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Abstract

The frequency sweep analysis is indispensable for the performance prediction and optimization design of structural–acoustic
nteraction problems. The coupled finite element and boundary element (FE–BE) method has been widely used to perform
uch simulations. However, the straightforward solution of the resulting hybrid model for a large number of frequencies
s computationally prohibitive due to the unfavorable properties of involved matrices, e.g. large-scale, non-symmetric and
specially frequency-dependent. In order to ease this challenge, a three-step structure-preserving model order reduction method
s presented, which is based on an offline-online computing framework. As a first step, the second-order Arnoldi process
s used to speed up calculations of the sparse structural part of the strongly coupled system. In a second step, the low-
imensional approximations of the FE unknown variables are eliminated from the global system of equations and after that the
emaining dense BE degrees of freedom are reduced by application of the standard Arnoldi-based Krylov subspace algorithm.

transformation technique based on Taylor’s theorem is incorporated to decouple the frequency from the Green’s function
nd a column-by-column low-memory projection is further sought to favor the overall storage requirements. In the last step, a
obust reduced order model can be quickly retrieved by simple algebraic manipulations, which allows a direct solver without
ny costly matrix operation to be used for the online sweeps, requiring only a very small fraction of the total CPU runtime.
wo numerical cases are investigated to highlight the potential of the proposed approach in multi-frequency applications.

c 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Control of excessive noise and structural vibration is a growing concern for protecting human health and
achinery equipments from exposure to unwanted operational forces and environmental noise originating from

umerous sources: transportation, wind turbine and so on. Such trend and ever tightening regulations/targets have
riven designers and manufacturers in many industries to evaluate the dynamic and acoustic qualities and especially
he structural–acoustic coupling characteristics of their (lightweight) products and services, which is crucial for the
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desired vibration insulation and low-noise high-quality design and optimization. In order to decrease the time-to-
market, Computer Aided Engineering (CAE) techniques play a significant role in the modern integrated design stage
by the use of virtual computational prototypes to replace the experimental physical ones, i.e. from a posteriori to
a priori analysis. During the past decades, notable progress has been made in the development and validation of
numerical tools for accurate prediction of dynamic characteristics of increasingly complex three-dimensional (3D)
engineering systems. Among the various classical CAE computational methodologies, the finite element method
(FEM) [1] is widely used to obtain detailed information on the performance of vibrating structures or purely interior
acoustics or coupled structural acoustics in bounded domains with arbitrarily complex shape, boundary conditions
and material behaviors, while the boundary element method (BEM) [2] has natural strengths in handling acoustic
radiation/scattering problems in infinite medium. Therefore, in order to exploit the advantages of both methods,
the classical FE–BE coupling method [3–11] is favored to solve exterior fluid–structure interaction problems,
e.g. sound radiation of submarines, design of loudspeakers, in which different coupling formulations in terms of
both conforming meshes [9] and non-conforming cases [8,10] have been extensively discussed.

The use of hybrid FE–BE solution framework, however, often results in high-dimensional, non-symmetric and
frequency-dependent computational models, which makes the original system-level full-scale simulations very time
consuming and memory demanding. In order to improve the efficiency of modal analyses of structural–acoustic
coupling problems, the Lanczos algorithm [12], Krylov–Schur solver [13], modal decomposition [14], contour
integral method [15–17] and resolvent sampling based Rayleigh–Ritz method [18] have been employed to compute
the related nonlinear eigenvalue problem.

In addition, evaluating response function over a wide frequency range with densely sampled step is often
necessary to observe the level of vibration and noise emission and to assess the influence of passive/active strategies
in structural dynamics and noise control engineering. In this instance, for frequency sweep analyses all the entries
in the system matrices of BE part have to be continually recalculated and then the established global coupling
model has to be resolved multiple times, which increase the computational complexity heavily as compared to
the numerical eigenanalysis. Therefore, the performance prediction of large-scale exterior vibro-acoustic dynamical
models is still challenging.

In order to alleviate these downsides, a variety of fast calculation schemes have been developed in the context
of fully coupled FE–BE analyses. In particular, model order reduction (MOR) techniques are of intense interest
to construct an orthonormal basis spanning a low-dimensional subspace onto which the original full-order model
(FOM) is projected to obtain a reliable reduced-order model (ROM). Different approaches differ in how the
projection basis is constructed. For the structural FE submodel, the Krylov subspace as the projection subspace
has been used to reduce the displacement degrees of freedom (DOFs), whereas the acoustic BE submodel is
left unchanged [19]. In fact, most of reduced-order modeling methods, e.g. the first-order Arnoldi (FOAR)
method [20,21] for linear dynamical systems, the second-order Arnoldi (SOAR) method [22,23] for second-order
problems and of course, the traditional modal superposition method [24] can be directly applied to the structural part
without any difficulty due to its sparse and frequency-independent properties. Details concerning the comparison and
assessment of existing low-order approximation approaches for structural dynamics analyses modeled using FEM
are reviewed; see e.g. [25–27] and references therein. Among those, an important open question is how to determine
the optimal order of a reduced system with satisfactory accuracy for practical use, preferably in an automatic manner.
Since a complete reference solution, e.g. the exact solution is not known beforehand, the strategies proposed in the
literature are often based on the relative input/output residual [20,28,29] or the difference between two reduced-order
models [20,30–32] to estimate the true error such that the evaluation of the (computationally expensive) FOM can
be avoided.

Compared with the FE submatrices, the dimension of the BE submatrices in the global system of equations is
usually much smaller, especially for models with complicated internal setups, e.g. in the presence of reinforcement
treatments including ring stiffeners and longitudinal stringers. However, in many applications the repetitive assembly
and subsequent re-computation (matrix inversion) of the fully-populated and frequency-dependent BE submatrices
dominate the overall computational burden of numerical simulations of the underlying vibro-acoustic problem.
With respect to this limitation, the fast multipole method [33] has been developed to address the drawbacks of
BEM via the acceleration of matrix–vector multiplication [8,9,34–36]. Accordingly, an iterative solver (e.g. the
generalized minimal residual method: GMRES [37]) is required, which leads to the CPU time unpredictable

even using some forms of preconditioners (e.g. a block diagonal preconditioner) to speed up its convergence.
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Furthermore, iterative solvers are not as useful for solving linear system of equations with multiple right-hand
sides [38]. Hierarchical matrices (or H-matrices) have also been applied for fast BE calculation as conducted in [13],

