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The progress of the boundary element method (BEM) for solving acoustic wave problems is reviewed in this paper.

The BEM is in a unique position among all the numerical methods available for solving acoustic wave problems.

During the last few decades, research on the acoustic BEM has overcome many of the difficulties, and it is now

an accurate and efficient numerical method in modeling many large-scale acoustic problems. This paper focuses

on reviewing the dual boundary integral equation (BIE) formulation pioneered by Burton and Miller, treatment

of the singular integrals involved in the BIEs, discretization considerations, and fast solution methods for solving

the acoustic BEM equations. New directions in the research on the acoustic BEM are also discussed, with a few

examples to show the potentials of the BEM in modeling aeroacoustics, acoustic metamaterials, bioacoustics, and

sound rendering in computer animations.
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. Introduction

Applying the boundary element method (BEM) based on the bound-

ry integral equation (BIE) is a natural way to solve wave propagation

roblems, including acoustic, elastic and electromagnetic waves. The

EM is especially attractive when the waves propagate in an infinite

omain. With the BEM, the discretization with elements happens only

n the surfaces of a vibrating structure (like a rotating wind turbine)

r a still body (like a dolphin impinged upon by a sonar wave). For

nfinite or exterior domain problems, the radiation conditions at infin-

ty are satisfied automatically by the BIE. There is no need to truncate

he problem domain and implement other type of infinite elements be-

ond the truncated domain as with other domain based numerical meth-

ds. With the advances in the research and development in the last few

ecades, the BEM for acoustic wave problems has matured and become

he preferred method in the numerical tool box for solving acoustic wave

roblems. 

The governing equation for linear time-harmonic acoustic wave

roblems is the Helmholtz equation, which has been solved by using

he BIE and BEM for at least five decades. Some of the early work in

his field can be found in Refs. [1–15] . Especially, the work by Burton

nd Miller in Ref. [2] has been regarded as a classic that has gained the

opularity gradually over the year. The Burton–Miller BIE formulation,

r the dual BIE formulation, provides a very elegant way to overcome

he so-called fictitious frequency difficulties existing in the conven-

ional BIE for exterior acoustic wave problems. Burton and Miller’s BIE
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ormulation has been the foundation for many other works on the acous-

ic BEM (e.g., Refs. [16–34] ) and the related singular boundary method

SBM) [35] . In this paper, we will review the dual BIE formulation and

ighlight some major results in the research on the acoustic BEM. 

The paper is organized as follows: In Section 2 , we first review the

ual BIE formulation for acoustic wave problems. In Section 3 , we dis-

uss a few issues associated with the dual BIE formulation. In Section 4 ,

e discuss the fast solution methods for solving the BEM equations. In

ection 5 , we discuss some future directions of research and show some

otential applications of the acoustic BEM in new areas of interests with

 few examples. The paper concludes with a summary in Section 6 . 

. The dual BIE formulation

Consider an acoustic domain E either inside or outside an enclosed

oundary surface S (The case of the latter is shown in Fig. 1 ). The gov-

rning equation in the frequency domain for linear acoustic wave prob-

ems is the following Helmholtz equation [36] : 

 

2 𝜙 + 𝑘 2 𝜙 + 𝑄𝛿
(
𝐱, 𝐱 𝑄 

)
= 0 , ∀𝐱 ∈ 𝐸, (1)

here 𝜙= 𝜙( x , 𝜔 ) is the complex function representing the acoustic pres-

ure, Q 𝛿( x, x Q ) represents a point source located at x Q (inside domain

 ) with Q representing the intensity of the source and 𝛿( x, x Q ) being the

irac- 𝛿 function, k = 𝜔 / c is the wavenumber with c being the speed of

ound in the acoustic medium, and 𝜔 is the circular frequency. 
outhern University of Science and Technology, Shenzhen, China. 
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Fig. 1. The acoustic domain E , body V , and boundary S .
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The boundary conditions (BCs) for the Helmholtz equation include

he following three cases: 

(1) Sound pressure is given: 

𝜙 = 𝜙, ∀𝐱 ∈ 𝑆 (2)

(2) Particle velocity is given: 

𝑞 ≡ 𝜕𝜙

𝜕𝑛
= 𝑞 = 𝑖𝜔𝜌𝑣 𝑛 , ∀𝐱 ∈ 𝑆 (3)

(3) Impedance of the surface is given: 

𝜙 = 𝑍 𝑣 𝑛 , ∀𝐱 ∈ 𝑆 (4)

here the overbar indicates a given value, 𝜌 is the mass density of the

coustic medium, v n is the normal velocity, and Z is the specific acoustic

mpedance. 

For exterior (infinite domain) acoustic wave problems, in addition

o the BCs on boundary S , the field at infinity must satisfy the following

ommerfeld radiation condition: 

lim 

 →∞

[ 
𝑅 

|||| 𝜕𝜙𝜕𝑅 − 𝑖𝑘𝜙
||||
] 
= 0 , (5)

here R is the radius of a large sphere covering the structure and 𝜙 is

ither the radiated wave in a radiation problem or the scattered wave

n a scattering problem. 

