Lrp

H�r 0�τ�r 0;p�dL�r 0�
�
cosϕp dω (15)

Using the geometrical relationship [20]

dω � cosϕr

jr − pjd−1 dS�r� (16)

and Eq. (2), Eq. (15) can be transformed as

q�p�� εpEb�p� �
εp
π

Z
S

�
Eb�r��

1− εr
εr

q�r�
�
τ�r;p�K1�r;p�dS�r�

� εp

Z
S

�Z
Lrp

H�r 0�τ�r 0;p�dL�r 0�
�
K1�r;p�dS�r� (17)

where

K1�r;p� �
cosϕr cosϕp

jr − pj2 χ�r;p� (18)

According to Eqs. (3), (14), and (16), the incident radiation is

calculated by

G�p� � 1

π

Z
S

�
Eb�r� �

1 − εr
εr

q�r�
�
τ�r;p�K2�r;p� dS�r�

�
Z
S

�Z
Lrp

H�r 0�τ�r 0;p� dL�r 0�
�
K2�r;p� dS�r� (19)

where

K2�r;p� �
cosϕr

jr − pj2 χ�r;p� (20)

The visibility factor χ in kernels K1 and K2, named the shadow

zone function, is defined as

χ�r;p� �
�
1; if r can be seen byp;
0; otherwise

Here, the statement “r can be seen by p” means that there is no

opaque material between r and p, (i.e., rp ∩ S � ∅).
Once the temperatures of both the medium and the bounding

surface are known, Eqs. (17) and (19) constitute a closed system of

equations to be solved about unknown quantities q and G. This
integral system is a form of integral equations for radiative transfer in

nonhomogeneous participating media with isotropic scattering.

B. Boundary Integral Equation for Heat Conduction

The steady-state energy conservation equation for conduction-

radiation heat transfer in nonhomogeneous media is given by [19]

−∇ ⋅ �k�p�∇T�p�� � 4σa�p�σT4�p� � σa�p�G�p�; p ∈ V

(21)

where k�p� denotes the thermal conductivity at p.

With the appropriate boundary condition,

T�p� � �T�p�; p ∈ S1;

k�p� ∂T�p�
∂n

� �q�p�; p ∈ S2

where �S1 ∪ �S2 � S and S1 ∩ S2 � ∅.
From the energy equation, it is obvious that the bridge linking

conduction and radiation is the incident radiation G.
To simulate Eq. (21) by the BEM, a simple variable transformation

technique was developed by Sutradhar and Paulino [16] in 2004.

First, a new variable is defined as

v�p� �
����������
k�p�

p
T�p� (22)

Then, we have

∇2v�p� �
�
∇2k�p�
2k�p� −

∇k�p� ⋅ ∇k�p�
4k2�p�

� ����������
k�p�

p
T�p�

�
����������
k�p�

p
∇ ⋅ �k�p�∇T�p�� (23)

Substituting Eq. (21) and the transformation Eq. (22) into Eq. (23),

we can obtain the following equation:

∇2v�p� �
�
∇2k�p�
2k�p� −

∇k�p� ⋅ ∇k�p�
4k2�p�

�
v�p�

�
����������
k�p�

p �
4σa�p�σ
k2�p� v4�p� − σa�p�G�p�

�
; p ∈ V (24)

The boundary condition of the original problem can be changed as

follows:

v�p� �
����������
k�p�

p
�T�p�; p ∈ S1;

∂v�p�
∂n

� 1

2k�p�
∂k�p�
∂n

v�p� − �q�p�����������
k�p�p ; p ∈ S2

Equation (24) is a semilinear partial differential equation. To adopt

the BEM to solve Eq. (24), an iterative scheme is necessary. Here, the

Newton iterative scheme is adopted, that is,

−∇2v�n�1��p�

�
�
∇2k�p�
2k�p� −

∇k�p� ⋅ ∇k�p�
4k2�p� � 16σσa�p�

k3∕2�p� �v�n��p��3
�
v�n�1��p�

� σa�p�
����������
k�p�

p �
12σ

k2�p� �v
�n��p��4 �G�n��p�

�
; p ∈ V (25)

where v�n� denotes the nth iterative solution.
Let

α�p� � ∇2k�p�
2k�p� −

∇k�p� ⋅ ∇k�p�
4k2�p� � 16σσa�p�

k3∕2�p� �v�n��p��3 (26)

g�p� � σa�p�
����������
k�p�

p �
12σ

k2�p� �v
�n��p��4 �G�n��p�

�
(27)