hereas the compressibility of the fluid is neglected. The use of traditional model reduction methods, e.g. the Padé
approximation technique [39] for BE acoustic analyses is tenuous [40] even with the general proper orthogonal
decomposition (POD) method which can be applied to linear as well as nonlinear systems. This is because a
new small-size reduced-order counterpart has to be repeatedly updated for each frequency point of interest and
obviously, it is less attractive or possibly inefficient when the frequency band of interest is wide and/or a relatively
fine frequency increment is required. Therefore, it is necessary to decompose the frequency from the frequency-
dependent BE matrices before the start of model reduction process. Besides, those aforementioned error indicators
and adaptive techniques suffer from multiple projections of the FOM onto different low-dimensional subspaces and
solution of different reduced models until a user-specified tolerance is met. The frequent comparisons for checking
each other’s accuracy may not be a major issue for sparse FE matrices, but can pose considerable inconvenience
for BE systems in terms of the computational efficiency and memory consumption. To this effect, an adaptive
Taylor-based second-order Arnoldi (AT-SOAR) approach has been proposed to generate a low-dimensional surrogate
model to approximate well the original large-scale BE model [41], in which the frequency is decoupled via the series
expansions and a global frequency-independent orthonormal basis is then constructed via the SOAR method to span
a projection subspace.

Efficient algorithms that directly work on the complete full-order resultant matrix rather than its submatrices of a
coupled system have also been introduced. One of the most generally applicable methods in the structural acoustics
community is based on the solution of original high-fidelity models for snapshots (or master frequencies) at some
sampling points within a frequency interval. This type of reduced basis methods can be somewhat viewed as an
extension and improvement of the POD method. Apparently, the choice of certain response data is key to the quality
of approximation and thus some sampling schemes are suggested, including but not limited to the Chebyshev points
in a straightforward way [18] and the greedy algorithm in an iterative fashion [42].

In this work, a three-step model order reduction technique is proposed for efficient multi-frequency analyses
of mutually coupled structural–acoustic systems, with the aim of providing a promising alternative to the other
acceleration approaches. The matrix properties and structures of the two subsystems are fully exploited in the newly
developed projection-based technique which falls into the category of moment-matching methods and renders an
offline-online solution framework. The performance of the proposed method from the perspective of computational
time and accuracy is evaluated using a simple elastic spherical shell and a more complex engineering structure,
where both are surrounded by the infinite domain of water.

The remainder of the paper is organized as follows. In Section 2, the coupled FE–BE formulation for fluid–
structure interaction problems is recalled. In Section 3, we show a three-step structure-preserving dimension
reduction procedure based on the SOAR and FOAR algorithms to separately construct two groups of orthonormal
bases for reduced-order modeling of both structural and acoustic subsystems, where some remarks on the practical
implementation of the proposed approach as a powerful tool for multi-query vibro-acoustic analyses are outlined.
Numerical verification cases and detailed discussions are highlighted in Section 4. Conclusions and future work are
presented in Section 5.

2. Coupled FE-BE formulation for vibro-acoustics

2.1. Problem description

Throughout this paper, attention is focused on accelerating the solution of external structural–acoustic interaction
systems modeled via the coupled FE–BE methodology for the sake of clarity since an interior problem can be
easily handled through the pure FE modeling technique equipped with well-developed MOR methods, for example,
see [26,30].

A typical vibro-acoustic exterior problem consists of an elastic thin-walled structure submerged into a homoge-
neous heavy fluid of infinite extent, as illustrated in Fig. 1. The whole problem domain can be divided into two
non-overlapping fields constituted of different physical constituents, i.e. the structural domain Ωs and the acoustic
domain Ωa and between them, Γsa indicates the coupling interface (i.e. the so-called wetted surface). From here

nwards, the subscript s designates a structural quantity and similarly the subscript a denotes an acoustic component.
n and n are respectively the (positive) outward normal directions to the surfaces of the corresponding domains
s a
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Fig. 1. General physical description for an exterior problem and its discretization.

and for the same point on the Γsa , we have ns = −na . The sign convention is important for distinguishing exterior
and interior problems, especially for a hollow structure. The steady-state dynamic displacements in the structure and
sound pressures in the fluid medium (often referred to as the (u, p)-formulation) result from loading terms such as
a time-harmonic mechanical driving point force, denoted by a red dot in Fig. 1. Obviously, it is a strongly coupled
problem, in which the acoustic environment and the elastic structure mutually interact.

2.2. Construction of the system of equations

In this work, the finite element method is used to model the dynamical field variables of the elastic structure
because of its flexibility to tackle problems of high geometrical complexity and any type of (multi-) physics. The
pressure field in the unbounded acoustic fluid domain is approximated using the popular boundary element method,
allowing to decrease the dimension of involved problem from 3D to 2D and to satisfy the far-field boundary
condition exactly. This section briefly describes the mathematical formulation and theoretical basis of these two
deterministic modeling methodologies along with their coupling. For more details on this aspect, the reader can
consult Refs. [4–6,8], among others. In addition, the harmonic time factor is taken as e−jωt and it is omitted for all
time-dependent functions, where j is the imaginary unit, ω denotes the circular frequency in rad/s and t means the
time variable.

The governing differential equation of a dynamic problem describing a vibrating elastic continuum is spatially
discretized via the FEM which leads to the following linear system of equations

[K − jωD − ω2M]u = fs + fa, (1)

where K, D and M are the stiffness, damping and mass matrices. Note that the damping included in this work
s modeled as Rayleigh damping, in which case it is determined by a mass-proportional term and a stiffness-
roportional term of the corresponding system, i.e. D = αM + βK, where α and β are two (known) scalar

coefficients. Accordingly, all of these three matrices in Eq. (1) originated from the FE discretization are real,
constant (frequency-independent) matrices (∈ RN×N ) with N being the number of DOFs of structural FE model.
For many practical applications, N can be very large. u and fs ∈ CN are respectively the vectors of unknown nodal
displacements and external mechanical nodal forces. fa ∈ CN can be regarded as the fluid loading which is induced
by the sound pressure across the common interface Γsa .