Applying the Green’s second identity and the fundamental solutions

ssociated with the governing Eq. (1) , we can derive the following con-

entional boundary integral equation (CBIE) formulation [37] : 

 ( 𝐱 ) 𝜙( 𝐱 ) = ∫𝑆
[
𝐺 ( 𝐱 , 𝐲 , 𝜔 ) 𝑞 ( 𝐲 ) − 𝐹 ( 𝐱 , 𝐲 , 𝜔 ) 𝜙( 𝐲 ) 

]
𝑑𝑆 ( 𝐲 ) 

+ 𝜙𝐼 ( 𝐱 ) + 𝑄𝐺 

(
𝐱, 𝐱 𝑄 , 𝜔 

)
, (6)

here the constant 

 ( 𝐱 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
1 , ∀𝐱 ∈ 𝐸, 

1∕2 , ∀𝐱 ∈ 𝑆 ( smooth around 𝐱 ) , 
0 , ∀𝐱 ∉ 𝐸 ∪ 𝑆; 

(7)

I ( x ) is the incident wave present for scattering problems, and G and

 are the fundamental solutions (kernel functions) for the Helmholtz

quation. For example, for 3-D acoustic wave problems, the two kernels

re given by: 

 ( 𝐱 , 𝐲 , 𝜔 ) = 

1
4 𝜋𝑟 

𝑒 𝑖𝑘𝑟 , (8)

 ( 𝐱 , 𝐲 , 𝜔 ) ≡ 𝜕𝐺 ( 𝐱 , 𝐲 , 𝜔 ) 
𝜕𝑛 ( 𝐲 ) 

= 

1
4 𝜋𝑟 2 

( 𝑖𝑘𝑟 − 1 ) 𝑟 , 𝑗 𝑛 𝑗 ( 𝐲 ) 𝑒 𝑖𝑘𝑟 , (9)
54
n which r is the distance from the source point x to the field point y

 Fig. 1 ). Eq. (6) (with x inside domain E ) is the representation integral

f the solution 𝜙 inside domain E for both exterior and interior domain

roblems. Once the values of both 𝜙 and q are known on S , Eq. (6) can

e applied to calculate 𝜙 everywhere in E , if needed. 

The CBIE given in Eq. (6) (with x on boundary S ) can be used to

olve for the unknown 𝜙 and q on S . The integral with the G kernel is a

eakly singular integral, whereas the one with the F kernel is a strongly

ingular integral. A weakly singular form of the CBIE for acoustic wave

roblems is given by [37–39] : 

𝜙( 𝐱 ) + ∫𝑆
[
𝐹 ( 𝐱 , 𝐲 , 𝜔 ) − 𝐹 ( 𝐱, 𝐲 ) 

]
𝜙( 𝐲 ) 𝑑𝑆 ( 𝐲 ) + ∫𝑆 𝐹 ( 𝐱, 𝐲 ) 

[
𝜙( 𝐲 ) − 𝜙( 𝐱 ) 

]
𝑑𝑆 ( 𝐲 )

= ∫𝑆 𝐺 ( 𝐱 , 𝐲 , 𝜔 ) 𝑞 ( 𝐲 ) 𝑑𝑆 ( 𝐲 ) + 𝜙𝐼 ( 𝐱 ) + 𝑄𝐺 

(
𝐱, 𝐱 𝑄 , 𝜔 

)
, ∀𝐱 ∈ 𝑆, (10) 

n which 𝐹 ( 𝐱, 𝐲 ) = 𝐹 ( 𝐱 , 𝐲 , 0 ) is the static F kernel for potential problems,

= 0 for a finite domain and 𝛾 = 1 for an infinite domain. All three inte-

rals in BIE ( 10 ) are now at most weakly singular and can be handled

eadily by numerical integration schemes. 

It is well known that the CBIE has two defects. One is that when the

BIE is used for solving exterior acoustic wave problems, the solutions

re nonunique at a set of fictitious eigenfrequencies associated with the

esonant frequencies of the corresponding interior acoustic problems

2] . This difficulty is referred to as the fictitious eigenfrequency diffi-

ulty (FED) [21] . This nonuniqueness is purely a drawback of the math-

matical formulation of the problems and does not have any physical

ignificance. Another defect of the CBIE is that when it is used in mod-

ling acoustic wave problems in domains (either interior or exterior)

ontaining thin shapes, the two equations from both sides of the thin

hape are identical in the limit as the thickness approaches to zero. This

s the so-called thin-shape breakdown (TSB) difficulty [12] , which is

imilar to the difficulty in using the elastostatic CBIE alone in solving

rack problems in solids [40,41] . 