Then, Eq. (25) can be rewritten as

−∇2v�p� � α�p�v�p� � g�p�; p ∈ V (28)

Finally, Eq. (21) is transformed as a Helmholtz-type equation with

variable coefficients, that is, Eq. (28). Suppose that G�p; r� denotes
the fundamental solution of Laplace’s equation and v�p� is the

unknown function that satisfies Eq. (28). By the use of Green’s

second identity, the following equation is valid:
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Z
V
∇2vG − ∇2Gv dV �

Z
S

∂v
∂n

G −
∂G
∂n

v dS (29)

Applying Eq. (28), we obtain

Z
S

∂v
∂n

G −
∂G
∂n

v dS �
Z
V
∇2vG − ∇2Gv dV

�
Z
V
f�p�G�p; r� dV�p� � α�r�

2π
v�r� (30)

where α�r� is the internal angle with regard to the collocation point,
and

f�p� � g�p� − α�p�v�p� (31)

How to solve the domain integral in Eq. (30) may be the remaining

main issue here. In this Paper, we adopt the technique of subtraction

of singularity, that is,

Z
V
f�p�G�p; r� dV�p� �

Z
V
�f�p� − f�r��G�p; r� dV�p�

� f�r�
Z
V
G�p; r� dV�p� � I1V�r� � f�r�I2V�r� (32)

Because of the weak singularity in G, we have

lim
r→p

�f�p� − f�r��G�p; r� � 0 (33)

So, I1V can be calculated easily with no singularity by the use of the

local numerical scheme.
If there exists a function G��p; r�, which satisfies

∇2G� � G (34)

then Eq. (34) can be solved as

G��p; r� � 1

8π
r (35)

where r is the distance between p and r.
Substituting Eq. (34) into I2V and applying the divergence theorem,

then we have

I2V�r� � f�r�
Z
V
∇2G��p; r� dV�p�

� f�r�
Z
S

∂G��p; r�
∂n

dS�p� (36)

Then, we can obtain the boundary-domain integral equation for

Eq. (28) as

α�r�
2π

v�r� �
Z
S

∂v
∂n

G dS −
Z
S

∂G
∂n

v dS

−
Z
V
�f�p� − f�r��G�p; r� dV − f�r�

Z
S

∂G�

∂n
dS (37)

C. Discretization and Numerical Implementation

In this Paper, we adopt the constant element to discretize the

boundary. That is, the boundary is approximated by N plane

boundary elements fSigNi�1. The discrete points ri are collocated at

the center of Si for i � 1; : : : ; N. The boundary values are

approximated constantly over the boundary elements. To deal with

the line integral in Eqs. (17) and (19) and the domain integral in

Eq. (37), the whole domain is covered by a set of cuboid cells. The

temperature field and the incident radiation are approximated

constantly over these regular cells, and the interior collocation points
are located on the center of the cells.
Based on the previous discretization, Eqs. (17) and (19) can be

approximated as

q�pi��εpi
Eb�pi�

� εpi

π

XN
j�1

�
Eb�rj��

1−εrj
εrj

q�rj�
�Z

Sj

τ�r;p�K1�r;p�dS�r�

�εpi

XN
j�1

Z
Sj

�XL
k�1

H�r0k�
Z
Lk
rpi

τ�r0;p�dLrp�r0�
�
K1�r;p�dS�r� (38)

where pi is given (in turn) by all the boundary collocation points,

G�pi� �
1

π

XN
j�1

�
Eb�rj��

1− εrj
εrj

q�rj�
�Z

Sj

τ�r;p�K2�r;p�dS�r�

�
XN
j�1

Z
Sj

�XL
k�1

H�r 0k�
Z
Lk
rpi

τ�r 0;p�dLrp�r 0�
�
K2�r;p�dS�r� (39)

where pi is given (in turn) by all the interior collocation points.
The main issue for the simulation of Eqs. (17) and (19) is how to

deal with the visibility factor χ, as is shown in the kernelsK1 andK2.
In this Paper, a high-precision detecting algorithm developed in [21]
is adopted. By using this algorithm, the shadowzones can be captured
accurately.
Remark 1: The detecting algorithm in [21] adopts element

refinement strategy. The subdivision is terminatedwhen the area of the
produced subelement reaches a preset minimum value. Theoretically,
this algorithm can capture the shadow zone exactly when the preset
minimum value approximates zero.
The domain integral I1V in Eq. (37) can be approximated as

I1V�r� ≃
XM
j�1

�f�pj� − f�r��G�pj; r�Sj (40)

where Sj � ∫ Vj
dV, and pj denotes the interior collocation point

located in cell Vj.