With respect to the unbounded acoustic medium, the BEM as an efficient tool is used which results in the
following matrix form

H(ω)p = jωρaG(ω)va, (2)

where ρa is the ambient fluid density; p and va ∈ CM are the vectors of the nodal values of sound pressure
and normal velocity, with M being the number of DOFs of acoustic BE model; G(ω) and H(ω) (∈ CM×M ) are
respectively obtained by integrating the free-space Green’s function (or called the fundamental solution) G(x, y)

and its normal derivative H (x, y) over the boundary surface Γa = ∂Ωa . The two kernel functions for 3D acoustic
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wave problems can be expressed as [33,43]

G(x, y) =
ejkr

4πr
, H (x, y) =

∂G(x, y)
∂n(y)

=
ejkr

4πr2 (jkr − 1)
∂r

∂n(y)
, (3)

here k = ω/c is the wavenumber with c being the speed of sound; r is the distance between the source point
∈ R3 and field point y ∈ R3, i.e. r = |x − y|; n(y) is the normal direction of the boundary. Obviously, G(ω) and
(ω) are complex matrices whose entries depend on the frequency.
Along the interface Γsa between the structural domain Ωs and the acoustic domain Ωa , the following continuity

onstraints have to be enforced{
fa = Csap,

va = −jωCasu,
(4)

here Csa ∈ CN×M and Cas ∈ CM×N are the structural–acoustic coupling matrices and their sparsity patterns are
etermined by the percentage of the dynamical structure that is in contact with the acoustic fluid; the relationship
etween them is given, i.e. Cas = Θ−1CT

sa with the transpose operation •
T for a matrix with real entries; Θ is the

oundary mass matrix which can be obtained by integrating the BEM (simple polynomial or spline-based) basis
unctions [10,44]. A fast and memory-efficient vectorized algorithm [45] is used to optimize the assembly of these
parse matrices in MATLAB.

Substituting Eq. (4) into Eqs. (1) and (2), the fully coupled FE–BE formulation for vibro-acoustic problems can
e written in terms of the unknown nodal structural displacement u and nodal sound pressure p as[

K − jωD − ω2M −Csa

−ω2ρaGCas H

] [
u
p

]
=

[
fs

0

]
. (5)

In practice, the frequency spectra of excitation generally have a broad frequency band and thus multi-frequency
nalysis is desired. Furthermore, a conservatively small frequency step is usually set so as not to miss any important
ystem characteristics, e.g. (anti-) resonant peaks. In this case, Eq. (5) has to be repeatedly set up because of
he frequency-dependent property of BE matrices (H(ω) and G(ω)) and then be solved repeatedly to obtain the
teady-state harmonic responses. Such a procedure, however, quickly becomes unfeasible as the size of involved
odel increases. Additionally, different orders of magnitude caused by the non-homogeneous nature of u and p
ith SI units incur Eq. (5) to be badly conditioned, which makes solution cannot be predicted well and some

ophisticated scaling (e.g. using the Young’s modulus of structures as a scaling factor [18]) and/or preconditioning
e.g. block diagonal preconditioner [9]) techniques are often required. Therefore, there is a pressing need for
owerful computational approaches, capable of solving Eq. (5) at low cost and with high precision.

Typically, the FE system matrices are symmetric, sparsely populated and have a banded structure; while the BE
ystem matrices are non-symmetric, fully populated but in general, their dimension is (relatively) smaller than that
f FE matrices, i.e. M < N . The coupling matrices are sparse rectangular matrices due to the fact that only nodal
OFs located on the interface Γsa with contributions in the normal direction yield nonzero values. In the next

ection, in order to improve the computational efficiency of frequency sweep analyses for a general hybrid FE–BE
umerical model, a three-step model order reduction solution scheme is proposed, where the matrix properties and
pecific forms of each subsystem in Eq. (5) are utilized.

. Three-step MOR strategy

The entire workflow for performing efficient frequency-domain simulations of vibro-acoustic FE–BE models
sing the proposed automatic MOR solution procedure is schematically summarized in Fig. 2. In what follows, the
eneral idea behind this method and its detailed branches are explained step by step.

.1. MOR for structural FE subsystem

In the first step, the sparsity, banded-structure and frequency-independence of the FE dynamic matrix triplet (K,
, M) can be used without loss of generality. To enable fast vibro-acoustic evaluations, the well-known second-order
rnoldi (SOAR) procedure for constructing an orthonormal basis of the second-order Krylov subspace G (A, B; r )
n⋆ 0

5



X. Xie and Y. Liu Computer Methods in Applied Mechanics and Engineering 386 (2021) 114126

i
o
b

w
a

C
t
o
o
v
(
u

a
p
e
o
c

w
r
e
f
s
i
(
s

w

Fig. 2. Flowchart of the proposed method.

s applied to reduce the number of elastic DOFs (and the associated computational cost and storage). The second-
rder Krylov sequence {rℓ} which is orthogonalized by means of a modified Gram–Schmidt process is generated
y a recurrence relation as{

r1 = Ar0,

rℓ = Arℓ−1 + Brℓ−2, for 2 ≤ ℓ ≤ n⋆ − 1
(6)

here A = −K̃−1D̃ and B = −K̃−1M. The transformed matrices K̃ and D̃ around a prescribed expansion point s⋆

re given by

K̃ = K + s⋆D + s2
⋆ M, D̃ = D + 2s⋆M. (7)

The inverse of K̃ is computed in an inexpensive way by using its factorized form, such as an LU decomposition.
learly, the factorization has to be carried out only once and then can be re-used at every subsequent iteration step for

he construction of a local orthonormal basis R⋆, where span{R⋆} = Gn⋆ (A, B; r0) = span{r0, r1, r2, . . . , rn⋆−1}. In
rder to comply with the mathematical and actual physical meanings (i.e. the complex variable s = jω), the selection
f purely imaginary number for s⋆ is suggested. The nonzero starting vector r0 is important as the remaining column
ectors of {rℓ} are partially determined by it according to Eq. (6). In this work, it is simply given as the response
static deflection) of the elastic structure about s⋆ under the mechanical loading fs since the acoustic loading fa is
nknown, i.e. r0 = K̃−1fs .