A remedy to both above two difficulties (FED and TSB) in the CBIE

s to use the normal derivative BIE combined with the CBIE. Taking the

erivative of integral representation ( 6 ) with respect to the normal at

he point x and letting x approach S , we obtain the following so-called

ypersingular BIE (HBIE) for acoustic wave problems [21,37] : 

 ̃( 𝐱 ) 𝑞( 𝐱 ) = ∫𝑆
[
𝐾( 𝐱 , 𝐲 , 𝜔 ) 𝑞( 𝐲 ) − 𝐻( 𝐱 , 𝐲 , 𝜔 ) 𝜙( 𝐲 ) 

]
𝑑𝑆( 𝐲) + 𝑞 𝐼 ( 𝐱) 

+ 𝑄𝐾( 𝐱, 𝐱 𝑄 , 𝜔 ) , ∀𝐱 ∈ 𝑆, (11)

here ̃𝑐 ( 𝐱) = 1∕2 if S is smooth around x , and q I ( x ) is the normal deriva-

ive of the incident wave. For 3-D problems, the two new kernels are

iven by: 

 ( 𝐱 , 𝐲 , 𝜔 ) ≡ 𝜕𝐺 ( 𝐱 , 𝐲 , 𝜔 ) 
𝜕𝑛 ( 𝐱 ) 

= − 

1
4 𝜋𝑟 2 

( 𝑖𝑘𝑟 − 1 ) 𝑟 , 𝑗 𝑛 𝑗 ( 𝐱 ) 𝑒 𝑖𝑘𝑟 , (12)

 ( 𝐱 , 𝐲 , 𝜔 ) ≡ 𝜕𝐹 ( 𝐱 , 𝐲 , 𝜔 ) 
𝜕𝑛 ( 𝐱 ) 

= 

1
4 𝜋𝑟 3 

{
( 1 − 𝑖𝑘𝑟 ) 𝑛 𝑗 ( 𝐲 ) 

+ 

[
𝑘 2 𝑟 2 − 3 ( 1 − 𝑖𝑘𝑟 ) 

]
𝑟 , 𝑗 𝑟 , 𝑙 𝑛 𝑙 ( 𝐲 ) 

}
𝑛 𝑗 ( 𝐱 ) 𝑒 𝑖𝑘𝑟 . (13) 

In HBIE ( 11 ), the integral with the kernel K is a strongly singular

ntegral, whereas the one with the H kernel is a hypersingular integral.

imilarly, if we introduce the static kernel and a two-term subtraction,

nd apply the identities satisfied by the static kernels [37–39] , we can

how that HBIE ( 11 ) can be written in the following weakly singular

orm [21,23] : 

𝑞 ( 𝐱 ) + ∫𝑆
[
𝐻 ( 𝐱 , 𝐲 , 𝜔 ) − 𝐻 ( 𝐱, 𝐲 ) 

]
𝜙( 𝐲 ) 𝑑𝑆 ( 𝐲 ) 

+ ∫𝑆 𝐻 ( 𝐱, 𝐲 ) 
[ 
𝜙( 𝐲 ) − 𝜙( 𝐱 ) − 

𝜕 𝜙

𝜕 𝜉𝛼
( 𝐱 ) 

(
𝜉𝛼 − 𝜉𝑜𝛼

)]
𝑑𝑆 ( 𝐲 ) 

+ 𝑒 𝛼 𝑘 
𝜕 𝜙

𝜕 𝜉
( 𝐱 ) ∫

[
𝐾 ( 𝐱, 𝐲 ) 𝑛 𝑘 ( 𝐲 ) + 𝐹 ( 𝐱, 𝐲 ) 𝑛 𝑘 ( 𝐱 ) 

]
𝑑𝑆 ( 𝐲 ) 
𝛼 𝑆
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[  

e  

H  
= ∫𝑆 
[
𝐾 ( 𝐱 , 𝐲 , 𝜔 ) + 𝐹 ( 𝐱, 𝐲 ) 

]
𝑞 ( 𝐲 ) 𝑑𝑆 ( 𝐲 ) 

− ∫𝑆 𝐹 ( 𝐱, 𝐲 ) 
[
𝑞 ( 𝐲 ) − 𝑞 ( 𝐱 ) 

]
𝑑𝑆 ( 𝐲 ) + 𝑞 𝐼 ( 𝐱 ) + 𝑄𝐾 

(
𝐱, 𝐱 𝑄 , 𝜔 

)
, ∀𝐱 ∈ 𝑆,

(14

here an overbar indicates the corresponding static kernel, 𝜉𝛼 ( 𝛼 = 1

or 2-D and 𝛼 = 1, 2 for 3-D) are local coordinates in the tangential di-

ections at x ∈ S and e 𝛼 k = 𝜕 𝜉𝛼/ 𝜕 x k . All the integrals in ( 14 ) are now

t most weakly singular if 𝜙 has continuous first derivatives [21,23] .

he smoothness requirement on the density functions for the HBIE is

iscussed in detail in Refs. [42,43] and a possible relaxation of this re-

uirement is discussed in Ref. [23] . 

It is interesting to note that HBIE ( 11 ) also suffers from the fictitious

igenfrequency difficulty when it is used alone in solving exterior acous-

ic wave problems, nevertheless at a different set of fictitious eigenfre-

uencies [21] . However, the HBIE can be applied alone in solving thin-

hape problems using a single surface BEM model (e.g., scattering from

 thin rigid screen in an acoustic medium) [40,44] . 

