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A B S T R A C T   

The boundary element method (BEM) for acoustic problems is a numerical method based on solving the dis-
cretized boundary integral equation (BIE) corresponding to the Helmholtz equation. A fast direct BEM for 3D 
acoustic problems is proposed in this paper, which is more suitable for broadband acoustic simulation of complex 
structures, such as in the design and analysis of acoustic metamaterials. The main idea of the fast direct solver is 
based on the hierarchical off-diagonal low-rank (HODLR) matrix, randomized interpolative decomposition and 
fast matrix inversion formula. Several numerical examples in solving both interior and exterior acoustic problems 
are presented in this paper, including radiation and scattering problems with distributed and complex structures. 
The numerical results show that the same level of accuracy and higher computational efficiency can be achieved 
by using this fast direct BEM compared with the conventional direct BEM. 

The second and third authors (Liu and Ye) would like to dedicate this paper to Professor Subrata Mukherjee who had 
enormous influences on their academic lives and research work on the BEM.   

1. Introduction 

The boundary element method (BEM) is a numerical method based 
on solving the boundary integral equation (BIE) for a given problem. In 
general, the BEM has the advantages of boundary discretization only and 
higher accuracy compared with other numerical methods. It is particu-
larly suitable for solving wave propagation problems in infinite do-
mains, such as an acoustic wave problem in an open space. However, 
there have been two critical issues associated with the development of 
the acoustic BEM: the uniqueness of the BEM solutions for exterior do-
mains due to the fictitious eigenfrequency, and the computational effi-
ciency of the BEM solutions due to its nonsymmetric and fully-populated 
matrices. 

The Burton-Miller BIE formulation [1,2], using a linear combination 
of the conventional BIE and derivative BIE, has been proved to be the 
most stable formulation for solving exterior acoustic wave problems. 
This combined BIE formulation can be applied to overcame the fictitious 
eigenfrequency problem in exterior wave problems when the wave-
number is a real number [3], as well as the thin-shape breakdown 
problems [4,5]. 

To improve the computational efficiency of the acoustic BEM, several 

types of fast solution methods have been developed and applied in the 
acoustic BEM in the last three decades. The most popular one is the fast 
multipole method (FMM) for Helmholtz equation proposed by Rokhlin 
and Greengard [6,7]. The basic procedure of FMM is to hierarchically 
group elements into cells in a tree structure, evaluate kernel integration 
with multipole expansions, local expansions and translations, and 
compute the matrix-vector multiplication using an iterative solver to 
update the solution. Another widely studied fast solution method is the 
adaptive cross approximation (ACA) BEM. It is also based on using an 
iterative solver and the hierarchical matrix (H -matrix) introduced by 
Hackbusch [8]. ACA is used for the approximation of low-rank sub-
matrices after hierarchical division of dense coefficient matrices. The 
ACA-BEM is kernel-independent, relies only on the algebra of the coef-
ficient matrix. More details of the two approaches can be found in 
several studies [9–12] for the FMM-BEM and some works [13–16] for 
the ACA-BEM. 

Both the FMM-BEM and ACA-BEM are methods utilizing iterative 
solvers, such as the commonly used generalized minimal residual 
method (GMRES) [17]. One issue with an iterative solver is the 
convergence of solutions. It is well-known that for acoustic problems, 
large wavenumber and complex geometry often lead to an 
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ill-conditioned linear system of equations, resulting in a large number of 
iterations before the solution can converge to a specified accuracy. One 
way to accelerate the convergence is to use a good preconditioner, but 
the efficiency and adaptability of the preconditioner can vary from case 
to case. 

A more recent approach in fast solution methods is to solve the BEM 
system of equations directly with the help of the concept related to the 
H -matrix and approximation. This is the so called fast direct BEM which 
is based mainly on using H -matrices, low-rank approximations and 
decompositions, and fast inverse algorithms on submatrices to recur-
sively obtain the solution of the BEM system. Many types of the 
H -matrix with different complexity are used to construct the fast direct 
solver, such as the hierarchically semiseparable (HSS) matrix [18], the 
hierarchical off-diagonal low-rank (HODLR) matrix [19], and the 
H -matrix [20]. A HODLR matrix can be represented by multiplication of 
a diagonal matrix and several block diagonal matrices, where all 
off-diagonal blocks are low-rank approximated, and can be inverted by 
the Sherman–Morrison–Woodbury formula efficiently. Because of this 
characteristic and the fact that the solution time is predictable for a 
given sized problem, the fast direct BEM solver has gained popularity in 
recent years. For example, Greengard’s group has worked on HODLR 
based fast direct BEM for 2D acoustic and electromagnetic wave scat-
tering problems [21,22]; and Martinsson’s group studied the fast and 
accurate compression strategies for applying the HODLR matrix [23,24]. 
The HODLR based fast direct BEM and accurate matrix approximation 
method were applied for solving 3D potential problems [25], as well as 
the isogeometric BEM (IGABEM) [26]. 