On the one hand, a single-point expansion is often not enough to capture dynamical features of the FOM over
broad frequency range. On the other hand, the offline construction of a global orthonormal matrix cannot be

rohibitively expensive. Therefore, a very limited ⋆ (in this work ⋆ = 1, 2, 3) number of expansion points is
xpected, which implies that only three linear systems with the full size N need to be solved. This way three local
rthonormal bases R1, R2, R3 with different dimensions n⋆ are achieved. Afterwards, these bases are combined by
olumn stacking and re-orthogonalized by an economy-size of the Singular Value Decomposition (SVD), namely,

VΣUH
= svd([R1, R2, R3]), (8)

here V and U are complex unitary matrices whose columns are called the left- and right-singular vectors,
espectively; the superscript •

H designates the Hermitian transpose; Σ is a rectangular diagonal matrix whose
lements σ are known as the singular values. In general, these are non-negative real numbers which decrease quite
ast. Therefore, the truncation of the left singular vectors is commonly used to filter out components with very small
ingular values so as to reduce the dimension of the global orthonormal basis while still carrying the most essential
nformation of the system, by setting a threshold to the ratio of those singular values with respect to the first one
i.e. the largest one σ1). Unless otherwise stated, the threshold value 10−10 will be chosen in the following, which
atisfies

σκ

σ1
≥ 10−10, κ = 1, . . . , n

⇒ V = V(:, 1 : n),
(9)

here n (≤ n1 + n2 + n3) denotes the final dimension of the columns of the global orthonormal basis V ∈ CN×n .
N n
To derive a ROM, the full-order state u ∈ C is approximated by the reduced state vector un ∈ C in the subspace

6
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Gn spanned by the linearly independent column basis vectors of V

u ≈ Vun. (10)

In most cases, it holds that n ≪ N . Through application of the one-sided Galerkin projection, a reduced-order
odel which preserves the structure and crucial dynamics of the original full system reads

[Kn − jωDn − ω2Mn]un = fs,n + fa,n = fs,n + Csa,np, (11)

here Kn = VHKV, Dn = VHDV, Mn = VHMV, fs,n = VHfs and Csa,n = VHCsa . Thereafter, the solution of the
riginal second-order dynamical system can be represented well by solving the compact ROM, which is typically
everal orders of magnitude smaller in size and consequently much easier/faster to compute as compared to the
OM.

In addition, viscoelastic or porous materials are often used in many industrial sectors and their nonlinear
athematical descriptions can be inserted into conventional FE equations with constant properties by replacing

he frequency-independent system matrices with frequency-dependent ones, which harms the solving efficiency and
uts more computational difficulties. However, with a transformation technique based on algebraic polynomials to
eal with the frequency-dependent terms, which was proposed by Xie et al. [31,46], the presented SOAR algorithm
an be applied for reduced order modeling of dynamical systems with (mono- or multi-layered) add-on viscoelastic
r porous damping treatments as well.

.2. MOR for acoustic BE subsystem

After substituting the resulting ROM expression Eq. (11) into Eq. (5) and eliminating the structural DOFs, it can
e easily derived that

Hp − GECsa,np = GEfs,n, (12)

here E = ω2ρaCas,nZ−1
n with the coupling matrix Cas,n = CasV and the reduced dynamical stiffness matrix

n = Kn − jωDn − ω2Mn .
For the purpose of model reduction the system matrices and projection operators are expected to be independent

f the frequency. Therefore, before we proceed to the construction of an orthonormal basis for the BE subsystem,
he wavenumber is factored out from the exponential function in Eq. (3) by the use of Taylor’s theorem about a
xed point k∗ with the first L + 1 terms

ejkr
= ejk∗r

L∑
l=0

(jr )l(k − k∗)l

l!
. (13)

It is clear that the effectiveness of this affine decomposition over a broad frequency range depends on the suitable
number of expansion representations, which can be empirically determined by a cheap error estimator based on the
Lagrange remainder [41]. After that, substituting Eq. (13) into Eq. (12) and according to the order of wavenumber
k, Eq. (12) can be rewritten in an equivalent form as[

L∑
l=0

(k − k∗)l

l!
(kH̄l+1 − H̄l − ḠlECsa,n)

]
p =

L∑
l=0

(k − k∗)l

l!
ḠlEfs,n, (14)

where

H̄l =

∫
Γa

(jr )l ejk∗r

4πr2

∂r
∂n(y)

dΓ , Ḡl =

∫
Γa

(jr )l ejk∗r

4πr
dΓ . (15)

In this manner, the dense frequency-dependent BE system matrices G and H (∈ CM×M ) are decoupled as a
finite sum of frequency-dependent scalar functions multiplied by frequency-independent system matrices Ḡl and
H̄l (∈ CM×M ), where their integral calculations need to be performed only once instead of at each frequency of
interest, thereby yielding a rather efficient matrix assembly procedure. In order to further reduce the computational
cost of multi-frequency solution of the acoustic BE subsystem, the well-established MOR technique based on
the standard linear Krylov subspace which is spanned by a sequence of m column vectors, i.e. K (Q, g) =
⋆ m⋆

7



X. Xie and Y. Liu Computer Methods in Applied Mechanics and Engineering 386 (2021) 114126

w

p
h

R
c

span{g, Qg, Q2g, . . . , Qm⋆−1g} is applied. To this end, only the system matrices corresponding to the selected
expansion point k⋆ in the series expanded Eq. (14) (i.e. when l = 0) are used to generate this projection subspace.
To be more specific, we have the following

[kH̄1 − H̄0 − Ḡ0E0Csa,n]p = Ḡ0E0fs,n, (16)

where E0 ∈ CM×n is obtained from E by setting ω = k⋆c. One would wonder why the system matrices around
the expansion point k⋆ can be used to construct an orthonormal basis with sufficient accuracy for projection. The
reason is that entries in different H̄l or Ḡl differ by only one coefficient jr (see Eq. (15)). Therefore, the system
matrices H̄1, H̄0 and Ḡ0 without more derivative matrices in fact maintain inherent information about the original
system of equations.

In order to conform and further unite the model reduction process for the structural FE part, the relationship
between the two expansion points s⋆ and k⋆ is matched, i.e. s⋆ = jk⋆c. In addition, notice the difference between k∗

and k⋆, where k∗ is a single point used to approximate the kernels by the Taylor series over the considered frequency
range (see Eq. (13)), while k⋆ represents (usually more than one) selected expansion points used to construct a global
projection matrix.

