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A B S T R A C T   

A new kind of dynamic seal with braided ceramic fibers has been designed to seal the movable panels in the 
scramjet engines, which are used for the propulsion of hypersonic vehicle. The braided ceramic fiber structure 
can provide buffer forces when the seals are subjected to the external dynamical preloads. However, it also makes 
the seals difficult to analyze. Up to now, the analysis of the seals still uses 1D models so that one cannot 
implement the coupled analysis of seals and their surrounding structures and flows. In this paper, a novel 2D and 
3D mechanics-thermal-seepage coupled model is proposed to describe these seals, which provides a possibility 
for the aforementioned coupled analysis. Meanwhile, a strong-form numerical method, element differential 
method (EDM) is employed to discretize the governing equations of the coupled model due to its efficiency and 
robustness. Three examples are given. The first one is to invert the material-dependent parameters of three kinds 
of seal strips from the experimental data by Levenberg-Marquardt (LM) algorithm. Other two implement the 
analyses of 3D square and circular cross-section seals, respectively, which verify that EDM is more efficient than 
FEM in seal analysis when using the same mesh sizes.   

1. Introduction 

1.1. High temperature braided rope dynamic seals 

Hypersonic vehicles (that is, aircraft whose speed can exceed 5 Ma) 
have become hot research fields in many countries and areas. As a kind 
of hypersonic vehicle engines, scramjet engines can provide enough 
traction needed, for which the conventional turbojet engines cannot. 
However, scramjet engines cannot launch by themselves at low speed. A 
turbine based combined cycle (TBCC) technology can solve this problem 
[1–4]. In order to make the TBCC adjustable inlet work normally, certain 
gaps must be reserved between the adjustable board and outside shell 
when the engine is working. At low speed, the effect of the gaps is 
relatively small and can be ignored. However, in the supersonic flight, 
the high-speed air will flow into the gap, which will produce extremely 
high temperature at the gaps. Then, the gaps may be expanded due to 
ablation, which may cause some unexpected changes and lead to an 
accident in flight finally. To avoid this, the gaps must be sealed 
dynamically. Usually, scramjet engines need to work in the higher 

temperature and worse environment than the conventional turbojet 
engines. Therefore, the dynamic seals, which are used to prevent the 
high temperature gases from being leaked, should bear higher thermal 
loads, higher pressure difference, and larger deformations than the seals 
used on turbojet engines [5–10]. 

Although the working environment is harsh, a kind of dynamic seal is 
still designed to cater to the need of the scramjet engines. As shown in 
Fig. 1, the seal strips use core-sheath architecture. The core and sheath 
are both made of a lot of braided ceramic fibers. Sheath has a certain 
braided angle to protect core from falling apart, while core occupies 
almost 90 % volumes of the whole seal strip structure [9]. Generally, the 
seals have a porosity of 0.5–0.6 without any external force acting. In the 
practical applications, the seal is subjected to a transverse preload so 
that the porosity will be decreased with deformation, which restrict the 
leakage flow from going through the seal transversely. Fig. 2 shows a 3D 
working illustration of a seal system. Actually, in addition to circular 
cross-sections as shown in Fig. 1, square cross-sections are also common 
for this type of seal, as shown in Fig. 3(a). 

Analyzing these dynamic seals numerically is the prerequisite of 
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realizing the coupled analysis of the seals with their surrounding 
structures and fluid. However, plenty of braided fibers make the strictly 
precise analysis scarcely possible. So, some researchers considered the 
seal strip as a whole entity to reveal the physics regulation of some 
significant indicator of the seal strip, for example, leakage rate. 
Mutharasan, Steinetz and Cai et al [6–10] explored the relationships 
between the leakage rate and some possible factors that may affect it by 
experimental results and theoretical analysis. Mutharasan [8] estab-
lished a 1D mathematical model of the seal strips based on the Kozeny- 
Carman equation. The model reveals that the leakage rate is affected by 
porosity, gas properties, fiber diameter, and gas pressure difference 
across the seal etc. Based on Mutharasan’s work, Cai et al [10] proposed 
a modified model that take the preload into account by assuming the 

relationships among leakage resistance, preload, and pressure difference 
across the seal. Meanwhile, they [9] also found that the modified Ergun 
equation [11] is more reasonable and more accurate to describe the 
leakage flow than the original Kozeny-Carman equation. 

Only 1D models are considered in the aforementioned research 
works. In 1D models, the leakage resistance is derived by integrating 1D 
Kozeny-Carman equation directly [7–10], which is just like a bridge to 
associate the leakage rate with the seal properties, gas properties, pre-
load, and pressure difference. Some parameters of seal samples are ob-
tained by using least squares linear regression method to fit the 
experimental results [9,10]. However, it is quite simple to describe the 
working processes of the seals and cannot be used in coupled analysis 
with surrounding structures and fluids. In this paper, a multi- 
dimensional (2D and 3D) mechanics-thermal-seepage coupled model 
is proposed not only to predict the leakage rate of the seal strips, but also 
to provide the distribution of temperatures, seepage pressures and dis-
placements in the seals. 