A dual BIE formulation given by Burton and Miller in Ref. [2] using

 linear combination of CBIE ( 6 ) and HBIE ( 11 ) can be written symbol-

cally as 

BIE + 𝛽 HBIE = 0 , (15)

here 𝛽 is a coupling parameter. This dual BIE formulation is also called

HBIE or composite BIE formulation [21,23] for acoustic wave prob-

ems. It was shown by Burton and Miller that the dual BIE in ( 15 ) will

ield unique solutions at all frequencies, if the value of 𝛽 is a complex

umber (i.e., the imaginary part of 𝛽 is not zero). However, Burton and

iller did not suggest the value or range of values for the coupling pa-

ameter 𝛽. 

Another advantage of the Burton-Miller dual BIE formulation is that

t can be applied to model acoustic problems with thin shapes, without

he TSB difficulty. It has been shown that there is no degeneracy in the

ual BIE formulation, contrary to the case of using the CBIE alone, for

odeling wave problems in an elastic domain with thin shapes [45] ,

hich is also true for acoustic wave problems. Therefore, the same dual

IE formulation can be applied uniformly to an acoustic BEM problem to

rovide unique solutions in cases of exterior domain problems and/or

omains containing thin shapes, like thin screens, plates or shells, or

ind turbine blades. There is no need to switch to a different BIE for-

ulation, such as the single surface BIE or indirect BIE formulations for

hin-shape problems. 

It should be pointed out that a recent and more elaborate study re-

orted in Ref. [32] by Zheng, et al., shows that the Burton-Miller BIE for-

ulation actually shifts the fictitious eigenfrequencies from the real axis

nto the complex plane. This can cause new fictitious eigenfrequency

ifficulties when one start using complex wavenumbers in the acoustic

EM for exterior problems, for which the Burton–Miller dual BIE for-

ulation may fail. However, it appears that for acoustic BEM with real

avenumbers, the Burton-Miller BIE formulation is still the best choice

o far for solving exterior acoustic problems. To remove all the fictitious

igenfrequencies from the entire complex plan, a new BIE with double

erivatives of the CBIE may need to be employed. 

The BIE formulations presented above are based on the frequency

omain approach to solving acoustic wave problems, which are ade-

uate for studying harmonic responses of acoustic fields. For time do-

ain acoustic responses, inverse Fourier transform can be applied to

btain the time domain solutions from the frequency domain solutions.

owever, for many acoustic problems with transient responses, direct

ime domain BEM will be advantageous, such as in predicting noises due

o short impact, squeak, or aerodynamic loads. Regarding the time do-

ain BEM for acoustic problems and discussions on the related issues,

ome research works can be found in Refs. [46–51] . 
55 
. Related issues with the dual BIE formulation 

.1. Choice of the coupling constant 𝛽

For the Burton–Miller BIE formulation, it has been suggested that the

oupling parameter can be chosen as follows [6,8,17,32] : 

= ± 𝑖 ∕ 𝑘, (16)

here i is the unit imaginary number, k is the wavenumber, and the

election of plus or minus sign depends on the time factor used [52] and

xactly how the CBIE and HBIE terms are added together. This choice

as been adopted in most of the acoustic BEM work based on the dual

IE ( 15 ). The above expression was proposed based on the analysis and

umerical tests using a unit sphere [6,8,17,32] . 

Another choice of the coupling parameter 𝛽 can be based on a dimen-

ional analysis. Noting that the HBIE is obtained by taking derivative of

he CBIE with respect to a normal direction, which has a length unit,

he following choice for the coupling parameter 𝛽 can be applied: 

= ± 𝑖ℎ, (17)

here h is a typical element size in the BEM mesh. In this way, all

erms in the dual BIE formulation ( 15 ) will have a consistent unit (acous-

ic pressure) and more balanced contributions from both the CBIE and

BIE. As the element size should decrease with the increase of the fre-

uency (and thus the wavenumber k ), in order to follow the rule of

humb that there should be 6–10 elements per wavelength, the effect of

he wavenumber k or frequency is still present implicitly in parameter 𝛽

s given by ( 17 ). This choice of the coupling parameter has been found

o yield BEM matrices with better conditioning and more stable results

ith the dual BIE formulation for complicated domains, as well as sim-

ler ones like a sphere. All numerical examples presented in this paper

re based on this selection of parameter 𝛽. 

.2. Dealing with the hypersingular integral 

Dealing with the so-called hypersingular integral with the H kernel

n HBIE ( 11 ) has been a troublesome issue in the application of the dual

IE formulation. There are numerous approaches proposed in the liter-

ture (see, e.g., Refs. [18,53,54] ). Here we emphasize the idea that the

est way to deal with the hypersingular integrals is to avoid direct nu-

erical integration whenever possible. First, there are weakly-singular

orm of the hypersingular BIE as given in Eq. (14) . When higher-order

lements are used, this form of the HBIE can be used in the discretiza-

ion [23] . Second, for constant elements, the singular and hypersingular

ntegrals can be evaluated directly [55–57] using either analytical inte-

ration or the line integral methods [16,58,59] . Third, the one-term or

wo-term subtraction techniques can be used locally (on one or a few

lements surrounding the collocation point) to regularize the hypersin-

ular integral and then use analytical integration or line integral ap-

roach to compute the added back terms [24,44,58] . For constant and

inear elements, the added back terms (with the static kernel for poten-

ial problems) can be integrated analytically [60,61] . For higher-order

lements (quadratic and above), some type of numerical integration will

eed to be applied even after the one-term or two-term subtractions. 