Thereafter, with the help of the first-order Arnoldi (FOAR) process, a local frequency-independent orthonormal
basis can be iteratively generated with a square matrix Q and a starting vector g, which are defined as{

Q = −(k⋆H̄1 − H̄0 − Ḡ0E0Csa,n)−1H̄1,

g = +(k⋆H̄1 − H̄0 − Ḡ0E0Csa,n)−1Ḡ0E0fs,n.
(17)

Note that Q and g have identical inverted matrices, which allows them to be solved at the same time, requiring
only a single LU decomposition for one k⋆. The local behavior of polynomial approximation based on the Taylor
series implies that dynamical characteristics far away from the chosen expansion point k⋆ are difficult to capture
and thus their multiples are often allocated. As before, three expansion points are selected along the frequency
axis. Because each one has its own local orthonormal bases, an orthogonalization procedure based on the thin SVD
should be executed to compress them into a union of reduction bases W ∈ CM×m (m: the number of DOFs of the
generated BE ROM) for computational efficiency. Then the BE original DOFs p can be favorably approximated by
another vector pm constrained to stay in the Krylov subspace Km spanned by the columns of W, namely,

p ≈ Wpm, (18)

with pm ∈ Cm and normally m ≪ M . Substituting Eq. (18) into Eq. (14) and left-multiplying the associated
equation by the conjugate transpose of the matrix W, a reduced-order model with order m can be naturally obtained.
However, this is not really a memory-efficient projection process as multiple dense system matrices H̄l and Ḡl
(∈ CM×M ) need to be explicitly formed. The required storage for these matrices scales with O((2L +3)M2), which
may quickly exceed the available memory. Therefore, a fast and memory saving column-by-column projection is
developed in such a way that the memory limitation of polynomial approximation approaches by using various
forms of expansions of the integral kernels [19,47,48] for a given computer can be accommodated. In other words,
once one column in the BE frequency-decoupled matrices of Eq. (15) is assembled for one field point and all the
source points, a left-sided projection is immediately implemented until all the field points are looped. In this way,
the storage requirement is reduced from O((2L + 3)M2) to O((2L + 3)mM), followed by a right-sided projection
for the resulting matrices, the memory usage is further decreased to O((2L +3)m2), as detailed in [41]. As a result,
Eq. (14) becomes of the form[

L∑
l=0

(k − k∗)l

l!
(kH̄l+1,m − H̄l,m − Ḡl,mECsa,nm)

]
pm =

L∑
l=0

(k − k∗)l

l!
Ḡl,mEfs,n, (19)

here H̄l,m = WHH̄lW, Ḡl,m = WHḠl and Csa,nm = Csa,nW.
So far, the offline phase for constructing of two low-dimensional subspaces for both the structural and fluid

artitions and further projecting the frequency-independent submatrices of the original model onto these subspaces
as been accomplished. Three remarks are provided for the extension of the presented strategy.

emark 1. It has been known that the classical linear Krylov subspace-based first-order Arnoldi method is a special

ase of the second-order Krylov subspace-based second-order Arnoldi algorithm without the second-order term.
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Therefore, one of the main advantages of the proposed solution concept is that it is very general and can be easily
applied to other fluid–structure coupling formulations. For example, if no (Rayleigh/viscoelastic/porous) damping
is included for FE elastic structures, then the fast FOAR technique as mentioned above for BE acoustic fields
instead of the SOAR algorithm is deployed to accelerate structural vibration analyses by considering the square of
frequency as a single variable. In addition, if the Burton–Miller formulation [49] is adopted to overcome the fictitious
eigenfrequency difficulty existing in the conventional boundary integral equation (CBIE) for exterior acoustic wave
problems, then the efficient SOAR algorithm can be implemented to economize numerical simulations of both the FE
subsystem and the BE subsystem. This is because that by reformulating the CBIE and its normal derivative equation
at given expansion point, a second-order dynamical system rather than its first-order equivalent is achieved [41].
All these situations can be handled without any restriction, revealing the beneficial versatility and generality of
the newly presented approach for the study of strongly coupled external vibro-acoustics modeled via the hybrid
FE–BE method. Although investigations in this work are limited to exterior problems on account of underwater
maritime applications, the proposed technique can be directly used for an interior problem, where the formulation
is established for a finite volume of an acoustic medium (fully or partially) closed by a vibrating structure with
particular boundary conditions.

Remark 2. For practical implementation of the proposed model reduction technique, it is important to determine
he proper number of expansion points and their associated orders such that a ROM with satisfactory accuracy can
e obtained. In that sense there is a common trade-off between ROM size and computational cost in the offline
hase. The most commonly used automatic algorithms in literature often involve different trial-error tests and/or
uffer from the necessity of solving reference models for validation until a prescribed threshold is satisfied, which
re undesirable in many practical applications. Therefore, a cheap adaptive strategy without recourse to the FOM
nd comparison of different ROMs is favored for large-scale vibro-acoustic problems. It should be noted that all
oment-matching approaches are locally effective in nature [21] and will stagnate in accuracy when a certain value

f order is reached, which means that in slowing convergence range more matched moments do not lead to a more
ccurate representation of the original dynamical system. Motivated by this fact, three expansion points are discretely
eployed herein in order to ensure the global approximation quality of reduced systems in large frequency domains.
fterwards, the success of an automated reduction process merely relies on the dimension of orthonormal vectors

o be calculated for each expansion point. For the FE submodels, the condition number of an upper Hessenberg
atrix in SOAR together with a pre-specified upper bound lub as the stopping criterion can be leveraged to decide

the amount of iterations required for convergence [41,50]. As for the BE submodels, L̂ terms of the Taylor series
ear each expansion point k⋆ can be assigned according to the Lagrange remainder and then the related order is
mpirically given as 4L̂ (i.e. m⋆ = 4L̂) within its desired radius of accuracy. Note the difference between L and L̂
it holds that L ≥ L̂), where L is the highest order of the Taylor series used to approximate the kernels over the
hole frequency range of interest (see Eq. (13)), while L̂ is the one with respect to three subsets of the considered

requency range (each expansion point k⋆ has its own effective frequency interval), as already investigated in more
etail in previous work [41]. Therefore, both the model reduction process and the subsequent analyses that are
erformed using the ROM are computationally efficient, even taking into account really large systems.

Remark 3. If the considered frequency range is too wide or the elastic structure is large-sized, the broadband
requency range of interest can be divided into several frequency subintervals. Within each interval, the proposed

OR process can be used to accelerate the numerical simulation and to the end its multi-point counterparts covering
he entire frequency band are formed. In this way, the maximum expansion term L in Eq. (13) can also be reduced,
hich is favored for the approximation of the kernel functions using Taylor polynomials. This is because double-
recision numbers are only accurate up to 15 digits, the numerical error (e.g. incurred in the factorial operation for
large integer L) can be alleviated.
Next, the quick assembly of the whole ROM and solution at multiple frequencies for broadband vibro-acoustic

imulations will be elaborated.