1.2. Element differential method 

When establishing a multi-dimensional model, ordinary differential 
equations (ODEs) turn into partial differential equations (PDEs). 
Therefore, leakage resistance is not applicable anymore because one 
cannot obtain an explicit equation by directly integrating a complex 
PDE. In practical engineering, numerical methods are the most 
commonly used tools to deal with the complex PDEs, which include 
finite element method (FEM) [12], boundary element method (BEM) 
[13], mesh reduction method (MRM) [14] etc. In solid mechanics, FEM 
occupies a dominant position. Especially, in recent years, newly pro-
posed isogeometric FEM analysis fills the gap between computer-aided 
design (CAD) and FEM [15,16]. In this paper, another recently pro-
posed numerical method, element differential method (EDM) [17–27], 
is employed to solve this multi-field interaction problem. EDM is firstly 
proposed by Gao et al [18,26], and applied to solve heat conduction 
problems and thermal-mechanics problems. EDM belongs to the cate-
gories of collocation method and FEM in a broad sense. It can obtain 
more stable solutions than some other collocation methods due to the 
use of element mapping technique and it is more efficient than tradi-
tional Galerkin FEM due to its sparser coefficient matrix. Up to now, 
EDM has been applied to analyze solid vibration problems [24], piezo-
electric problems [21], electromagnetic wave problems [22] etc. In this 
paper, EDM will be applied to analyze this multi-field interaction non- 
linear problem for the first time. Also, it is the first time to deal with 
the time derivative term of volumetric and anisotropic constitutive by 
using EDM. 

Besides, to complete the proposed mechanics-thermal-seepage 
coupled model, the authors specify the functional expressions of some 
material properties, which contain the material-dependent parameters 
and the physical quantities to be solved. Therefore, the resulted set of 
algebraic equations is non-linear and will be solved by Newton iterative 
method. Three examples are given in this paper. In the first example, 
Levenberg-Marquardt (LM) algorithm [28–31] is employed to invert 

Fig. 1. Core-sheath architecture of the circular cross-section seal strip [5].  

Fig. 2. Working illustration of the seal system [9,10].  

Fig. 3. Photograph of square cross-section seal and circle cross-section seal.  
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material-dependent parameters of three kinds of seal strips from the 
experimental results. The second and third examples use the proposed 
3D model to analyze the square and circular cross-section seal strips, 
respectively. The results and the efficiency of two numerical methods, 
EDM and conventional Galerkin FEM, for computing these problems will 
be compared. 

2. Governing equations of seepage, deformation and heat 
conduction as well as the relationships among some essential 
parameters 

To analyze the physical processes of the braided ceramic seal strips, a 
mathematical model should be set up first. Obviously, it is extremely 
complicated to consider the squeezing and friction between any two 
fibers and the interactions between fibers and fluid in detail. Therefore, 
in this section, a mechanics-thermal-seepage coupled model is proposed 
instead of the complicated analysis above [32]. 

2.1. Governing equations of seepage 

The seal strips can be regarded as the porous media and the process 
of fluid going through porous media can be described by the seepage 
equation, i.e., [33,34]. 

ρl

ρ0

∂εv

∂t
+Φβp

∂P
∂t

+Φβt
∂T
∂t

=
∂

∂xi

(
α
υ

∂P
∂xi

)

(1) 

where xi is the coordinate of i-th direction (coordinate (x, y, z)= (x1, 
x2, x3) in this paper); P is the seepage pressure; T is the temperature; t is 
time; α is permeability; υ is dynamic viscosity coefficient of fluid; εv is 
volumetric strain; Φ is porosity; βp is compressibility coefficient of fluid; 
βt is the thermal volume expansion coefficient of fluid; ρl/ρ0 represents 
the ratio of local fluid density ρl and reference fluid density ρ0 (equals 
1.178 kg/m3 in this paper) and can be computed by [33,34]. 

ρl

ρ0
=

P⋅T0

P0⋅T
(2) 

where T0 and P0 are the reference temperature and seepage pressure 
when the seal has no deformation (equal 300 K and 1 atm in this paper). 
In this paper, repeated subscripts represent summation and they can be 1 
or 2 for 2D problems, be 1, 2, or 3 for 3D problems, respectively. There 
are two kinds of boundary conditions for the seepage equation: 

P = P (3)  

−
α
υ⋅

∂P
∂xi

⋅ni = v (4) 

where P and v are the prescribed seepage pressure and velocity, 
respectively; ni is the i-th direction of outer normal vector. 

2.2. Governing equations of mechanics 

The deformation of seals subjected to preloads can be described as 
elasticity equations without the body force term [33,34]: 

∂σij

∂xj
= 0 (5)  

σij = Cijklεkl − κij(T − T0) − bδij(P − P0) (6)  

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

− βδij(T − T0) (7) 

in which σij represents stress tensor; C is the elastic constitutive 
tensor; εij is strain tensor; ui is the displacement of the i-th direction; δij is 
Kronecker Delta; b is Biot coefficient, which characterize the effect of 
seepage pressure on stress; β is thermal expansion coefficient; κij is 
thermal stress tensor. Usually, two kinds of boundary conditions of 

elasticity are used: 

ui = ui (8)  

σij⋅nj = ti (9) 

where ui and ti are the prescribed displacement and surface traction, 
respectively. 

In Eq., elastic constitutive tensor C is a fourth order tensor. In gen-
eral, because the seal strip is made of braided fibers, the mechanics 
properties along the length orientation are different from the other two 
radial orientations. However, for 2D problems, only a section of seal 
strip is considered, so that 2D problems can be regarded as isotropic 
problems. For isotropic problem, elastic constitutive tensor C can be 
expressed by formula. 

Cijkl = λδijδkl + μ
(
δikδjl + δilδjk

)
(10) 

in which λ and μ are Lamé constants and they can be expressed by 
formula. 