.3. Choice of the type of elements 

Use of the HBIE in the dual BIE formulation introduced a new trou-

lesome issue in the BEM implementation. That is, how to meet the

moothness requirement on the density function [42,43] ? Theory re-

uires that the density function of the HBIE should be C 

1, 𝛼 continuous

ocally (i.e., with Holder-continuous first derivatives) in order for the

ypersingular integral to converge in the sense of Hadamard finite part

43] . This excludes, in theory, the use of conforming C 

0 boundary el-

ments (linear, quadratic, cubic and so on) in the discretization of the

BIE. Use of the C 

1 continuous Overhauser elements [20,62,63] was
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ttempted with the dual BIE formulation, as well as the nonconforming

uadratic elements [20,21,58] for which the smoothness requirement is

et at the collocation point. Both types of elements were found to be dif-

cult to use and not efficient in computation. The use of conforming C 

0 

uadratic elements [23] was also attempted with the dual BIE formula-

ion, on the premise that the smoothness requirement can be relaxed to

iece-wise C 

1, 𝛼 continuity. However, it was found that this approach is

ore troublesome in implementation (for example, the corner problem

ill show up) and not efficiency in computation. 

The best choice of the type of elements to use with the dual BIE

ormulation seems to be the constant triangular and quadrilateral ele-

ents. The constant elements are nonconforming elements, for which

he smoothness requirement is satisfied locally. The corner problem is

lso avoided with constant elements. For wave problems, the concerned

ata points are often not on the boundary, but away from the boundary

here elements are used in the discretization. Therefore, the accuracy

f the results at these far-away field points can be achieved using con-

tant elements. It is also relatively easy to implement fast solution meth-

ds with constant elements, for which integrals can be either calculated

nalytically or numerically with some simple quadrature. The use of

onstant elements with the dual BIE formulation has become a common

ractice in the research of the acoustic BEM in the last decade, especially

ith the fast solution methods (see, e.g., Refs. [24,25,27–30] ). 

. Fast solution methods 

The most important advances in the research on the acoustic BEM in

he last three decades are the rapid progresses in solution methods for

olving the BEM equations [64] . These so-called fast solution methods

nclude the fast multipole method (FMM), adaptive cross approximation

ACA) method, and the fast direct solvers. 

.1. Fast multipole method 

The fast multipole method was pioneered by Rokhlin and Greengard

47,65–67] and has been extended to solving the Helmholtz equation for

bout three decades (for earlier works, see, e.g., Refs. [24,68–83] and

eviews in [47,64] ). The main idea of the fast multipole BEM is to apply

terative solvers (such as GMRES [84] ) to solve the BEM equations and

se the FMM to accelerate the matrix-vector multiplication (the BEM

oefficient matrix with the solution vector) in each iteration, without

orming the entire coefficient matrix explicitly. A hierarchical tree struc-

ure is formed to group all the elements into leaf cells of the tree. For the

ar-field calculations, the element-to-element interactions in the conven-

ional BEM are replaced with cell-to-cell interactions in the hierarchical

ree. The so-called multipole and local expansions of the integrals and

ome translations are introduced to speed up the summation process. De-

ails of the fast multipole BEM can be found in a tutorial paper [85] or

he textbook [37] . 

Most of the earlier works on the FMM for solving the Helmholtz

quation are good for solving acoustic wave problems at either low or

igh frequencies. For example, in Ref. [69] , Rokhlin proposed a diag-

nal form of the translation matrices for the high-frequency range for

he Helmholtz equation. In Ref. [72] , Greengard et al. proposed a diag-

nal translation in the FMM for the low-frequency range. Later, FMM

lgorithms that integrate the low-frequency and high-frequency expan-

ions and translations and are valid for a wider range of frequencies

ere proposed in Refs. [82,83] . A comprehensive coverage on solving

he Helmholtz equation in 3-D with the FMM can be found in Gumerov

nd Duraiswami’s research volume [81] . 

Recent advances on the fast multipole BEM for solving the acoustic

ave problem has been focused on further improvements of the com-

utational efficiencies of the FMM and kernel independent FMM, in-

luding works on adaptive algorithms to further speed up the FMM in

coustic BEM for full-space and half-space problems using the Burton–

iller BIE formulation [24,25] , black-box like approaches in solving
56 
he Helmholtz equation [86–88] , analytical integration of the moments

27] for the high-frequency FMM, fast multipole BEM for acoustic mul-

idomain problems [28] or substructure techniques [89] , acoustic shape

ensitivity analysis [29] , half-space acoustic wave problems with an

mpedance plane [30] , a black-box directional BEM using the Burton-

iller formulation [31] , a dual-level fast multipole BEM for acoustic

ave problems [34] , and a dual-level fast multipole SBM for Laplace

nd Helmholtz equations [90] . With these recent advances in the last

ecade or so, it is now possible to solve acoustic BEM models with up-

o a few million DOFs (unknowns), in the low to moderately high fre-

uency range (non-dimensional wavenumber up to 100), and within a

ew hours on a PC. 