Then, the discrete version of Eq. (31) can be expressed as

α�ri�
2π

v�ri��
XN
j�1

q�rj�
Z
Sj

G�rj;r�dS�r�−
XN
j�1

v�rj�
Z
Sj

∂G�rj;r�
∂n

dS�r�

�
XM
k�1

�f�pk�−f�ri��G�pk;ri�Sk�
XN
j�1

Z
Sj

∂G��rj;r�
∂n

dS (41)

where ri is given (in turn) by all the boundary and interior collocation
points.
When constant elements are used, all the singular integrals in

Eq. (41) can be evaluated analytically (see the Appendix).
After applying the corresponding boundary condition to Eq. (41),

we can obtain the discretization system

Ax � b (42)

which should be solved to obtain the unknown entries of v on the
boundary and in the interior and ∂v∕∂n on the boundary.
Because of the strong coupling nature, the coupled conduction-

radiation heat transfer systemwould better be solved by adopting the
iterative technique. Additionally, because the resulting discrete
system of Eqs. (17) and (19) is typically a large size, direct solution
methods are impractical. Another iterative method is suggested to
solve Eqs. (17) and (19). Then, the two-level iterative mode is
adopted to simulate this coupled heat transfer system. Given an initial
temperature field and incident radiation field, Eqs. (17) and (19) are
solved iteratively.Using the convergent incident radiation, the energy
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equation is solved to update the temperature field. Repeat this
procedure until the difference between the temperature field of the
two iterations is less than a preset tolerance. A detailed flow diagram
of the present algorithm is shown in Fig. 2.

III. Numerical Examples

A. Example 1

A classical unit cube enclosing an isothermal, absorbing, emitting,
and isotropically scatteringmedium is considered. All the surfaces of
the enclosure are cold and black, so there is no emission or reflection
from the boundaries. Radiative properties in the medium are
influenced by a shaped optical thickness for which the extinction
coefficient varies according to the relation

β�x; y; z� � 0.9�1–2jxj��1–2jyj��1–2jzj� � 0.1 �m−1�

where the coordinate orgin lies at the cube center.
In this example, the boundary of enclosure is discretized with 486

boundary square elements. The inner of the geometry is covered by a
9 × 9 × 9 orthogonal mesh of cubic subvolumes. The results of
dimensionless radiative heat flux are represented and compared with
existing results in Tables 1 and 2 [22–24].

B. Example 2

This test case deals with the 3DL-shaped enclosure (Fig. 3), which
was previously investigated by [22,25]. All the walls are cold and
black with an emissive power equal to 0.25. An isothermal,
absorbing, emitting, and isotropically scattering medium, with unity

blackbody emissive power, is assumed. The extinction coefficient

varies according to the expressions

x ≤ −y: β�x; y; z�
� 0.9�1.5� x��1–2jyj��1–2jzj�∕�1.5 − y� � 0.1 �m−1�;

x > −y: β�x; y; z�
� 0.9�1–2jxj��2.5 − y��1–2jzj�∕�2.5� x� � 0.1 �m−1�

In simulation, the boundary of enclosure is discretized with 882

boundary linear elements. The inner part of the geometry is covered

by a 14 × 20 × 7 orthogonal mesh of cubic subvolumes. The results

of dimensionless radiative heat flux along the two linesAA andBB, as
shown in Fig. 3, are represented and compared with existing results

in Fig. 4.

C. Example 3

Radiative heat transfer in cylindrical media is important in various

industrial applications. So, the cylindrical geometry, as is shown in

Fig. 5, is considered in this example. The parameters are presented in

Table 3, in which r �
��������������������
�x2 � y2�

p
and ϵ1, ϵ2, and ϵ3 denote the

emissivity of the bottom surface, top surface, and side surface,

respectively. The current results are compared with previous results

[26,27] in Fig. 6. The results in [26,27] are obtained by calculating the

Fig. 2 The algorithm flow.