λ =
Eν

(1 + ν)(1 − 2ν) (11)  

μ =
E

2(1 + ν) (12) 

where E and ν are the equivalent elastic modulus and Poisson ratio of 
the material, respectively. Due to the symmetry of shear stress and shear 
strain, fourth order tensor C, which has 16 elements, can be simplified 
into 9 elements. Meanwhile, Eq.(6) can be simplified as the following 3 
× 3 matrix format for 2D problems. 
⎡

⎣
σ11
σ22
σ12

⎤

⎦ =

⎡

⎣
λ + 2μ λ 0

λ λ + 2μ 0
0 0 μ

⎤

⎦

⎡

⎣
ε11
ε22
ε12

⎤

⎦ (13) 

But for 3D problems, the effect of anisotropy must be considered. 
This kind of anisotropy can be regarded as orthotropic anisotropy and 
requires nine independent parameters to determine the constitutive 
tensor C, which are elastic moduli of three orientations E1, E2 and E3, 
three main Poisson ratios ν12, ν13 and ν23 and three shear moduli G12, 
G13 and G23. Besides, there are three deputy Poisson ratios ν21, ν31 and 
ν32, which can be calculated by three main Poisson ratios and three 
elastic moduli, i.e., 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ν12

E1
=

ν21

E2

ν13

E1
=

ν31

E3

ν23

E2
=

ν32

E3

(14) 

Similar to 2D problems, Eq. can also be simplified as the following 6 
× 6 matrix format. 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ11
σ22
σ33
σ12
σ13
σ23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

CM11 CM12 CM13 0 0 0
CM21 CM22 CM23 0 0 0
CM31 CM32 CM33 0 0 0

0 0 0 CM44 0 0
0 0 0 0 CM55 0
0 0 0 0 0 CM66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε11
ε22
ε33
ε12
ε13
ε23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15) 

in which. 

CM11 =
1 − ν23ν32

E2E3Δ
(16)  

CM12 = CM21 =
ν21 + ν31ν23

E2E3Δ
=

ν12 + ν13ν32

E1E3Δ
(17)  

CM22 =
1 − ν13ν31

E1E3Δ
(18) 
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CM23 = CM32 =
ν32 + ν12ν31

E1E3Δ
=

ν23 + ν21ν13

E1E2Δ
(19)  

CM33 =
1 − ν12ν21

E1E2Δ
(20)  

CM13 = CM31 =
ν13 + ν12ν23

E1E2Δ
=

ν31 + ν21ν32

E2E3Δ
(21)  

CM44 = G12 (22)  

CM55 = G13 (23)  

CM66 = G23 (24) 

where. 

Δ =
1

E1E2E3

⃒
⃒
⃒
⃒
⃒
⃒

1 − ν21 − ν31
− ν12 1 − ν32
− ν13 − ν23 1

⃒
⃒
⃒
⃒
⃒
⃒

(25) 

Furthermore, because the mechanics properties of two radial orien-
tations of seal strip can be regarded the same, 9 independent parameters 
can be reduced to 5. Supposing the length orientation is along axis x1, 
the following 4 formulas are satisfied. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

E2 = E3

ν12 = ν13

G12 = G13

G23 =
1 − ν13ν31 − ν32 − ν12ν31

2E1E3Δ

(26) 

Thus, 9 parameters can be reduced to 5, i.e., elastic moduli of two 
orientations E1 and E2, two main Poisson ratios ν12 and ν23, and shear 
moduli G12. 

For either 2D or 3D problems, the thermal stress tensor κij can be 
expressed by a unified formula. 

κij =

{
Cijkkβ i = j

0 i ∕= j (27) 

Specifically, for 2D isotropic problems, 

κ11 = κ22 = 2(λ + μ)β (28) 

and for 3D anisotropic problems, 
{

κ11 = (CM11 + CM12 + CM13)β
κ22 = κ33 = (CM21 + CM22 + CM23)β

(29)  

2.3. Governing equations of heat conduction 

The equation that describes the heat transfer process is [33,34]. 

ρcp
∂T
∂t

+(1 − Φ)κjkT0
∂εjk

∂t
=

∂
∂xi

(

K
∂T
∂xi

)

(30) 

where K is equivalent thermal conductivity; ρ⋅cp is equivalent density 
multiplying specific heat. The word ‘equivalent’ means that the relevant 
properties are mixed by those of fluid and fibers according to porosity, i. 
e., 

K = (1 − Φ)Ks +ΦKl (31)  

ρcp = (1 − Φ)ρscps +Φρlcpl (32) 

in which subscript s represents solid and l represents fluid. Two kinds 
of boundary conditions of heat conduction equation are expressed as 
follows. 

T = T (33)  

− K⋅
∂T
∂xi

⋅ni = q (34) 

where T and q are the prescribed temperature and heat flux, 
respectively. 