In this paper, we present a fast direct solver based on the HODLR 
matrix and interpolative decomposition (ID) approximation strategy for 
solving 3D acoustic wave propagation problems. The following of the 
paper is organized as follows: in Section 2, the BIE formulation for 
solving acoustic wave problems is reviewed; in Section 3, the applied 
HODLR matrix and interpolative decomposition approximation are 
presented; in Section 4, the algorithms used in the fast direct BEM solver 
are illustrated; in Section 5, a few numerical examples are presented to 
demonstrate the accuracy and efficiency of the developed fast direct 
BEM solver; and in Section 6, some discussions on the method are pro-
vided to conclude the paper. 

2. BIE formulation 

Consider the Helmholtz equation, which is the governing equation 
for acoustic wave problems in the frequency domain, in domain E (either 
finite or infinite): 

∇2ϕ+ k2ϕ+ Qδ(x, xQ) = 0 , ∀x ∈ E (1)  

where ϕ is the complex acoustic pressure at location x, k is the wave-
number, and Qδ(x, xQ) represents a point sound source at point xQ inside 
E, Q is amplitude of source, and δ(x, xQ) is the Dirac delta function. And 
k = ω/c with ω being the circular frequency and c being the speed of 
sound in the acoustic medium E. 

There are three types of boundary conditions on the boundary S of 
domain E:  

1) Sound pressure is given: 

ϕ = ϕ; (2)    

2) Particle velocity is given: 

q ≡
∂ϕ
∂n = q = iωρvn; (3)    

3) Impedance of the surface is given: 

ϕ = Zvn; (4)   

where the overbar symbol indicates a given value, ρ is the density of 
acoustic medium, vn is the normal velocity of the acoustic medium, and Z 
is the specific acoustic impedance. 

Applying the Green’s second identity for two continuous functions u 
and v: 
∫

V

[
u∇2v − v∇2u

]
dE =

∫

S

[

u
∂v
∂n − v

∂u
∂n

]

dS, (5)  

and the Sommerfeld radiation condition for an infinite domain problem: 

lim
R→∞

[

R
⃒
⃒
⃒
⃒
∂ϕ
∂R − ikϕ

⃒
⃒
⃒
⃒

]

= 0, (6)  

one can derive the conventional BIE (CBIE) as: 

c(x)ϕ(x) =
∫

S
[G(x, y,ω)q(y) − F(x, y,ω)ϕ(y)]dS(y) + ϕI(x)

+ QG(x, xQ,ω) , (7)  

where the incident wave term ϕI(x) is not present for radiation problem; 
c(x) is a constant, andG and F are the fundamental solution for 3D 
acoustic wave problem [2]: 

c(x) =

⎧
⎨

⎩

1, ∀x ∈ V,
1/2, ∀x ∈ S(smooth),
0, ∀x ∕∈ V ∪ S;

(8)  

G(x, y,ω) = 1
4πre

ikr ; (9)  

F(x, y,ω) ≡ ∂G(x, y,ω)
∂n(y) =

1
4πr2 (ikr − 1)r,jnj(y)eikr ; (10)  

in which r is the distance from a source point x to a field point y. Solving 
the CBIE with given boundary conditions, one can obtain all the un-
knowns on boundary S, which can then be used to compute the desired 
pressure values at points in domain E. However, the CBIE is flawed when 
used to solve an exterior problem at a fictitious eigenfrequency or in a 
domain with thin structures [1,2,4,5]. A dual formulation consisting of 
the CBIE and its normal derivative proposed by Burton and Miller [1] is 
an effective approach for solving both of the problems [5]. 

Taking the derivate of the CBIE with respected to the normal direc-
tion at point x and let x approach to boundary S, one obtains the so- 
called hypersingular BIE (HBIE) as: 

c̃(x)q(x) =
∫

S
[K(x, y,ω)q(y) − H(x, y,ω)ϕ(y)]dS(y) + qI(x) + QK(x, xQ,ω),

∀x ∈ S,
(11)  

where ̃c(x) = 1/2 if S is smooth around x, qI(x) is the normal derivative 
of incident wave ϕI(x) and the two new kernels are [9]: 

K(x, y,ω) ≡ ∂G(x, y,ω)
∂n(x) = −

1
4πr2 (ikr − 1)r,jnj(x)eikr , (12)  

H(x, y,ω) ≡ ∂F(x, y,ω)
∂n(x)

=
1

4πr3

{
(1 − ikr)nj(y)+

[
k2r2 − 3(1 − ikr)

]
r,jr,lnl(y)

}
nj(x)eikr .

(13)  

Then, the Burton-Miller (B-M) formulation, which is also called dual BIE 
formulation, can be written symbolically as: 
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CBIE + β HBIE = 0 (14)  

where β is a coupling coefficient. In this paper, β = − ih is used. The 
strongly singular integrals F and K, and the hypersingular integral H, can 
be dealt with using the regularized or weakly-singular forms of the CBIE 
and HBIE with the help of the corresponding static kernels for the po-
tential problem [9,27]. 