.3. Online multi-frequency analysis

In the online phase, we need to compute the frequency-dependent coefficients in Eq. (14) for each frequency

nd then a robust ROM can be rapidly created from the offline stored reduced matrices/vectors by the use of
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straightforward multiplication and summation operations. Combining Eqs. (11) and (19) yields[
Kn − jωDn − ω2Mn −Csa,nm

−ω2ρaGmCas,n Hm

] [
un

pm

]
=

[
fs,n

0

]
, (20)

where

Gm =

L∑
l=0

(k − k∗)l

l!
Ḡl,m, Hm =

L∑
l=0

(k − k∗)l

l!
(kH̄l+1,m − H̄l,m). (21)

It is clear that the structure of the original global system represented in Eq. (5) with its four physically distinct
ubmatrices is preserved. As such, the proposed three-step MOR strategy is a structure-preserving dimension
eduction algorithm for vibro-acoustic multi-frequency problems simulated through the coupled FE–BE technique.
ote that inside the considered frequency range, the ROM is an accurate approximation of the FOM, but beyond

hat it is not guaranteed to be valid any more. It is possible to extend the width of effective frequency band but this
ill increase the number of DOFs in the ROM (i.e. the ROM size).
The CPU time and storage required for the online frequency sweep analyses only depend on the number of the

eries representations and the dimension of the generated ROM, thereby reducing the computational complexity
ramatically compared to the brute direct evaluation of the high-dimensional original model. As a by-product, the
rojection step via the congruence transformations can potentially yield better conditioned systems since multiplying
ith an orthonormal basis on both sides of the dynamical equation can be viewed as preconditioning. Accordingly,
ue to the much lower dimension, the linear system of equation (20) can be easily solved using the built-in direct
olver mldivide in MATLAB which selects the appropriate routine according to the properties of the coefficient
atrix.

. Numerical experiments

In this section, we present two numerical examples, both on an academic case and on a more practical application
ase, to demonstrate the high performance of the three-step model order reduction procedure. All our codes are
mplemented in MATLAB R2019a. All data regarding condensed system matrices (by means of the constraint
limination) of FE substructures, node coordinates and elements connectivity information on the surface mesh are
ssembled and extracted from COMSOL MULTIPHYSICS with MATLAB. An interactive interface to the commercial

FE package is set up [51] and research codes are developed for FE–BE coupling terms along the fluid–structure
interface and BE modeling of exterior acoustic fields, which have good flexibility to deal with real-life complex-
shaped structures in great detail. Both verification tests are carried out on a Windows workstation with Intel(R)
Xeon(R) Gold 6132 CPU at 2.60 GHz and 64 GB of RAM.

The six-node quadratic (shape functions) triangular shell elements for the outside surface of the FE part and
constant triangular elements for the BE part are applied, which make the coupling of both methodologies can
be conducted directly and further the evaluation of singular integrals can be performed analytically. In both case
studies, the acoustic media of infinite volume are assumed to be water for which the mass density and speed of
sound are respectively taken as ρa = 1000 kg/m3 and c = 1500 m/s; the structures are made from steel with
material parameters E = 210 GPa, ρs = 7900 kg/m3, ν = 0.3; the real scalar coefficients of Rayleigh damping are
et to α = 10 and β = 10−7.

.1. Elastic sphere submerged in an infinite fluid

The first example is a classical fluid–structure benchmark model, which comprises an elastic spherical shell with
radius of 5 m and a thickness of 0.05 m surrounded by water. This underlying coupled system without structural

amping has been extensively studied and the analytical solution for the displacement at any point on the sphere
r fluid pressure at any point inside the acoustic domain is available, see [3,9,10,18,42,44] and it serves as the
eference for a full 3D solution. The structure is excited by a harmonic unit point force at coordinates (0, 0, −5) m
long the global positive z-direction on the outer-surface side, where the origin is located at its center. The sphere
s discretized using 12620 triangular elements with 25242 nodes and 6312 mesh vertices (as displayed in Fig. 4(a)),

hich results in an FE shell submodel of order N = 126210 and a BE acoustic submodel of order M = 12620.

10
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Fig. 3. Dynamical responses of a submerged steel sphere at the point (0, 0, −5) m: (a) Displacement; (b) Sound pressure.

In this example, the largest distance between a field point and a source point is the diameter of sphere.
ccording to the deduced error bound in [41], the maximum expansion term L = 13 around the selected base
oint k∗ = 2π × 125/c is sufficient for obtaining reliable solution within the considered frequency range from

fmin = 0.5 Hz to fmax = 200 Hz with a 0.5 Hz frequency step. In order to construct a proper projection subspace,
hree expansion points, i.e. s⋆ = jck⋆ = 2π j × [75, 125, 180] are designated to perform the hybrid SOAR–FOAR
lgorithm. Expansion points are advisable to be located in the higher frequency range as there is more system
modal) information at play and thus more orthonormal vectors are subsequently required to capture the inherent
ynamical characteristics of the original model over there. The default upper bound for the condition number of
he upper Hessenberg matrix in the SOAR procedure is practically chosen as: lub = 1010 and the associated

supremum of order for the reduction basis corresponding to each k⋆ in FOAR is controlled and truncated by the
Lagrange remainder, which leads to 4L̂ = 52 for this case. In this way, the application of the proposed automatic
reduction technique results in a reduced-order model with a size of only 292 DOFs, where n = 133 for the structural
subsystem and m = 159 for the acoustic subsystem. Note that in SOAR- or FOAR-algorithm looping n or m times
will get n + 1 or m + 1 columns of orthonormal matrix since the starting vector r0 or g is given before iteration.

4.1.1. Case without damping
The present results are first compared with the undamped analytical solutions to confirm the validity of the

(numerical and exact) integration for BE matrices and also the construction of coupling terms Csa and Cas . As
entioned in Remark 1, if no damping is considered for the structural part, then the FOAR–FOAR algorithm

nstead of the hybrid SOAR–FOAR procedure can be used.
The parameter settings for the implementation of FOAR–FOAR algorithm are the same as aforementioned for

he SOAR–FOAR, i.e. with the same expansion points s⋆ and the same reduced orders n and m. Fig. 3 graphically
epicts the absolute values of the analytical/predicted (+z direction) displacement and sound pressure at the point
0, 0, −5) m where the force acts. It is clear that the constructed ROM delivers satisfactorily accurate approximation
ver the entire frequency band of interest, thereby allowing for a more refined frequency grids to be sampled for
ynamical response analyses. This is important since in practice the fine frequency increments (even oversampled
esolution) are preferred to thoroughly understand intrinsic dynamic properties and also to identify some parameters
e.g. natural frequencies, damping ratio, etc.) of vibro-acoustic systems. In fact, as the structure is considered to be
ndamped for the derivation of analytical/numerical solution, it is supposed to reach an infinite level at resonant
requencies, but is limited due to the frequency calculation step (∆ f = 0.5 Hz in this case). In addition, eighteen

response peaks can be intuitively distinguished from the character of (both the displacement and pressure) response
functions at this particular node.
11
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Fig. 4. (a) Problem geometry and its surface mesh; (b) Contour plot of the real component of surface acoustic pressure and (c) Its
corresponding relative error with respect to the analytical solution at 200 Hz.