2.4. Evolution relationships between parameters 

Porosity is an important parameter of the porous media. For seal 
strips, the porosity is affected mainly by the volumetric strain εv. It can 
be found from the previous experiments [10] that porosity changes 
under different preloads and seepage pressures. This is because preloads 
and seepage pressures both affect the strain tensor. To obtain the exact 
relationship between porosity and volumetric strain, generally, the 
porosity should be experimentally measured under different working 
conditions. With no preload and seepage pressure, the seal strip porosity 
is approximately homogeneous and can be easily measured [9,10]. 
However, it is not homogeneous and cannot be easily measured when 
the seal strip is deformed. Therefore, in this paper, an empirical equation 
is proposed in the following to describe the relationship between the seal 
strip porosity and volumetric strain: 

1
Φ − Φmin

−
1

Φmax − Φmin
=

(
1

Φ0 − Φmin
−

1
Φmax − Φmin

)

⋅exp( − aεv) (35) 

in which Φmin, Φmax, and Φ0 represent the minimum porosity, 
maximum porosity, and the porosity without deformation; a is an evo-
lution parameter which must be greater than 0. Fig. 4 visualizes their 
basic relationship. Through Fig. 4, it can be found that porosity changes 
fast near εv = 0 and have little variation when it comes to Φmin and Φmax. 
The change of parameter a mainly affects the slope of the curve near εv 
= 0. By referencing to [10], in this paper, Φmin and Φmax are set as 0.093 
and 0.7, respectively. As for Φ0, different kind of seal strips have 
different values. 

Meanwhile, the porosity affects the permeability. In this paper, the 
relational expression about porosity and permeability is adopted from 
reference [9], i.e., 

α = α0
Φ2

(1 − Φ)
3 (36) 

in which α0 is an experimental parameter and is also greater than 0. 
The equivalent elastic modulus of the seal strip is related to the porosity 
and temperature, which can be expressed as. 

E = E0(1 − Φ)(1 − a1 (T − T0) ) (37) 

Fig. 4. Schematic show of porosity and volumetric strain.  
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where E0 is also an experimental parameter, the value of which is 
much smaller than that of the transverse elastic modulus of ceramic fi-
bers; a1 is a parameter that characterizes how much temperature affects 
elastic modulus. 

Thus, the complicated working process of the seal strip is simplified 
as a non-linear multi-field interaction problem. The relationships among 
the physical quantities are illustrated in Fig. 5. 

3. Discretization of the non-linear PDEs by using EDM 

In this paper, the element differential method (EDM) [12–21]is used 
to discretize the partial differential equations (PDEs) into several alge-
braic equations and the Newton method is used to solve the non-linear 
algebraic equation set. 

3.1. Theory of EDM 

Element differential method is a strong-form numerical method. Like 
conventional FEM, it can use various isoparametric elements to dis-
cretize the computational domains. In this paper, the 2D 9-node and 3D 
27-node Lagrange elements are used, as shown in Fig. 6. Physical vari-
able u and coordinate xi over these elements can be expressed as linear 
combinations of variable u and coordinate xi at all nodes, i.e. 

u = Nαuα (38)  

xi = Nαxα
i (39) 

where Nα is the shape function of node α. Similarly, the first and the 
second order derivatives of physical variable u can also be expressed as. 

∂u
∂xi

=
∂Nα

∂xi
uα (40)  

∂2u
∂xi∂xj

=
∂2Nα

∂xi∂xj
uα (41) 

The detailed formula of shape functions and its first or second order 
derivatives can be found in references [18,26] and would not be shown 
here. 

EDM is a collocation method and it obeys the rule that different kinds 
of nodes use different equations. There are two kinds of nodes in EDM, 
element internal nodes and element boundary nodes. For 2D 9-node 
Lagrange element shown in Fig. 6 (a), node 5 is the element internal 
node. For 3D 27-node Lagrange element shown in Fig. 6 (b), node 14 is 
the element internal node. The other nodes of 9-node and 27-node ele-
ments are the element boundary nodes. 

For element internal nodes, directly discretized governing equations 
are used. Here, the governing Eqs., and without the time items (steady 
state equations) are considered first. By substituting Eqs. and into the 
governing equations, they can be expressed as. 
[

∂Nβ

∂xj
Cβ

ijkl
∂Nα

∂xl
+ Cijkl

∂2Nα

∂xl∂xj

]

uα
k −

∂Nα

∂xj

(
κij(T − T0)

)α
−

∂Nα

∂xi
(b(P − P0) )

α
= 0

(42)  

[
∂Nβ

∂xi
Kβ∂Nα

∂xi
+ K

∂2Nα

∂xi∂xi

]

Tα = 0 (43)  

[
∂Nβ

∂xi

αβ

υ
∂Nα

∂xi
+

α
υ

∂2Nα

∂x2
i

]

Pα = 0 (44) 

In this paper, direct integration method is applied to deal with the 
time items. If substituting Gn and Hn for the left side of Eqs.(43) and (44) 
at n-th time step, respectively, element internal node equations with the 
time items can be expressed as. 

Fig. 5. The illustration of relationships among physical quantities.  

Fig. 6. 2D 9-node and 3D 27-node Lagrange elements.  
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ρcp
Tn+1 − Tn

Δt
+(1 − Φ)κjkT0

∂Nα

∂xk

(
uα

j

)

n+1
−
(

uα
j

)

n

Δt
= θGn+1 +(1 − θ)Gn

(45)  

ρl

ρ0

∂Nα

∂xi

(
uα

i

)

n+1 −
(
uα

i

)

n

Δt
+Φβp

Pn+1 − Pn

Δt
+Φβt

Tn+1 − Tn

Δt
= θHn+1 +(1

− θ)Hn

(46) 

where Δt is the length of time step; subscript n or n + 1 represent that 
the variables belong to n-th or (n + 1)-th step; θ satisfies 0 < θ⩽1 [17] 
and equals 1 in the examples below. 