.2. Adaptive cross approximation 

The adaptive cross approximation method is gaining popularity in

he BEM research in recent years due to its kernel independent nature

nd ease of implementation. ACA also applies iterative linear equation

olvers, such as the GMRES. It is based on the concept of the hierarchical

atrix ( -matrix) introduced by Hackbusch [91] . When a dense ma-

rix is divided hierarchically into submatrices, some of the submatrices

ill be low-rank matrices and can be well-approximated using different

ethods. Based on the theory of the hierarchical matrix, Bebendorf, et

l., [92,93] developed the ACA to compute the low-rank matrices and

pplied the ACA to the BEM. The ACA is fully developed based on the

lgebra of a BEM matrix, and there is no need to expand the kernel

unctions. Therefore, the ACA BEM is kernel independent and easier to

mplement, as compared with the fast multipole BEM. More details of

he ACA BEM can be found in Refs. [94,95] . 

There are only a few research papers on the ACA BEM for solving

coustic wave problems, perhaps due to its ease of implementation. In

ef. [96] , Brancati, et al., presented a new ACA BEM to solve 3-D acous-

ic wave problems. For one example, the new ACA BEM is found to be

aster than the fast multipole BEM. The results demonstrated that the

CA BEM can achieve solution efficiency of almost O ( N ) for low fre-

uency and O ( N log N ) for high frequency problems (with N being the

umber of unknowns). In Ref. [97] , Brunner, et al., gave a comparison

f the fast multipole BEM and the ACA BEM in solving the Helmholtz

quation. They found that the memory use of the fast multipole BEM is

ess than that of the ACA BEM. However, the implementation and par-

llelization are much easier for the ACA BEM than for the fast multipole

EM. 

.3. Fast direct solvers 

Although the fast multipole BEM and ACA BEM can be very efficient

n computation, when the solutions converge with the iterative solver,

heir efficiencies in solutions can suffer when the acoustic domain is

omplicated or solutions at higher frequencies are needed. Slow con-

ergence can happen, and the solutions may not converge at all, even

hen a preconditioner is applied. All these concerns are due to the use

f iterative solvers, which can guarantee the convergence of the BEM

olutions for many, but not all, practical problems. In addition, the iter-

tive solvers cannot handle multiple right-hand side vectors for a linear

ystem of equations. This is a disadvantage of using the iterative solvers

hen the effects of multiple input need to be investigated individually,

uch as in the case of a scattering problem with many different incident

aves on a fixed structure. Thus, the research on fast direct solvers is

aining popularity gradually in recent years, especially with the rapid

evelopment of the computing hardware with larger memory and faster

PUs. 

Research results on the algorithms in the fast direct solvers associ-

ted the BEM can be found in Refs. [98–104] . The common idea behind

hese algorithms is to divide the matrix hierarchically, construct a low-

ank approximation for certain submatrices and perform a fast update
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Fig. 2. Accuracy and efficiency with the three fast solution methods. 
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o the solution recursively, using, for example, the block LU decomposi-

ion to invert the matrix, with little or no loss of accuracy in the solution

rocess. A recent implementation of the fast direct solver for the BEM

n solving 3-D potential problems is presented in Ref. [105] , which can

e extended to 3-D acoustic BEM readily. 

Based on our experience on the FMM, ACA, and fast direct solver,

he FMM is the most efficient method in computation, which can

educe the computational complexity to near O ( N ) for the BEM

egarding both the solution time and memory storage usage. The ACA

s the next regarding the efficiency, followed by the fast direct solver.

owever, the accuracies of the three methods are in the reverse order.

 comparison of these methods regarding accuracy vs. efficiency is

llustrated in Fig. 2 , with the conventional BEM solver as a reference. 

. Prospects for the acoustic BEM 

The acoustic BEM has been applied mostly in the areas of structural

coustic or vibro-acoustic type of problems, such as acoustic wave radi-

tion and scattering problems related to machines, cars, airplanes, sub-

arines, wind turbines, and so on. Although still challenging in some

ases, the acoustic BEM can now handle these types of analyses rou-

inely with the help of the fast solution methods. The next challenges

ill be to apply the acoustic BEM to solve acoustic problems with more

omplex physics and/or in domains with more complicated geometries,

uch as in aeroacoustics, acoustic metamaterials, bioacoustics, computer

nimations, and other interdisciplinary areas. 