Solving the BIEs with the BEM using, for example, constant boundary 
elements, the discretized equation can be written in the following form: 

Aλ = b (15)  

where A is the BEM system matrix with complex coefficients, b is the 
known vector, and λ is the vector of all unknowns on the boundary el-
ements. In general, solving this system of equations with N unknowns 
using a conventional direct solver requires the complexity of O(N2) for 
memory storage and O(N3) for solution. In this work, a fast direct solver 
is developed based on hierarchical matrices in order to reduce both the 
complexity in memory storage and solution time. 

3. HODLR matrix and randomized interpolative decomposition 

The H -matrix is a large family of hierarchically divided matrices 
(see, for example, Ambikasaran’s [28] paper for discussions on the 
classification). In the present work, the hierarchical off-diagonal low--
rank (HODLR) matrix, which is one type of the H -matrices, is applied to 
construct the fast direct solver for solving the BEM system of equations. 
The basic idea of the HODLR matrix is to divide the matrix into a hier-
archical form and approximate all the off-diagonal low-rank sub-
matrices. For example, for a fully populated matrix K, the decomposition 
process can be represented by: 

K≈

⎡

⎣
K1

1 U1
1V1

1

U1
2V1

2 K1
2

⎤

⎦≈

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎣
K2

1 U2
1V2

1

U2
2V2

2 K2
2

⎤

⎦ U1
1V1

1

U1
2V1

2

⎡

⎣
K2

3 U2
3V2

3

U2
4V2

4 K2
4

⎤

⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≈⋯

≈

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎣ KlΠ
1 UlΠ

1 VlΠ
1

UlΠ
2 VlΠ

2 KlΠ
2

⎤

⎦ UlΠ − 1
1 VlΠ − 1

1 ⋯ ⋯

UlΠ − 1
2 VlΠ − 1

2

⎡

⎣ KlΠ
3 UlΠ

3 VlΠ
3

UlΠ
4 VlΠ

4 KlΠ
4

⎤

⎦ ⋯ ⋯

⋮ ⋮ ⋱ ⋯

⋮ ⋮ ⋮

⎡

⎣
KlΠ

2lΠ − 1 UlΠ
2lΠ − 1VlΠ

2lΠ − 1

UlΠ
2lΠ VlΠ

2lΠ KlΠ
2lΠ

⎤

⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)  

Eq. (16) can also be written as K ≈ K1 ≈ K2 ≈ ⋯ ≈ KlΠ following the 
order shown in the equation, where the superscript lΠ indicates the level 
of HODLR matrix. KlΠ

i indicates the i-th diagonal submatrix in the 
lΠ-level HODLR matrix KlΠ , and the corresponding off-diagonal sub-
matrix is approximated into the multiplication of matrices UlΠ

i and VlΠ
i . 

Any diagonal matrix Kl
i expect at the lowest level can be further 

expressed as: 

Kl
i =

[
Kl

2i− 1 Ul
2i− 1Vl

2i− 1

Ul
2iV

l
2i Kl

2i

]

(17)  

where i = 1, 2, 3, ⋅⋅⋅, 2l − 1. Assume the dimensions of square matrix Kl
2i− 1 

and Kl
2i are Nl

2i− 1 and Nl
2i, and those of the rectangular matrices Ul

2i− 1 

and Ul
2i are Nl

2i− 1 × pl
2i− 1 and Nl

2i × pl
2i matrices, Vl

2i− 1 and Vl
2i are pl

2i− 1 ×

Nl
2i and pl

2i × Nl
2i− 1 matrices. In general, p is usually much smaller than 

the corresponding N, and Nl
2i− 1 is not necessarily equal to Nl

2i. 
The HODLR matrix KlΠ can be factorized as a multiplication of a 

sequence of matrices. For example, let K to be divided into the K2 form, 
which can be factorized as follows: 

K2=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎣
K2

1 U2
1V2

1

U2
2V2

2 K2
2

⎤

⎦ U1
1V1

1

U1
2V1

2

⎡

⎣
K2

3 U2
3V2

3

U2
4V2

4 K2
4

⎤

⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K2
1

K2
2

K2
3

K2
4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎣
I ∗U2

1V2
1

∗U2
2V2

2 I

⎤

⎦ ∗U1
1V1

1

∗U1
2V1

2

⎡

⎣
I ∗U2

3V2
3

∗U2
4V2

4 I

⎤

⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=K2

⎡

⎣
∗K1

1
∗U1

1V1
1

∗U1
2V1

2
∗K1

2

⎤

⎦

=K2

⎡

⎣
∗K1

1
∗K1

2

⎤

⎦

⎡

⎣
I ∗U1

1V1
1

∗U1
2V1

2 I

⎤

⎦=K2K1

⎡

⎣
I ∗U1

1V1
1

∗U1
2V1

2 I

⎤

⎦=K2K1K0

(18) 