The equations for element boundary nodes are the surface traction, 
heat flux, or velocity equilibrium equations, i.e., 

∑N

e=1

[(

Cijkl
∂Nα

∂xl
uα

k − κij(T − T0) − bδij(P − P0)

)
∑M

f=1
nf

j

]

=
∑N

e=1

∑M

f=1
tf
i or 0

(47)  

−
∑N

e=1

[(

K
∂Nα

∂xi
Tα

)
∑M

f = 1
nf

i

]

=
∑N

e=1

∑M

f = 1
qf or 0 (48)  

−
∑N

e=1

[(
α
υ

∂Nα

∂xi
Pα

)
∑M

f = 1
nf

i

]

=
∑N

e=1

∑M

f = 1
vf or 0 (49) 

in which N is the number of elements related to the collocation node; 
M is the number of surfaces in element e which this node is located on; e 
and f are the element number and surface number, respectively. 
Generally, if the node is located on the boundary of the whole model, the 
right-hand sides of three equations may not be zero. However, if the 
node is not located on the boundary, the right-hand sides must be zero. 
To illustrate equilibrium equations in detail, three common cases of 
element boundary nodes are shown in Fig. 7, where t in the figure 
represents the surface traction. Of course, when the mesh is distorted, 
there are many other complicated cases which are not discussed here. 

Based on the discretized equations above, each node has two or three 

(being the number of dimensions) deformation equations, one thermal 
equation, and one seepage equation, four or five equations in total for 
2D or 3D, respectively. For each time step, a non-linear equation set can 
be formed by collecting these equations together. Writing it into a matrix 
and vector form, it follows that. 

[A(xn, xn+1) ]{xn+1} = {b(xn) } (50) 

in which [A] is the coefficient matrix; {xn} and {xn+1} are the solu-
tion vector of n-th and (n + 1)-th steps, respectively; {b} is the right- 
hand side vector. If the initial solution vector is specified, the solution 
vector of each step can be computed from the previous step. Usually, the 
Newton iterative method is used to solve the non-linear equation set at 
each step. 

3.2. Newton iterative method 

Newton iterative method can transform the process of solving a 
system of non-linear algebraic equations, such as Eq., into solving a 
system of linear algebraic equations several times. Supposing that {xn} is 
the guess vector of n-th step, then, residual vector {R} is defined as. 

{R} = {b} − [A(xn) ]{xn} (51) 

Then, the next guess vector {xn+1} can be computed by formula. 

{xn+1} = {xn} + w⋅A− 1(xn)⋅{R} (52) 

where w is relaxation factor taking value between 0.7 ~ 1.0 and is set 
to 1.0 in this paper. When the ∞-norm of the residual vector is less than a 
certain limit (usually 10-4), {xn+1} can be regarded as the final solution 
of this non-linear equation set. 

4. Example 1: Determination of a, α0, and E0 from the 
experiments by an inverse procedure 

In this example, the parameters a, α0, and E0 are determined through 
an inverse procedure from the experimental results mentioned in 
reference [10], which contain 26 groups of leakage rates of each seal 

Fig. 7. Three kinds of common cases of element boundary nodes [19].  
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under different preloads, different inlet gas pressures. The experimental 
data are all measured under normal temperature (about 300 K) at steady 
state. Therefore, the heat transfer equation (include parameter a1) and 
time items in all equations can be ignored in this example. 

4.1. Levenberg-Marquardt (LM) algorithm 

Inverting three unknown parameters mentioned above can be 
regarded as a problem of minimizing the following objective function: 

F(a, α0,E0) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
M

∑M

i=1
(Li − Li(a, α0,E0) )

2

√
√
√
√ (56) 

where M is the group number of measured leakage rates under 
different preloads and seepage pressures in the experiments; Li is the 
experimental value of the i-th leakage rate, while Li is the computational 
value of it. 

LM algorithm is a gradient iterative algorithm that can find the 
minimum value of the objective function. In n-th iterative step, the 
vector that consists of three parameters is updated by the following 
formula. 
⎧
⎨

⎩

a
α0
E0

⎫
⎬

⎭
n+1

=

⎧
⎨

⎩

a
α0
E0

⎫
⎬

⎭
n

+

⎧
⎨

⎩

δa
δα0
δE0

⎫
⎬

⎭
(57) 

where the front δ means the increment of the parameter in this step 
and the increment vector can be computed by formula. 

(
[J]T [J] + c⋅diag

(
[J]T [J]

) )

⎧
⎨

⎩

δa
δα0
δE0

⎫
⎬

⎭
= [J]T{D} (58) 

in which [J] is sensitivity coefficient matrix; c is the damping factor 
(equals 0.001 in this example); diag means only the diagonal elements of 
a matrix are remained and the other elements are set to zero; {D} is a 
vector of M elements and can be expressed as. 

{D} =

⎧
⎪⎪⎨

⎪⎪⎩

L1 − L1(a, α0,E0)

L2 − L2(a, α0,E0)

⋅⋅⋅⋅⋅⋅
LM − LM(a, α0,E0)

⎫
⎪⎪⎬

⎪⎪⎭

(59) 

And [J] is an M × 3 matrix, which can be expressed as. 

[J] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L1

∂a
∂L1

∂α0

∂L1

∂E0

∂L2

∂a
∂L2

∂α0

∂L2

∂E0
⋯ ⋯ ⋯

∂LM

∂a
∂LM

∂α0

∂LM

∂E0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(60) 

In this paper, the derivatives in matrix [J] is computed by differ-
ences, such as the following formula. 

∂Li(a, α0,E0)

∂a
=

Li(1.01a, α0,E0) − Li(a, α0,E0)

0.01a
(61) 

The iteration is terminated until the objective function F is within a 
specified tolerance (10-4 in this example) compared with the previous 
step. 