Fig. 5. Dynamical responses of a submerged steel sphere at the point (0, 0, 5) m: (a) Displacement; (b) Sound pressure.

Moreover, with the adaptively generated ROM, displacement quantities at any other node on the shell surface
nd sound characteristics at any field point in the exterior domain (and its boundary) can be readily evaluated.
s an example, Fig. 4(b) shows a contour plot of the real part of acoustic pressure distributions at f = 200 Hz
btained from the ROM. It is obvious that the constructed ROM accurately predicts the surface pressure at all the
E independent DOFs, as shown in Fig. 4(c), where the error with respect to the analytical solution is mostly in

he order of an engineering accuracy of 1%.

.1.2. Case with damping
To demonstrate the beneficial versatility and generality of the proposed three-step MOR methodology, the

tructural dynamical model incorporating Rayleigh damping (with scalar coefficients α = 10 and β = 10−7) is
tudied and the SOAR algorithm is applied for reduced-order modeling of the large-scale second-order system of
q. (1). Fig. 5 shows the absolute values of the analytical/predicted (+z direction) displacement and sound pressure
t the point (0, 0, 5) m located on the surface of the sphere (i.e. radius 5 m and azimuthal angle 180◦ with respect
o the excitation point), from which it is clear that the present solutions match the analytical ones well. The slight
ifference can be attributed to the presence of Rayleigh damping and thus resonant peaks are suppressed.

In order to further investigate the performance and assess the approximation quality, the present results of the
OM with reduced order 292 are also compared to the solutions obtained from the commercial software package
COMSOL, where the BEM in Acoustics Module can be seamlessly coupled to FEM-based Structural Mechanics

12
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Table 1
Calculation time for the three substeps of the proposed MOR process.

Step 1
/structural FE part/

Step 2
/acoustic BE part/

Step 3
/frequency sweeps/

Wall-clock time [s] 146 6228 5

Module. The same mesh discretization with quadratic elements for the spherical shell is adopted, while linear/linear
Lagrange shape functions for the pressure/normal acceleration are employed to model the acoustic field. This
way the resulting system of equations (similar to the form Eq. (5)) has 139224 complex-valued DOFs, which are
nearly equivalent to those of the proposed MOR approach with in total 138830 DOFs, thereby allowing for a fair
comparison. Very good agreement can be observed, as illustrated in Fig. 5 and even better, the current results appear
to be somewhat more accurate than that calculated from the software package, especially in the higher frequency
range.

In this case, with a fully vectorized algorithm [45], the assembly of those two coupling matrices Csa and Cas

∈ RN×M and RM×N ) is done in less than one second. Except this, the wall-clock time used for obtaining the
ransfer function in one instance of the FOM is more than 4.5 h, and the elapsed time required for the solution
f in total 400 large-scale algebraic system of equations can be directly estimated since it grows linearly with the
umber of sampled frequencies. The CPU time of the presented three-step MOR approach is 1.77 h. The speed-
p factor compared to the brute force approach based on the FOM evaluation is therefore better than three full
rders of magnitude and the benefit from both reduced DOFs and runtime viewpoints is apparent. Specifically, the
rocessing time for constructing the orthonormal basis V (the first step) and generating the projection matrix W (the
econd step) is respectively 146 s and 1.73 h, as reported in Table 1. Performing the subsequent online frequency
weep (the third step) only marginally contributes to the overall computational cost (i.e. increases by 5 s), which
erifies that the cost involved in computing the response functions using the previously established ROM is almost
egligible. It is obvious that the most time-consuming part of the whole MOR process is the second step, which
orresponds to the dimension reduction of the BE submodel. The total CPU time needed for simulating this coupled
tructural–acoustic problem using the commercial dedicated FE–BE method is 13.8 h, where the GMRES solver
nd sparse approximate inverse (SAI) with the default preconditioner and the default settings are used, resulting in
n average of 2.07 min for each frequency point. Thus, despite the fact that almost equal DOFs with the same mesh
iscretization are analyzed on the computer with the same configuration, the proposed SOAR–FOAR technique runs
pproximately 8 times faster. Note that all CPU time data are averaged over a couple of calculations.

.2. Underwater vehicle submerged in water

The second example illustrates the ability of the proposed three-step model order reduction methodology to
nalyze the vibro-acoustic behavior of a hull involving complicated internal built-up structure immersed in an infinite
xtent filled with water, as represented in Fig. 6. The model’s bounding box has dimensions 11.85 m × 2 m × 2
, which consists of a 7 m long cylinder with a diameter of 2 m, a 2.4 m long cone with radii of 1 m and 0.4 m at

ts large and small edges and on both sides closed by a 2.2 m ellipsoid endcap and a 0.25 m sphere endcap. Eight
ircumferential rings and four longitudinal stringers with their width as 0.2 m are mounted to reinforce the shell
tructure. Additionally, an inner cylinder with a radius of 0.8 m and two-end baffles is attached and its length is
qual to that of the outer cylinder. Assuming that all shell components, ring stiffeners and longitudinal stringers are
ade of steel with Rayleigh damping and have a uniform thickness of 0.04 m. The dynamical system is subjected to

our unit point forces in the +z direction whose positions are inside the hull at the points (2, 0, −0.8) m, (3, 0, −0.8)
, (4, 0, −0.8) m and (5, 0, −0.8) m, where the origin is located in the center of the first baffle.
The internal structure is meshed with 11352 nine-node quadratic (shape functions) quadrilateral curved shell

lements and the outer hull which is in contact with the acoustic domain is discretized by 21392 six-node quadratic
riangular shell elements. This way the total number of DOFs in the resulting FE–BE hybrid model is 457094,
here N = 435702 for the FE displacement field and M = 21392 for the BE sound pressure field. The center
f Taylor expansion is defined at a given point k∗ = 2π × 350/c over the frequency range from fmin = 1 Hz to
fmax = 500 Hz with increment of 1 Hz. The maximum distance of two points on the submerged structure is its

13



X. Xie and Y. Liu Computer Methods in Applied Mechanics and Engineering 386 (2021) 114126

t
p

Fig. 6. Geometry of the model and its FE/BE meshes: (a) the outer hull; (b) the contour plot; (c) the cross-sectional view and (d) the
internal structure.

length of 11.85 m and thus in the light of the Lagrange remainder, the suitable number of expansion terms required
for a desired level of accuracy is L = 35 for this application case.