In general, the factorization of KlΠ is KlΠ = KlΠ KlΠ − 1…K0, where KlΠ 

is a diagonal matrix, and KlΠ − 1,…K1 are block diagonal matrices with 
the block format as K0. KlΠ can be easily inverted. And for any diagonal 
block ∗Kl

i in Kl (l=0,1,…,lΠ − 1 and i= 1, 2, ⋯, 2l), one has: 

∗Kl
i =

[
I ∗Ul+1

2i− 1Vl+1
2i− 1

∗Ul+1
2i Vl+1

2i I

]

= I +

[
∗Ul+1

2i− 1 0
0 ∗Ul+1

2i

][
0 Vl+1

2i− 1

Vl+1
2i 0

]

= I + Ul
iV

l
i

(19)  

where Ul
i =

[
∗Ul+1

2i− 1 0
0 ∗Ul+1

2i

]

and Vl
i =

[
0 Vl+1

2i− 1

Vl+1
2i 0

]

. The asterisk on 

∗Ul+1
2i− 1,

∗Ul+1
2i indicates the update of Ul+1

2i− 1,U
l+1
2i after factoring out ∗Kl+1

2i− 1,
∗Kl+1

2i . This type of matrix can be readily inverted by using the Sherman- 
Morrison-Woodbury (SMW) formula [29,30]: 
(
I + Ul

iV
l
i

)− 1
= I − Ul

i

(
I + Vl

iU
l
i

)− 1Vl
i (20) 

Instead of using LU decomposition to invert the larger matrix on the 
left-hand side of Eq. (20) directly, SMW can be applied to invert a 
smaller matrix on the right-hand side, greatly reducing the computa-
tional cost, when the dimension Nl

i of Ul
i and Vl

i is much larger than the 
dimension pl

i. 
Then the key is how to decompose those off-diagonal submatrices 

into Ul
iV

l
i. To obtain the required decomposition, a fast and accurate 

algorithm is needed. For example, ACA has been used to approximate all 
off-diagonal submatrices in a HODLR matrix for solving 2D electro-
magnetic wave scattering BEM equations [21]. However, ACA is accu-
rate only when two clusters are well separated geometrically, which is 
also named admissible. The hierarchically divided clusters usually do 
not satisfy the admissible condition in the top few tree levels. In this 
case, the randomized interpolative decomposition (ID) is a more accu-
rate algorithm for the approximation. 

To factorize an m × n matrix A with low-rank matrices, the most 
basic randomized algorithm starts from a n × k random test matrix Ω, 
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where k < n, of which every entry is an independent Gaussian random 
variable with a mean of 0 and a variance of 1. The multiplication of A 
and Ω, that is, Y = AΩ, forms a matrix in which each column of Y is a 
random sample in the range space of A. The orthonormalized Y is a m ×
k matrix denoted as Q whose columns form the basis for the reduced 
column space of A [31]. Then the Row ID algorithm is applied to obtain 
the decomposition, which is presented as: 

Q = XQ(I,:) (21)  

where the I is a set that contains indexes of k rows that span the row 
space of Q. Thus Q(I,: ) denotes the subset of rows in Q, and X is an m × k 
matrix containing an identity submatrix X(I,: ) = Ik. Furthermore, no 
entry of X is larger than 2 (or another reasonable small positive value). 

After obtaining I and X, we have: 

‖ Am×n − Xm×kA(I,:)k×n‖≤ ε (22)  

where ‖ ⋅ ‖ denotes the L2 operator norm. We would like k to be as small 
as possible for a given error tolerance ε of randomized ID, which means 
we want a better approximation with less use of core memory. The 
randomized algorithm is an effective aid to classical techniques. 
Considering the calculation of leverage scores for each row of A to 
decide whether to pick in ID as the second step, the randomize algorithm 
is the key of finding a subspace whose columns capture the action of 
column space of A. Instead of forming an ID directly of A, forming an ID 
of the sample matrix Q can reduce the overall computation cost, espe-
cially if the matrix is large. The random ID algorithm used here is based 
on an open-source code from P.G. Martinsson’s research website [32], 
whose team has been working on various fast direct solvers for decades. 

4. Algorithms 

Applying all the formulations and matrix operations discussed 
above, the algorithm of the developed fast direct solver for the 3D 
acoustic BEM can be described as follows.  

1) Read in the BEM model and construct a binary tree structure for the 
BEM matrix by hierarchically dividing the clusters. The information 
of the tree structure and the serial numbers of elements in each 
cluster are stored. The clusters at the lowest level of the tree structure 
are called leaves. By inputting the maximum number of elements 
allowed in a leaf as an initial parameter, the number of levels is 
determined correspondingly.  