4.2. Computation and analysis 

To compute the leakage rates by using EDM, a computational model 
should be set up. If considering the cross section far away from two sides 
of seal strip, the model can be regarded as plane strain state. In this 
example, the cross section of the seal strip is square. Fig. 8 shows the 
model of the seal strip. Top right of the square is exposed to 1 atm 
(101325 Pa) pressure, while top left is exposed to different gas pressure 
(greater than1 atm). The other boundaries have no gas leakage, which 
means the flow velocities are 0. The upper boundary is subjected to 
uniform preload. Lower left, lower right and bottom of the square are 
fixed. 2500 (50 × 50) 9-node elements are used to discretize the 
computational model and there are 10,201 nodes in total. 

There are some other material parameters should be specified. 
Poisson ratio is set to 0.22. Dynamic viscosity coefficient of the air is 
1.79 × 10-5 Pa⋅s. Biot coefficient is set to 1.0. Then, if specifying three 
material-dependent parameters a, α0, E0, and initial porosity Φ0, the 
seepage pressures and displacements of the whole computational 
domain can be computed by EDM. Then, the flow velocity can be 
computed by Eq.(4). Finally, the leakage rate L can be calculated by 

Fig. 8. The computational model of the example 1.  

Table 1 
Parameters a, α0, E0 for three different seal strips that minimize F.   

a α0 E0 

M6a-1  1.905695 6.333553 × 10-12 8.585619 × 106 

M6b-1  1.957233 5.505652 × 10-12 1.093146 × 107 

M6c-1  1.955108 7.994810 × 10-12 9.868145 × 106  

Fig. 9. Measured and computed leakage rates for M6a-1 seal strip.  
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integrating the velocities along the boundaries exposed to 1 atm, i.e. 

L =

∫

l
v→⋅ n→dl (62) 

It should be noticed that in this example, L represents leakage per 
unit length and per second of the seal strip. 

Three kinds of seals, M6a-1, M6b-1, and M6c-1 are involved in the 
experiments. The initial porosity Φ0 of M6a-1, M6b-1, and M6c-1 are 
0.562, 0.572, 0.515, respectively. To implement LM algorithm, the 
initial iterative values of three uncertain parameters a, α0, E0 are all set 
to 2.0, 6 × 10-11and 1.28 × 107 for three seals. Through the iteration of 
LM algorithm, finally, one can obtain the minimum values of objective 
function F and their corresponding a, α0, E0 for three different seal strips, 
which are shown in Table 1. Meanwhile, for the sake of comparison, 26 
groups of measured and computed leakage rates for M6a-1 seal strip are 
shown in Fig. 9. Similarly, those for M6b-1 and M6c-1 are shown in 
Fig. 10 and Fig. 11, respectively. In addition, 6 additional groups of 
given conditions of each seal strip are calculated by the inversion results. 
Their measured and computed leakage rates are shown in Table 2. 

In three figures, by comparing the measured leakage rates with the 
computed ones, it can be concluded that parameters in Table 1 are 
fundamentally credible when predicting the leakage rates of three seals 
under high pressure differences. Meanwhile, observing the errors 

between the experimental values and the computational values from 
three figures and Table 2, it can also be found that the higher the inlet 
gas pressures are, the less the errors are. Regarding this phenomenon, 
the authors believe that there may be two reasons. The first one is that 
the experimental results may have some errors when the inlet gas 
pressures are close to 1 atm. Generally, when inlet gas pressure equals 1 
atm, the leakage rate should be zero whatever the preload is. But ac-
cording to the trends of the experimental results in three figures, it may 

Fig. 10. Measured and computed leakage rates for M6b-1 seal strip.  

Fig. 11. Measured and computed leakage rates for M6c-1 seal strip.  

Table 2 
Measured and computed leakage rates of additional specified conditions.   

Preloads/ 
Pa 

Inlet 
pressures/ Pa 

Leakage rates/ kg•m− 1•s− 1 Errors 
Experiment Computation 

M6a- 
1 

551,581  122756.2452 4.8311688E- 
03 

2.5892085E- 
03  

5.81 % 

551,581  150351.7427 7.9231169E- 
03 

5.9469631E- 
03  

5.14 % 

551,581  199905.563 1.3044156E- 
02 

1.2055381E- 
02  

2.61 % 

551,581  338458.8189 2.9566753E- 
02 

2.9852199E- 
02  

0.63 % 

896,318  167219.4449 7.6332468E- 
03 

6.6872168E- 
03  

2.48 % 

896,318  339516.626 2.4252468E- 
02 

2.5117215E- 
02  

2.12 % 

M6b- 
1 

551,581  123353.4713 4.7448156E- 
03 

2.7204952E- 
03  

5.32 % 

551,581  145352.6169 7.1656399E- 
03 

5.4501733E- 
03  

4.59 % 

551,581  221501.6257 1.5396443E- 
02 

1.5013525E- 
02  

1.18 % 

551,581  306126.9772 2.5757570E- 
02 

2.5897442E- 
02  

0.11 % 

896,318  167327.3245 7.9170696E- 
03 

7.0731033E- 
03  

2.48 % 

896,318  372629.0601 2.9635016E- 
02 

3.0026511E- 
02  

0.14 % 

M6c- 
1 

551,581  138117.2135 5.1196781E- 
03 

3.5768396E- 
03  

5.35 % 

551,581  164829.3684 7.5447887E- 
03 

6.1989520E- 
03  

4.71 % 

551,581  204645.5994 1.0598632E- 
02 

1.0153001E- 
02  

1.67 % 

551,581  372982.576 2.7574406E- 
02 

2.7662515E- 
02  

0.22 % 

896,318  121485.117 2.5149296E- 
03 

1.6459690E- 
03  

3.06 % 

896,318  373486.5789 2.2814004E- 
02 

2.3419498E- 
02  

1.27 %  

Fig. 12. Computational model of the example 2.  
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not be zero. The second one is that when the gas pressure difference is 
close to 0, Eqs.(1) and (4) may not be suitable to describe the physical 
process because of the lower velocity of the fluid, similar to the views 
expressed in reference [10]. 