Table 1 Surface heat fluxes at (−0.5, 0, z)

Ω � 0

z
Monte Carlo
method [22]

Discrete
transfer

method [22]
YIX
[23]

Finite
element

method [24] BEM

	4∕9 0.10857 0.10967 0.10872 0.10743 0.10358
	3∕9 0.14012 0.14107 0.14171 0.13759 0.13558
	2∕9 0.16566 0.16645 0.16619 0.16255 0.16116
	1∕9 0.18468 0.18543 0.18552 0.18049 0.17977
0 0.19239 0.19286 0.19260 0.18760 0.18696

Fig. 3 3D L-shaped geometry and the coordinate origin positioned at
the center of the corner diagonal.

Table 2 Surface heat fluxes at (−0.5, 0, z)

Ω � 0.9

z
Monte Carlo
method [22]

Discrete
transfer

method [22]
YIX
[23]

Finite
element

method [24] BEM

	4∕9 0.01213 0.01217 0.01214 0.01193 0.01156
	3∕9 0.01573 0.01574 0.01589 0.01536 0.01519
	2∕9 0.01867 0.01870 0.01877 0.01826 0.01818
	1∕9 0.02104 0.02094 0.02107 0.02037 0.02038
0 0.02182 0.02182 0.02192 0.02120 0.02123
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similar integral form of radiative heat transfer. By these comparisons,

the effectiveness and accuracy of our algorithm are further verified.

D. Example 4

In this subsection, the coupled conduction-radiation heat transfer

in 3D homogeneous participating media is simulated. The unit cubic

geometry is considered again. The bottom surface of the cube is

maintained at the high temperature of Th � 1000 K, while the other
faces are Tc � 0.5Th. The geometry is shown in Fig. 7. The

dimensionless temperature T��� T∕Th� along centerline A1A2 is

presented and compared with the existing results in Fig. 8 [28–30].

From the comparison results in Fig. 8, the present BEMsolver is an

accurate and reliable numerical technique for the simulation of

coupled conduction-radiation heat transfer problems.
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Fig. 4 Surface radiation heat flux at a) the A–A line and b) the B–B line (MCM,Monte Carlomethod; DT, discrete transfermethod; FVM, finite volume
method).

Table 3 Case conditions for continuous property change
3CD solutions

Case Geometry Medium property Surfaces

1 2R � L � 1 β � 1, Ib � 1, Ω � 0.5 ϵ1 � 1, ϵ2 � 1,
ϵ3 � 0.5�1 − sinϕ�

2 R � L � 1 β � 1, Ib � 1,
Ω � 1–0.75r∕R

ϵ1 � 1, ϵ2 � 1,
ϵ3 � 0.5�1 − sinϕ�

Fig. 5 The cylindrical geometry.
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Fig. 6 The distribution of surface radiation heat flux qr at midplane z � 0.5L.

Fig. 7 The unit cube geometry.
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E. Example 5

This example is assigned to verify the ability of our present

BEM solver for coupled radiation-conduction heat transfer in 3D

nonhomogeneous participating media. The problem geometry is

shown in Fig. 9a. The bottom boundary is at higher temperature

Tref � 1000 K, and all the others are at the same lower temperature

Tc � 500 K. The emissivity of the boundary is fixed as 0.5. The

extinct coefficient and the thermal conductivity vary as

β�x; y; z� � ez log 9; k�x; y; z� � 5ez log 9

The dimensionless radiative heat flux q�r �� qr∕�σT4
ref�� and

dimensionless conduction flux q�c �� qc∕�σT4
ref�� along AB, AC, and

CD, as shown in Fig. 9b, are simulated. These data are presented in

Table 4. From these results, an obvious fact is that the radiative heat

flux increases as the temperature rises.
Additionally, the dimensionless temperature T��� T∕Tref� along

the centerline EF is also calculated. From Fig. 10a, it is found that

there are no significant differences between two different grid levels,

which are 726 boundary elements and 1350 boundary elements,

respectively. This suggests that the BEM solver for the simulation of

coupled radiation-conduction heat transfer is accurate and stable.

Besides, the cloud map of the resulted temperature field is plotted in

Fig. 10b.
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Fig. 8 Effect of various parameters on centerlineA1A2 temperature along the z direction at x � 0.5 and y � 0.5 of the cubical enclosure (NEM, natural
element method).