2) Construct the HODLR matrix and the right-hand-side (RHS) vector 
downward. From the top to every subsequential level of the tree 
structure, calculate the coefficients in the off-diagonal blocks of BEM 
matrix and the corresponding RHS vector. Use the randomized ID 
algorithm to update and store U and V of decomposed off-diagonal 
blocks, and use ACA for admissible blocks where appropriate. 
Down to the lowest level, the coefficients in the diagonal blocks of 
BEM matrix are calculated and stored directly. And through the 
contribution of the submatrices at each level, the RHS vector is 
continuously accumulated and finally formed.  

3) Solve the HODLR matrix function by inverting submatrices upward. 
The unknown vector x on the boundary is solved as x =

K− 1
0 ⋯K− 1

lm − 1K− 1
lm b, in which Klm is a diagonal matrix and can be 

inverted directly. From the lm − 1 level to every upper level, the di-
agonal blocks have the form of I + UV. The SMW formula algorithm 
is used to quickly invert these block diagonal matrices. Multiply the 
inverse of block diagonal matrices to RHS vector b and the U 
matrices for upper-level submatrices until reaching the top level. 

5. Numerical examples 

In this paper, all calculations are carried out using a computer with 

Intel Xeon 2.60GHz dual core CPUs and 128Gb RAM. Two examples 
with analytical solutions are solved first to verify the accuracy and ef-
ficiency of the method. Then, BEM models with more complicated ge-
ometries are considered. 

5.1. Wave scattering from a rigid sphere 

Consider a rigid sphere impinged upon by a plane incident wave. 
Assume the center of the sphere is located at the origin and has radius R, 
and the plane wave is incident along the positive x direction. In the 
spherical coordinate (r, θ, φ), the scattered pressure field can be 
expressed as: 

ps(r, θ,φ) = − p0i(ω)
∑∞

l=0
(2l+ 1)il

j′l(k0a)
h′

l
(1)
(k0a)

⋅h(1)l (k0r)Pl(cosθ) (23)  

where p0i(ω) is the amplitude of the incident pressure wave, jl and hl
(1) 

are spherical Bessel functions of the first kind and third kind (also named 
as Hankel function), respectively, and Pl(cosθ) is the Legendre 
polynomials. 

For the BEM model, 1200 to 86700 constant triangular elements are 
used to discretize the boundary of the sphere (with R = 1) for cases with 
the frequency ranging from 27.3Hz to 1856.1Hz. The corresponding 
wave number in these cases ranges from k = 0.5 to k = 34. The tolerance 
for the error in the randomized ID used is from ε = 10− 3 to ε = 10− 2. The 
representable mesh and wave scattering pressure contour is shown in 
Fig. 1. 

Fig. 2 plots the numerical errors of the BEM solutions as compared 
with the analytical solutions at various different dimensionless wave-
number ka (with a = 2R in this case). Results obtained using two 
different tolerance values are presented. The error is measured in its L2 
norm, which is defined as: 

L2error =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
‖ Xnumerical − Xanalytical ‖2

∑
‖ Xanalytical ‖2

√

(24) 

From the Fig. 2, it is clear that without the Burton-Miller formula-
tion, the error in the conventional BIE (CBIE) solutions peaks near the 
fictitious eigenfrequencies. Besides, the tolerance ε of randomized ID 
also affect the accuracy of the solution. When a tolerance of ε = 10− 3 is 
used, the error is less than 1%. Higher accuracy always requires longer 
calculation time. So, for most engineering applications, the ε = 10− 3 

condition are likely to be sufficient to produce a reasonable accurate 
result with high efficiency. Compared to FMM BEM which needs to 
manually increase the number of multipole kernel expansion terms in 
the high frequency range, the set tolerance of ID helps to keep the 
desired accuracy automatically. 

Fig. 3 shows the improvement on the computing time compared with 
the conventional direct BEM. And in this case, the ACA is applied for the 
admissible blocks with the admissible condition value η of 0.5, and the 
error still kept below 1%. The η is defined as: 

η =
min{diamt, diams}

dist(t, s)
(25)  

where t and s are two clusters; diam represents the diameter of clusters 
and dist is the distance of the centers of the two clusters. Since the fast 
direct solver has some extra setup, the saving of the fast direct solver 
starts when the number of elements is above around 10,000. 

In the conventional BEM, constructing the matrix requires O(N2) 
operations and its solution via a direct approach requires O(N3) opera-
tions without parallel computing. The total complexity for the sphere 
case is around O(N2.7), as shown in the trend line, which is well within 
the expected range. In HODLR based fast direct BEM, the complexity of 
constructing and storing a HODLR matrix is at most O(N2logk) [33], 
where k is the rank of approximated matrix. It is affected by the settings 
in randomized ID and ACA, such as the rank of matrix when it finally 
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achieves the required precision. And the cost of algorithm for factor-
ization and inverse is O(Nlog2N) [18]. In this sphere scattering problem, 
the slope of the fast direct solver trend line indicates that the total 
complexity is actually close to O(N1.8), which is a significant reduction 
from O(N2.7) of the conventional BEM. For the largest model that can be 
solved by the conventional BEM solver, the total solution time is about 
10 times of that using the new fast direct solver. In addition, the con-
ventional BEM solver can only solve the model with the number of 

elements within 80,000 on the computer with 128Gb RAM, while the 
fast direct BEM solver can handle more than 240,000 elements on the 
same computer with the error below 1%. For comparison, the ACA 
solver in FastBEM Acoustics® software is also applied, which uses an 
iterative solver with the adaptive cross approximations in solving the 
BEM system of equations. The solution time of the iterative solver-based 
ACA BEM are also plotted in Fig. 3. It is seen that in this low-frequency 
case, the ACA solver has a complexity of O(N1.2) and is faster than the 
new fast direct solver. 