5. Example 2: A square cross-section 3D seal strip analysis 

5.1. Steady state analysis 

In the second example, a 40 mm length seal strip with 8 mm × 8 mm 
square section is considered. The computational model only takes half of 
the length because of the symmetry. As is shown in Fig. 12, the coor-
dinate system is set up at the center of the symmetrical section square. As 
is shown in the figure, the upper and lower faces are divided into two 
parts with an area ratio of 1:4 as required by the boundary conditions, 
where the smaller parts are free and the larger parts are constrained by 
the surrounding structure in terms of their normal orientation dis-
placements. In Fig. 12, the faces labeled 1 and 3 are fixed in the y-di-
rection, the face labeled 2 is fixed in the x-direction, and the face labeled 
7 is the symmetrical section at half of the strip length with its z-direction 
fixed. The face labeled 5 is exposed to 0.552 MPa uniformly distributed 
preload. The face labeled 6 is exposed to 800 K temperature and 409271 
Pa seepage pressure, while the face labeled 4 was exposed to 300 K and 
101325 Pa (1 atm). That means high temperature gases will enter from 
part 6 and will be leaked through part 4. Other surfaces without speci-
fied displacements or preloads are free surfaces and surfaces without 
specified temperatures are insulated, and surfaces without specified 
seepage pressures have zero leakage velocity. The heat conductivities of 
fiber and air are 25 W/(m⋅K) and 0.02 W/(m⋅K). Thermal expansion 
coefficient is 7.5 × 10-6 K− 1. Parameter a1 is 5 × 10-4 K− 1. Other pa-
rameters and relationships are the same with those of seal M6c-1 in 
example 1. 

To discretize this 3D computational model, 68,921 nodes and 8,000 

Fig. 13. 3D seal strip mesh.  

Fig. 14. The result contours of two methods.  
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27-node elements are used, as are shown in Fig. 13. For the sake of 
comparison, the authors use two methods, EDM and conventional 
Galerkin FEM, to calculate this problem, for which the same mesh and 
the same type of elements are used. In addition, the FORTRAN programs 
of two methods are coded in the same framework to compare the 
computational time more fairly. And the linear algebraic solver is pro-
gram PARDISO from Intel MKL. Besides, in steady analysis, when 
∞-norm of the residual vector is less than 10-6, the non-linear iteration is 
considered converged. 

After computation, the contours of displacements, temperatures, and 
seepage pressures of two methods are shown in Fig. 14. Through these 
six contours, it can be found that the results of EDM and FEM are almost 
the same. However, the computational time of EDM is 1082.473 s for 14- 
step non-linear iteration, while that of FEM is 1221.028 s for also 14- 
step. This confirms that the results of EDM is reliable and EDM is 
more efficient than conventional Galerkin FEM when using the same 
mesh, which coincides with the conclusion in reference [19] (where 
accuracy and computational cost of EDM and FEM were detailly 
compared). 

5.2. Transient analysis 

In this section, the physical changes of the seal strip are analyzed 
during the gradual increase of temperature and seepage pressure. The 
same seal strip parameters are adapted in the transient analysis. To 
implement transient analysis, some extra properties need to be specified. 
Fiber density ρs is 2500 kg/m3. Specific heat of fibers and air are 840 J/ 
(kg⋅K) and 1005 J/(kg⋅K), respectively. Fluid compressibility coefficient 
βp is 9.869 × 10-6. The thermal volume expansion coefficient of fluid βt is 
− 3.333 × 10-3. The length orientation is along z-axis (i.e., x3 direction), 
and the elastic modulus along the length orientation is E3 = 3.5 × 108 

Pa. The Poisson’s ratio ν12 is 0.22. The Poisson’s ratio ν32 (=ν31) is 0.02. 
And the shear modulus G13 (=G23) is 0.9 times elastic modulus along 
two radial orientations (i.e., E1 and E2). Time step is set to 0.2 s and the 
total time is 10 s. Part 2 (in Fig. 12) is exposed to (300 + 20⋅t) K 

temperature and (101325 + 10000⋅t) Pa seepage pressure, where t 
represents elapsed time. The other boundary conditions are not 
changed. 

After calculation, the displacement, temperature, and seepage pres-
sure contours of EDM and FEM at 2 s, 4 s, 6 s, 8 s, and 10 s are obtained 
and shown in Fig. 15. The X-displacements of point A (see Fig. 12) versus 
time of two methods are shown in Fig. 16. Through Fig. 15 and Fig. 16, it 
can also be found that the results of EDM and FEM are almost the same. 
Meanwhile, through the displacement contours and Fig. 16, it can be 
found that the seal strip deformation will have slight change in the 
opposite orientation of 0.552 MPa preload. It may be partly because of 
thermal expansion and partly due to the decrease of porosity caused by 
the increase of compression volumetric strain, which will in turn leads to 
an increase of the elastic modulus, finally resulting in this deformation 

Fig. 15. The contours of EDM and FEM at 2 s, 4 s, 6 s, 8 s, and 10 s.  