.1. Aeroacoustics 

It is a natural step to extend the acoustic BEM to aeroacoustics, which

oncerns the sound or noise produced by turbulence and fluid flow over

tructures. For jet aircraft, high-speed trains, aerial unmanned vehicles

AUVs), space vehicle launch site, and many others, the aeroacoustic

oise can be dominant and concerning, in addition to the vibro-acoustic

oise. Although CFD (computational fluid dynamics) software tools can

e used to compute the aeroacoustic field in the fluid domain theoreti-

ally. In practice, it is still very expensive to model aeroacoustic prob-

ems with CFD tools alone, especially for large-scale full models like

ircraft and high-speed trains in far-field noise predictions. A natural

ombination will be to apply the CFD and BEM together in modeling

arge-scale aeroacoustic problems [106] . The CFD can be applied to

odel the near-field acoustic variables, such as sound pressure and par-

icle velocity, and the BEM is applied to predict the noise radiated to

he far field. 
57 
For subsonic uniform flow, Wu and Lee proposed a direct BEM for ra-

iation problems in such flow [107] . This work is typical, as the Green’s

unction applied in such cases is similar to the one for the Helmholtz

quation, but with the Mach number as a parameter. As the Mach num-

er approaches to zero, the Green’s function approaches to the one for

he Helmholtz equation. Therefore, many of the results in the BEM for

olving the Helmholtz equation can be applied directly to the BEM for

olving the sound field at low Mach numbers. 

For general aeroacoustics, the governing equation based on the

ighthill analogy [108] and its extensions, including the Ffowcs–

illiams Hawkings (FW-H) equation [109] , is more involved than the

elmholtz equation. Although in an integral form, the FW-H equation

nvolves a volume integral that is troublesome to deal with and cannot

e ignored for flow at high speed. Combined with the CFD, the FW-H

quation can be applied to establish models of the noise sources us-

ng monopoles, dipoles or quadrupoles, defined at points, on surfaces,

r in volumes. Papamoschou, et al., proposed jet noise source models

or noise shielding and applied the acoustic fast BEM to calculate the

adiated noise at far field [110,111] . Wolf, et al., applied the FMM to

ccelerate the calculations based on the FW-H integrals [112,113] . They

sed the hybrid calculation method. The near-field aerodynamic noise

ource was calculated by CFD, and the far-field aerodynamic noise ra-

iation was calculated by the accelerated FW-H equation. Wolf, et al.,

lso predicted numerically the convective effect of quadrupole aerody-

amic noise caused by flow over the NACA0012 airfoil [114] . The re-

ults show that the convection effect of airfoil must be considered when

erforming aerodynamic noise analysis at higher Mach numbers. Mao

nd Xu also used the spherical harmonic series expansions to acceler-

te the FW-H equation calculations, and studied the noise prediction for

otating blades [115] . 

For flow over bluff bodies (with rough surfaces) at high Reynolds

umbers, Alomar, et al., proposed a BEM which was validated with ex-

erimental results using a cylinder with small circular bumps on the

urface [116] . This is an interesting topic as the acoustic BEM can be

pplied in general to design rough surfaces or coatings over structures

n order to reduce the aeroacoustic nose. 

The BEM, including the fast BEM, for solving aeroacoustic problems

s still in its infancy. The above-mentioned studies on the integral equa-

ions and BEM for aeroacoustic problems is still limited to small-scale

est problems (such as a simple cylinder, a 2-D wing section model,

tc.). For large-scale aeroacoustic problems (such as a full-size aircraft,

 group of UAVs, high-speed trains, wind turbines, and other exterior

eroacoustic analyses), aeroacoustic computations with the fast BEM

till need to be investigated and further improved. 

.2. Acoustic metamaterials 

Modeling acoustic metamaterials presents another interesting and

hallenging research opportunity for the acoustic BEM. Various metama-

erials have been developed in recent years in order to reduce the noise

r manipulate the propagation of the acoustic wave in different environ-

ent. Metamaterials often have periodic, delicate and small structures

hat can re-direct the propagation of, or absorb, the acoustic wave in

ertain frequency ranges called band gaps. Similar to the case of study-

ng fiber-reinforced composites, study of acoustic metamaterials can be

one effectively and efficiently using the BEM, because of the compli-

ated geometries of the metamaterial structures and the infinite space

n which the wave propagates. These features make the metamaterials

erfect candidates for using the BEM to model and optimize such ma-

erials. Some of the review articles on acoustic metamaterials can be

ound in Refs. [117–121] . 

However, there are not many papers published on the topic of ap-

lying the BEM for modeling acoustic metamaterials. Henríquez, et al.,

tudied an acoustic metamaterial model with acoustic losses using both

he BEM and FEM, and the BEM and FEM results are compared with ex-

sting measurements [122] . In the context of metamaterials concerning
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Fig. 3. Contour plots of the sound pressure at three frequencies, with the sound shielding effects of the crystals clearly shown at 6.0 kHz. 

Fig. 4. A human head model: the BEM mesh (left) and the contour plot of sound pressure (right). 
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lastic waves, Li, et al., applied the elastodynamic BEM on a unknit cell

odel in studying the band gaps in the metamaterial [123] . 