5.2. An interior acoustic problem 

To further demonstrate the accuracy of the developed algorithm, an 
interior acoustic problem with known exact solution is considered. 
Room acoustics is a subject that has received widespread attention and is 
closely related to everyday life. The simple testing case considered here 
is an enclosed cuboid with an inside point source. The pressure field 
inside the cuboid can be expressed as a linear combination of eigen- 
functions satisfying the Helmholtz equation: 

p =
∑

n
AnΨ(x, n) (26)  

The eigen-functions and eigenvalues kn can be derived as: 

Ψ
(
x, nx, ny, nz

)
= cos

(
nxπ
Lx

x
)

cos
(
nyπ
Ly

y
)

cos
(
nzπ
Lz

z
)

(27)  

k2
n =

(
nxπ
Lx

)2

+

(
nyπ
Ly

)2

+

(
nzπ
Lz

)2

(28)  

An is the mode participation coefficient given by: 

An = qn
ϖ

V
[
k2 − k2

n

] cos
(
nxπ
Lx

xs
)

cos
(
nyπ
Ly

ys
)

cos
(
nzπ
Lz

zs
)

(29)  

where Lx,Ly,Lz are dimensions of the room, xs,ys,zs are the coordinates of 
the source location, ϖ is the source strength, and qn = qx(nx)qy(ny)qz(nz) 
(qx(nx) = 1 for nx = 0 and qx(nx) = 2 for nx ∕= 0). Similar conditions are 
applied to qy and qz as well. One model with edge lengths of Lx = 1, Ly =

1, Lz = 0.5 is presented in Fig. 4. There are a total of 7200 elements in 
this model and the point source is located at (0.8, 0.8, 0.4). 

With a tolerance of ε = 10− 3, cuboids with different aspect ratios are 
simulated by the HODLR based fast direct BEM. There are 10 models 
with the same edge length Lx = Ly = 1 in both x and y directions, and the 
edge length in the z direction ranging from Lz = 0.1 to Lz = 1. In all 
models, the point source is located at (0.5, 0.5, 0.05) and the evaluation 
point is located at (0.1, 0.1, 0.05). The element size and rigid boundary 
faces are all the same. The frequency studied ranges from 60 to 150Hz 

Fig. 1. Schematic illustration of a sphere corresponding to a plane wave incident along -x direction at 54.59Hz. The BEM mesh is shown in the left figure and the 
sound pressure contour is plotted in the right figure. 

Fig. 2. L2 errors of pressure in the sphere scattering problem obtained from 
Burton-Miller (B-M) formulation and conventional boundary integral formula-
tion (CBIE) with different randomized ID tolerance. 

Fig. 3. Comparison of the CPU times with the conventional BEM, HODLR based 
fast direct BEM and ACA BEM for the sphere scattering problem with the 
wavenumber of 1. 
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with an interval of 10Hz. The average L2 error of the pressure at the 
evaluation point over the 10 frequencies for each model is shown in 
Table 1. The results in Table 1. indicate that the fast direct solver can 
deal with the internal problems of different aspect ratios accurately. The 
error remains very small when the aspect ratio is as low as 1/10. 

Regarding the efficiency, the CPU time is recorded in a frequency 
sweep study for the cube model with 10800 elements and shown in 
Fig. 5. As can be seen in the figure, the CPU time increases with the 
frequency slightly. The increase in time mainly come from two parts: the 
randomized ID approximation and the SMW formula matrix inversion. 
In the high frequency range, the coefficient matrix represents the action 
of highly oscillatory integral kernels. As stated earlier, the randomized 
algorithm is used to formulate a subspace that represents well the col-
umn space of coefficient matrix. In order to capture all oscillations, the 
randomized algorithm takes longer to sample as the frequency increases. 
The approximated submatrices Ul

i and Vl
i are larger, and the efficiency of 

SMW formula is reduced accordingly. Although the computation time 
increases a bit with the frequency, this is much less severe compared to 
the cases with the fast BEM using iterative solvers, such as the ACA BEM 
also shown in the figure. The advantage in the solution speed is lost for 
the ACA BEM in the higher frequency ranges. Therefore, the HODLR 
based fast direct solver has unique advantages in the broadband 
simulation. 