Fig. 16. The X-displacements of point A versus time of two methods.  
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against preload. In addition, the number of non-linear iterative steps for 
each time step of two methods are shown in Fig. 17. From Fig. 17, it can 
be found that they are not exactly the same. Nevertheless, the total non- 
linear steps for two methods both happen to be 397 steps. And the 
computational time of EDM is 29194.456 s, while that of FEM is 
34592.271 s. 

6. Example 3: A circular cross-section 3D seal strip analysis 

6.1. Steady state analysis 

In the third example, a seal strip with the diameter of 6 mm and 
length of 40 mm is considered and, also, the computational model only 
takes half of the length because of the symmetry. As is shown in Fig. 18, 
the coordinate system is set up at the center of the symmetry section 
circle. The seal strip is compressed from four directions, top, bottom, 
left, and right, and the compression size of each direction is 0.6 mm. 
According to the compressed areas, the surface of the seal strip is 
separated into 8 parts, as is shown in Fig. 18. Parts 1, 3, 5, and 7 (colored 
orange) are moved to plane y = 2.4 mm, x = 2.4 mm, y = -2.4 mm, and x 
= -2.4 mm, respectively. That means, for example, the y-displacements 
of the nodes on part 1 satisfy (2.4-y) mm, where y represents y-co-
ordinates of the nodes, and the other two directions are free. The z- 

direction of the symmetry section is fixed, while the other two directions 
are free. High temperature gases will enter from part 2 and will be 
leaked through part 4. That means, part 2 is exposed to 800 K temper-
ature and 409271 Pa seepage pressure, while part 4 is exposed to 300 K 
temperature and 101325 Pa (1 atm) seepage pressure. Other surfaces 
whose displacements are not assigned are free surfaces and whose 
temperatures are not assigned are insulated and whose seepage pres-
sures are not assigned have zero leakage velocity. 

To discretize the 3D computational model, 78,603 nodes and 9120 
27-node elements are used, as shown in Fig. 19. In this example, the 
material parameters are the same with those of seal M6a-1 in example 1. 
Some other parameters like thermal expansion coefficient, heat con-
ductivities of fiber and air are the same with the seal in example 2, 
except for the Poisson’s ratio ν32 (=ν31) becoming 0.12. 

After computation, the contours with deformations of displacements, 
temperatures, and seepage pressures of two methods are shown in 
Fig. 20. Through these six contours, it can be found that the results of 
EDM and FEM are almost the same. However, the computational time of 
EDM is 823.839 s for 10-step non-linear iteration, while that of FEM is 
902.302 s for also 10-step. This confirms again for curve geometry that 
the results of EDM are reliable and EDM is more efficient than FEM when 
using the mesh. 

6.2. Transient analysis 

Also, in the second part, the physical changes of the circular cross- 
section seal strip are analyzed in the process of temperature and 

Fig. 17. The number of non-linear iterative steps for each time step of two methods.  

Fig. 18. Computational model of the example 2.  

Fig. 19. 3D seal strip mesh.  
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seepage pressure gradually increasing. The same seal strip model is 
adapted in the transient analysis. Fiber density, specific heat of fiber and 
air, fluid compressibility coefficient, thermal volume expansion coeffi-
cient of fluid are the same with those in example 2. Time step is also set 
to 0.2 s and the total calculation time is 10 s. Part 2 (in Fig. 18) is 
exposed to (300 + 20⋅t) K temperature and (101325 + 10000⋅t) Pa 
seepage pressure. The other boundary conditions are not changed. 

Through calculation, the temperature and seepage pressure contours 
at 2 s, 4 s, 6 s, 8 s, and 10 s are obtained and shown in Fig. 21. The results 
of EDM and FEM are almost the same. The number of non-linear itera-
tions for each time step of two methods are shown in Fig. 22, which 
shows that numbers of non-linear iterations for each time period are not 
the same. The total number of non-linear iterations of EDM is 356 steps, 
and slightly more than FEM of 346. The computational time of EDM is 
29476.199 s, while that of FEM is 32668.702 s. 

7. Conclusion 

In this paper, the mechanics-thermal-seepage coupled model is used 
to analyze the working process of the braided ceramic fiber seal strips. 
Elasticity, thermal, and seepage governing equations are used and some 
parameter assumptions are made about the relationships among 
porosity, elasticity modulus, temperature, permeability, and volumetric 
strain. Meanwhile, element differential method is employed to obtain 
the numerical solutions of the coupled problems. 

To obtain the material-dependent parameters in the relationship 
formulas, the authors use the experimental leakage rates under various 
circumstances to implement an inverse analysis by LM algorithm. And 
the good agreement of experimental statistics and inversion results 

verify that the inversion parameters are credible. Meanwhile, the au-
thors also conclude two possible reasons for errors between experiments 
and computations at low inlet gas pressure. One is that the errors may 
exist in the experimental measurements and the other is that different 
formulas may be applicable for the low velocity flow case. 

Steady state analysis and transient analysis of a 3D square-section 
and a circular-section seal strip are given, respectively, to solve for the 
distributions of displacements, temperatures, and seepage pressures and 
those over time. All the analyses both verify that EDM can deliver almost 
the same results with FEM for this problem. Meanwhile, it can be found 
that EDM is more efficient than conventional Galerkin FEM in calcu-
lating this problem when using the same mesh and the same type of 
elements. 
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