In a preliminary study using the example given in Ref. [121] , we

pplied the 2-D acoustic fast multipole BEM to solve the problem of

cattering from phononic crystal structures to detect the band gap phe-

omenon (see Fig. 3 ). In this example, arrays of rigid and long cylin-

ers are placed in an acoustic medium and impinged upon by an in-

ident wave from left. The sound field around the arrays is computed

t different frequencies using the 2-D fast multipole BEM. The plot in

ig. 3 shows the response of the sound pressure (as a ratio of the to-

al wave to the incident wave) at a receiver location (on the right side)

s. the frequency. The plot show clearly a band gap interval (between

bout 5.5–8.5 kHz) for the model used, which are consistent with the

ata reported in Ref. [121] . The contour plots in Fig. 3 show the distri-

utions of the sound pressure at three frequencies. The contour plot in
 B  

58 
he middle for frequency at 6 kHz (within the band gap) clearly shows

 “quiet ” region on the shadow side the crystals. This preliminary study

hows the usefulness and advantages of using the BEM in such research

n acoustic metamaterials. 

.3. Bioacoustics 

The BEM can be applied to study many bioacoustic problems, such

s the navigation of dolphins by means of sonar waves, echoing mech-

nism of bats using sound waves, hearing loss and hearing devices, and

ffects of the noise from wind turbine farms to birds or sonar waves to

arine animals, and many others. Most of these problems expand in an

nfinite space and with complicated geometries, which can be modeled

ost effectively and efficiently by using the BEM. Mey, et al., applied the

EM in studying the acoustic waves scattered by models of sample bats
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Fig. 5. The response function computed using the fast BEM. 

Fig. 6. Sound rendering for computer animation (listen to the computed sound at: https://www.youtube.com/watch?v = cK4wx4pom_0 ). 
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nd obtained good results in a wide range of frequencies as compared

ith experiment data [124] . It is argued that the proposed simulation

ethod using the BEM offers distinct advantages over traditional acous-

ic measurements on real bat specimens. 

Fig. 4 shows the BEM mesh and contour plot of sound pressure for a

uman head model we have studied using the 3-D fast multipole BEM.

he head model is impinged upon by an incident wave from the left

ide, and the frequency response function at the entrance of the canal

f the left ear is computed. In Fig. 5 , the BEM results are plotted against

wo curves of measured data from real human samples given in Ref.

125] . The BEM is capable of capturing the trends of the experimental

ata for frequencies up to 10 kHz, with about 250,000 elements. It is

elieved that a better match of the BEM results with the experimental

ata can be achieved, if identical human head models and more accurate

mpedance boundary conditions of the skin can be applied in the BEM

tudies. 

.4. Computer animation 

The last, but not the least, intriguing and challenging research

rea for the acoustic BEM is in computer animation for sound render-

ng [126] . Combined with the computational structural dynamics or
59 
igid-body dynamics software, the acoustic BEM can be applied to com-

ute the sound field from the impact of multiple objects, like in drop

ests, fragmentation of a vase, collision of cars, and even falling wa-

ers, in a computer animation to replace the costly real sound record-

ngs for those events. The group of Doug James have done some

ioneering and very interesting research in this area [127–129] , in

hich the BEM ( FastBEM Acoustics ) was applied in the sound com-

uting part of the simulations. Fig. 5 shows a computer animation

f several containers, of different shapes and materials, dropped to

he ground. The sound from the impact of the containers with the

round were computed and played back in a video shown at the link

 https://www.youtube.com/watch?v = cK4wx4pom_0 ). 

. Conclusions 

With the continued research efforts on the BEM for solving acoustic

ave problems, the BEM has emerged as a powerful computational tool,

ot only in the traditional areas of structural acoustics, but also in a wide

ange of new application areas. The dual BIE formulation pioneered

y Burton and Miller has removed the difficulties of fictitious eigen-

requencies for solving exterior domain problems and for domains con-

aining thin shapes. The realization of the nonsingular nature of the BIE

https://www.youtube.com/watch?v=cK4wx4pom_0
https://www.youtube.com/watch?v=cK4wx4pom_0
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ormulations and various analytical integration schemes for acoustic

EM have removed the reservation in implementing and using the BEM

or acoustics. The fast solution methods, with the fast multipole method,

daptive cross approximation, and fast direct solvers as the leading

hoices, have dramatically improved the computational efficiency and

xpanded the range of applications for the acoustic BEM. 

Applications of the acoustic BEM in design of acoustic metamaterials

nd biomedical devices for sound quality, in sound rendering for com-

uter animation or virtual reality, in virtual testing of acoustic responses

o replace costly physical tests, and in integration with CFD methods in

eroacoustics to reduce the noise from high-speed trains, jet aircraft, and

nmanned aerial vehicles, will lead the acoustic BEM to an even higher

evel of importance in computational acoustics. With the continued im-

rovement in computing hardware, further development of the acoustic

EM may prefer formulations, algorithms, solvers and computer codes

hat are more general, easy to implement, portable, and adapted for

igh-performance parallel and cloud computing. 
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