5.3. Torus arrays 

A modern approach to control sound is through the development of 
sound-control structures, which can produce a specific wavefront when 
they are illuminated with a suitable coherent source. For example, 
phononic crystals are artificial composite materials consisting of peri-
odical arrangement of identical structures. Controlling the material 
composition, structure topology and size leads to different acoustic 
bandgaps and thus different sound control performance. A torus array is 
simulated here to demonstrate the capability of the fast direct solver on 

handling wave scattering problems with multiple objects. 
The geometry of a torus and an array of nine tori are illustrated in 

Fig. 6. Each torus has a tube radius of r = 0.05 and a torus radius of R =
0.13, and the distance between each two torus is d = 0.025. The center of 
array is located at the origin, and all tori are distributed uniformly on the 
y-z plane around the center. A plane wave is incident along the − x axis. 
If the incident wavelength is greater than the hollow diameter of the 
torus, the scattered pressure field of the torus is similar to that of a 
sphere with the same characteristic length. The difference begins to 
manifest as the wavelength decreases below the hollow diameter of R −
r. Two models with 3 × 3 torus array and 5 × 5 torus array are studied 
for a frequency range of [500, 5500]Hz. The sound pressure at an 
evaluation point (-5,0,0) located on the transmitted wave side is plotted 
in Fig. 7. 

In both models, it is observed that there is an extreme low-pressure 
value with the magnitude of around 0.1 occurring around the fre-
quency of 4350Hz and 5000Hz for the 3 × 3 and 5 × 5 arrays respec-
tively. To investigate whether there is a quiet region at these two special 
frequencies, the sound pressure in a region behind the array is plotted in 
Fig. 8. There is indeed a quiet region in both cases, which is likely 
formed due to the destructive interference between the wave passing 

Fig. 4. Schematic illustration of a cuboid with a point sound source located at (0.8, 0.8, 0.4). The edge lengths of the cuboid in this figure are Lx = 1, Ly = 1, Lz = 0.5 
respectively, and the frequency of the sound source is 150Hz. The BEM mesh is shown in the left figure and the sound pressure contour is plotted in the right figure. 

Table 1 
L2 error of the pressure at the evaluation point inside an enclosed cuboid with an 
interior point source, averaged from 60 to 150Hz.  

X-length Y-length Z-length DOFs L2 error 

1 1 1 10800 0.207% 
1 1 0.9 10080 0.213% 
1 1 0.8 9360 0.244% 
1 1 0.7 8640 0.179% 
1 1 0.6 7920 0.263% 
1 1 0.5 7200 0.221% 
1 1 0.4 6480 0.188% 
1 1 0.3 5760 0.250% 
1 1 0.2 5040 0.195% 
1 1 0.1 4320 0.114%  

Fig. 5. CPU time of the HODLR based fast direct BEM and ACA BEM for the 
room acoustic model as a function of frequency. The number of elements 
is 10800. 

Table 2 
The number of elements and simulation time of each stage of the Menger 
structures at the frequency of 1000Hz.  

Menger Structure Stage 1 Stage 2 Stage 3 

Number of Elements 9804 16192 56876 
Time (sec.) 28.64 118.67 754.89  
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directly through the orifice and the scattered wave from the curved 
surface of the torus. This phenomenon has also been observed in other 
types of metamaterials such as perforated plate [34], the resonator array 
with central hole [35], and metamaterial with unit cells contain central 
hollow and surrounding helix structure [36,37]. 

As shown in Fig. 7, the results obtained from the conventional BEM 
match well with those obtained from the fast direct solver in the model 
with 3 × 3 torus array indicating the accuracy of the fast direct solver. 
However, the total CPU time taken by the conventional solver is two 
days longer than that of the fast direct solver. As for the 5 × 5 array 
model, the required memory is too large for the conventional BEM 
solver. The swept frequency calculation of the 25-torus array model can 

be finished within 16 hours, with the parallel calculation of the dis-
cretized kernel integration. Another approach to significantly cut the 
CPU time for frequency sweep calculation is to employ the model-order 
reduction method for the acoustic BEM [38]. 

5.4. Menger fractal structures 

Menger structures are fractals constructed hierarchically as illus-
trated in Fig. 9. There are two types of Menger fractal structures: the 
convex form and the concave form. Researchers have studied their 
acoustic properties and found that both could be regarded as acoustic 
metamaterials with negative refraction and sound absorption capability 
[39,40]. The concave structure is also called Menger sponge. According 
to the Ref. [39], the sound absorption capabilities of the first and the 
second stage Menger spongers were analyzed experimentally and 
theoretically. It was found that although the absorption magnitudes of 
the two types of structures were quite different, the trends of the sound 
absorption coefficient as a function of the frequency in the two cases 
were similar. 