Fig. 9 Geometry illustration: a) the unit cube geometry and b) the
illustration of line AB, AC, CD, EF.

Table 4 The dimensionless heat fluxes

AB line AC line CD line

y q�r q�c z q�r q�c y q�r q�c
0.1 −0.4026 −0.3346 0.1 0.1325 0.3014 0.1 0.0136 0.0763
0.3 −0.3879 −0.2395 0.3 0.0702 0.1807 0.3 0.0181 0.1321
0.5 −0.3841 −0.2290 0.5 0.0342 0.1397 0.5 0.0197 0.1501
0.7 −0.3879 −0.2395 0.7 0.0160 0.1052 0.7 0.0181 0.1321
0.9 −0.4026 −0.3346 0.9 0.0084 0.0632 0.9 0.0136 0.0763
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IV. Conclusions

The boundary element method (BEM) solver is developed for the
predictions of coupled conduction-radiation heat transfer in 3D
nonhomogeneous participating media. Three benchmark problems,
two belonging to the class of pure radiative heat transfer situation and
the third under the class of coupled heat transfer in homogeneous
media, were considered to verify the effectiveness of the present
algorithm. Then, a 3D coupled conduction-radiation heat transfer in
cubic geometry including nonhomogeneous media was simulated by
the present BEM solver. For the last example, the numerical results
for the percent of radiative heat flux and conduction heat flux and the
temperature distribution were given. Although only a kind of
situation is simulated, the present algorithm can be applied to
arbitrary nonhomogeneous media.
This Paper only considers the solution for the radiative heat

transfer in isotropic scattering media. When considering the
anisotropic scattering, the formulas (17) and (19) are needed to do
some revisions. It is believed that theBEMpresented in this Paper can
be applied to handle this problem, although there are some
improvements in the detailed algorithm. One of the planned future
works will be devoted to extending this Paper’s algorithm to the
anisotropic scattering.
Because of the dense resulting coefficient matrices, the efficient of

the BEMhas been a serious problem for analyzing large-size models.
Fortunately, the fast algorithm, such as the fast multipole method, has
been widely introduced in the simulation of the BEM, which makes
the computation for large-scale problems possible. So, this is also one
of subjects of planned furture research work.

Appendix: Analytical Integration of Kernels in Eq. (41)

The source point x and an arbitrary boundary elementSk are shown
in Fig. 11a. The geometry relation between x and one of edge of Sk is
shown in Fig. 11b.

First, a local Cartesian coordinate system is introduced.We denote
the projection of the source point x onto the plane of the elementSk by
O 0. Take O 0 as the origin of the local coordinate system. The basis
vector e3 is chosen to be equal to the unit outward normal vector ofSk.
The basis vector e1 is an arbitrary unit vector in the plane of Sk. The
last basis vector e2 is chosen in such away that forms the basis e1, e2,
e3. Note, too, that the direction of travel on ∂Sk is assumed to be
counterclockwise.
The integrations of the three kernels on element Sk can be

evaluated analytically as

Z
Sk

G�x; y� dS�y� � 1

4π

�X4
n�1

sgnn

�
Ln ln

�
T2 � r2
T1 � r1

�

� h arctan
hT2

Lnr2
− h arctan

hT1

Lnr1

�
− α 0jhj

�
;

Z
Sk

∂G�x; y�
∂n

dS�y� � −
1

4π

�X4
n�1

sgnn

�
arctan

�
hT2

Lnr2

�

− arctan

�
hT1

Lnr1

��
− sign�h�α 0

�
;

Z
Sk

∂G��x; y�
∂n

dS�y� � −
h

8π

�X4
n�1

sgnn

�
Ln ln

�
T2 � r2
T1 � r1

�

� h arctan
hT2

Lnr2
− h arctan

hT1

Lnr1

�
− α 0jhj

�

where

sgni � sign��yk −O 0� ⋅ ni�;

α 0 �
(
0; O 0 ∈= �Sk;

α; O 0 ∈ �Sk

Fig. 10 Temperature distribution: a) the temperature distribution along the centerline EF and b) the temperature field at the plane x � 0.5.

Fig. 11 Analytical integration on an arbitrary quadrilateral element.
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α is the internal angle with regard to y on the element, and ni denotes
the outward normal vector of ith edge of the element.
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