The use of the automatic reduction algorithm results in a ROM with merely 539 DOFs in which n = 248 for
he reduced displacement DOFs and m = 291 for the reduced pressure DOFs, while using only three expansion
oints, i.e. s⋆ = jck⋆ = 2π j × [175, 350, 550] with lub = 1010 and 4L̂ = 96. It should be mentioned that the last

expansion point s3 = jck3 = 2π j × 550 is outside the considered frequency range. This is because that in the first
step only the structural loading without the unknown acoustic loading is included to construct the orthonormal basis
V. However, in the vibro-acoustic coupling system with heavy medium of water, the fluid which acts as an added
mass can significantly decrease the natural frequencies of the pure structural system [52], which means that the
additional dynamical information above 500 Hz should be contained in the proposed model order reduction process
to take into account the contribution of higher-order modes in dynamical responses of the lower frequency range.

With the generated compact ROM of dimension n+m = 539, time-harmonic structural displacement and acoustic
pressure fields caused by the input excitations at any position in their respective domains can be easily predicted.
Since the dynamic behavior at loading locations is usually the output quantity of interest, the variations as a function
of the frequency of the absolute values of displacements in the +z direction at the points (2, 0, −0.8) m and
(4, 0, −0.8) m are shown in Fig. 7. Considering computational resource limitations, the solution of the large-scale

full-order model with 457094 DOFs is difficult to achieve. Therefore, for the purpose of comparison, an FE–BE

14
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Fig. 7. Dynamical displacement responses at the points: (a) (2, 0, −0.8) m; (b) (4, 0, −0.8) m.

Fig. 8. Dynamical pressure responses at the points: (a) (5, 1, 0) m; (b) (4, 0, −1) m.

reference solution is sought in COMSOL, which has the same FE quadratic shell elements for the structure and
yet linear/linear shape functions for the pressure/normal acceleration in the BE acoustic field, leading to a total of
458332 complex-valued DOFs. It is clear that the proposed three-step MOR solution procedure produces results
very close to the software solution which confirms its high accuracy.

Fig. 8 reports the predicted acoustic pressure amplitude versus the frequency at coordinates (5, 1, 0) m and
(4, 0, −1) m located on the outer-surface of the hull. Due to the lack of transfer functions obtained from the FOM,
the solid green line again represents the solution from the commercial FE–BE solver COMSOL and serves as a
reference. This clearly illustrates that the present approach yields rather accurate results for different field points
within the acoustic domain. In order to better assess the computational accuracy of the proposed technique, an
average prediction difference ϵ for the sound pressure at the response point is defined as:

ϵ =
1

N

N f req∑ |pd
− pd

ref|

|pd
|

(22)

f req d=1 ref
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where N f req (= 500) is the number of discrete frequencies at which the pressure response function (pd : present
solutions; pd

ref: numerical references calculated using COMSOL) is evaluated. In this case, the average value ϵ of
7% is seen, where the relative difference in the lower frequency region does not exceed 3%, whereas the relative
difference in the upper frequency region becomes larger. However, the results are still acceptable as given in Fig. 8.

For this complicated case, the CPU time spent in constructing the two orthonormal bases V and W (the offline
hase) is respectively 805 s and 9 h, whereas the execution time consumed by the online frequency-wise sweep
nalysis is 29 s, only taking up a very small percentage. Again, the largest proportion of the elapsed time happens in
he offline phase (99.9%). The total processing time required to solve the frequency responses of the reference model
ia the commercial FE–BE solver equipped with the default GMRES and SAI is 27 h. The present approximation
ethod proves about 2 times reduction in computational cost over the commercial software even though the same
esh discretization and (nearly) equal DOFs are used. Thus it is more efficient due to a lower number of DOFs, a

aster simulation, meanwhile keeping almost the same accuracy in the entire frequency range of interest.
These results validate the strength and applicability of the presented MOR technique for strongly coupled exterior

ibro-acoustic problems, both on the accuracy and the computational efficiency. We also emphasize that the program
ritten in MATLAB is a proof of concept and is not yet exclusively optimized. Also, no effort is attempted to
arallelize the algorithm. In this sense that a further substantial speed improvement can be achieved by converting
d-hoc MATLAB routines into a high performance programming language such as executable FORTRAN or C++

with efficient parallelization, which is currently being investigated intensively.

5. Conclusions

A novel three-step model order reduction technique is proposed in this paper for accelerating steady-state
frequency response predictions of exterior structural–acoustic interaction systems, in which the hybrid FE–BE
modeling technique is provided to flexibly couple constant acoustic BE models with higher order structural FE
models. In order to avoid full-scale simulations and enable drastic reduction of the overall computational load, the
specific shapes and essential properties (e.g., model size, bandwidth) of the physically diverse submatrices in the
general dynamical equations are fully exploited. To this effect, with respect to the two different subsystems, different
orders of Krylov subspaces are separately served as projection subspaces for dimension reduction. First, a second-
order Arnoldi (SOAR) procedure is used to construct an orthonormal basis for large but sparse FE matrices, where
Rayleigh damping is inserted. After omitting the reduced structural displacement DOFs from the global system
of equations, the Krylov subspace-based (linear) first-order Arnoldi (FOAR) method is applied to the resulting
expression to create another orthonormal basis for relatively small but dense BE pressure DOFs, in which the
representative affine decomposition is introduced to facilitate the matrix assembly and to increase its robustness
with respect to frequency changes. More specifically, the frequency-dependent integral kernels are decoupled into a
finite sum of frequency-dependent scalar functions multiplied by frequency-independent terms. To the end, having
two different projection matrices generated during the offline stage at hand, a final reduced order model which
holds the same form and intrinsic dynamical features as the original full-order model can be quickly recovered by
simple matrix operations and thus subsequent online evaluations based on the robust ROM at each frequency of
interest are very cheap. Two case studies are examined which demonstrate that fast frequency sweep analyses with
excellent speedups over the brute force approach and several times faster than the commercial software package
can be achieved and the required computational resource in terms of both CPU time and memory consumption is
very limited.

In view of efficient parametric studies arising from multi-query engineering applications, such as optimization
design (size-, shape- and topology-optimization), parameter identification, uncertainty quantification of high-
resolution vibro-acoustic systems, it would be worthwhile to further extend the present approach to the parametric
model reduction framework, which allows to retain the (one or more) parameter-dependence in the low-dimensional
yet accurate ROM.
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