As another validation case with a complex domain, it would be 
interesting to simulate the sound absorption of Menger structures using 
the fast direct solver. Since the specific parameters of sound impedance 
tube experiment are not specified in the Ref. [39], a similar case is 
simulated here. The absorption coefficient α is defined as: 

α = 1 −

⃒
⃒
⃒
⃒
H12 − e− iks

eiks − H12

⃒
⃒
⃒
⃒

2

(30)  

where H12 = p(x2)/p(x1) is the ratio of the acoustic pressures at two 
testing points located on the inner wall of impedance tube as shown in 
Fig. 10(a), k is the wavenumber, and s is the distance between the two 
test points. The rectangular tube with a length of 1.35m and a cross 
section area of 0.3 × 0.3m2 is modeled using the hard-wall condition. 

Fig. 6. Schematic of the geometry and the mesh of a single torus (left) and an array (right)  

Fig. 7. Sound pressure of the point located at (-5,0,0) at different frequencies in 
the two models obtained from the conventional direct BEM solver and the fast 
direct solver. 

Fig. 8. Sound pressure field contour plot of 3 × 3 torus array at 4350Hz (left) and 5 × 5 torus array at 5000Hz (right).  
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The two testing points are located 0.01m and 0.04m away from the 
Menger sponge respectively. A plane pressure wave is incident from the 
left end of the tube and the Menger structure is located on the right end 
of the tube as shown in Fig. 10(a). The frequency range studied is from 
400Hz to 1400Hz. The simulated total sound pressures in three cases 
corresponding to the three stages are plotted in Fig. 10 (b), (c) and (d) 
respectively. For clarity, solid structures are not shown and only sound 
pressure inside the air cavities of the structure is shown. 

The simulated sound absorption coefficients at different frequencies 
are plotted in Fig. 11. The overall trends of the absorption coefficient in 
stage 1 and stage 2 are consistent with the experimental results 

presented by Kawabe et al. [39], that is, the absorption coefficient ex-
hibits a peak at a particular frequency, indicating a resonance behavior. 
When the structure changes from stage 1 to stage 2, the peak decreases 
and but the average absorption coefficient increases, suggesting that 
more cavities participate in sound absorption. Such an absorption 
mechanism becomes more dominate when the structure changes to stage 
3. As shown in Fig. 11, the absorption coefficient becomes more 
broadband with an increased average value and less prominent peaks. 
The maximum value of the absorption coefficient, however, does not 
decrease further, but rises to almost the same level as that of the first 
stage. Overall, the third stage Menger sponge exhibits significantly 

Fig. 9. Illustration of concave Menger structures of different stages: stage 1, stage 2, and stage 3 (from left to right).  

Fig. 10. (a) Schematic of the simulation model; The total sound pressure field inside Menger structures at 1000Hz: (b) stage 1, (c) stage 2 and (d) stage 3.  
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better sound absorption capability than the first and the second stage 
models within the considered frequency range. As for the computational 
efficiency, the simulation over the entire frequency range is finished 
within 15 hours on the workstation in all three structures (Table 2). 

6. Discussions 

In this paper, a HODLR based fast direct BEM for solving 3D acoustic 
problems is presented. The formulation of acoustic BEM is reviewed, and 
the construction, decomposition, approximation and inversion of the 
HODLR matrix in the BEM are provided. Several numerical examples are 
used to demonstrate the performance of the fast solver. It has been 
verified that the HODLR based fast direct BEM solver can accurately and 
efficiently solve both scattering problems and interior acoustic prob-
lems. The results show significant advantages in CPU time and memory 
usage compared to the conventional direct BEM. 

The HODLR based fast direct solver also has some distinct properties 
in comparison with other fast BEMs. The FMM BEM requires adjustment 
to the number of expansion terms to maintain the accuracy as the fre-
quency becomes higher, whereas the HODLR based fast direct BEM has a 
fixed approximation tolerance over the entire frequency range. The rank 
of approximated submatrices automatically increases with frequency to 
obtain high accuracy. And secondly, the number of iterations required in 
iterative solver based fast methods usually increases with the frequency, 
which will result in significantly increased CPU time. In contrast, the 
computation efficiency of fast direct BEM is only slightly affected by the 
frequency. Even though in some cases the iterative solver based fast BEM 
algorithms are more efficient in memory usage and CPU time, the fast 
direct BEM algorithms are overall more stable with predictable errors, 
memory usage and CPU time requirement. 

To improve the computational efficiency of the developed fast direct 
solver, several techniques can be applied. Firstly, applying multi- 
threaded parallelism to the partitioned submatrices will save the 
computation time, while it requires higher core memory during 
computation process. It is efficient to calculate submatrices at the same 
level simultaneously, since they are independent to each other. Sec-
ondly, the adaptive strategy can improve the matrix division. The fewer 
the layers, the shorter the time of ID algorithm and the longer the time of 
SMW matrix inverse algorithm. Therefore, the size of submatrices at the 
lowest level can be decided adaptively to achieve the highest efficiency. 
In addition, the recently emerged machine learning-based low-rank 
approximation algorithm [41] could potentially be a suitable choice to 
further improve the efficiency of the fast direct BEM solvers. These 
techniques can be studied and implemented in order to further improve 
the fast direct BEM solver. 
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