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A B S T R A C T   

In this work, a new approach for solving the inverse problem of the defect location in an elastic plate is developed 
by combining the artificial neural network (ANN) and the boundary element method (BEM). The inverse problem 
is formulated as a regression problem, which extracts the solution of highest probability through machine 
learning (ML) from a large amount of data. The efficiency and accuracy of data generation is guaranteed by using 
the BEM, which solves for strain values on the boundaries of plates with circular defects and creates the ML 
datasets. The ANNs, which are constructed by a fully connected multi-layer perceptron, are trained using these 
datasets to predict the center coordinates and radii of the circular defects and can achieve about 98% accuracy in 
the detection. Compared with the Lamb wave based structural health monitoring (SHM) techniques, which in 
general require signal generation, collection and processing, the proposed approach only requires the data of 
boundary strains of the considered structures as the input data and a simple training process. Therefore, it is 
much easier to implement and has great potential in applications of SHM.   

1. Introduction 

Determining the location and size of a defect in a structure is an 
inverse problem, given the input and output data at some sampling 
points, such as the stress or strain values, or wave propagation patterns. 
In contrast with a forward problem, the inverse problem is ill-posed and 
the solutions are in general unstable and nonunique [1]. It is more 
difficult to calculate the relevant physical quantities using existing 
computational methods. Data-driven models based on the machine 
learning (ML) approach [2–4] are potentially more efficient and accu
rate than forward-looking predictive models due to the learned proba
bility distribution from analyzing huge volumes of historical data [5–7]. 
The main advantage of ML is that it exploits the fast data analysis 
capability of a computer to predict the trend of the physical events 
[8–10] and to uncover the hidden insights among the enormous amount 
of seemingly illegible data [11–12]. Thus, it has attracted strong interest 
in dealing with the inverse problems. 

Tamaddon-Jahromi [13] utilized the deep learning methods to test 
for the linear/non-linear heat conduction, convection-conduction, and 
natural convection problems, in which the boundary conditions were 
determined by using the temperature measurements at three, four and 
five locations. Physics-informed neural networks, a deep learning 

framework for solving nonlinear partial differential equations was pre
sented by Raissi et al. [14]. It was later used to address the inverse 
mechanics problems of thin rectangular plates [15], in which the 
boundary conditions are to be identified based on the known informa
tion including deflection values on part of the domain, basic configu
ration of the plate and load distribution. Inverse problems of heat 
conduction with constant and variable parameters were studied by He 
et al. [16] to predict the unknown thermal conductivity parameters by 
using coupled physics-informed neural network frameworks with skip 
connections. Dwivedi et al. [17] proposed a distributed physics 
informed neural network (DPINN) for solving inverse problems, where 
they view the unknown model parameters of the PDE as weights of the 
neural network. The weights were then obtained by minimizing the loss 
function which contains information from both training data and PDE. 
Dworakowski et al. [18] adopted artificial neural network ensembles to 
detect a fatigue damage in aircraft via employing various damage 
indices. De Fenza et al. [19] utilized a multi-layer perceptron to detect 
through-thickness holes in metallic and composite plates. Their model 
was trained with simulation data and tested on experimental data. A 
novel neural network-based damage localization method was proposed 
by Zhang et al. [20] and developed for plate-like structures. With the 
help of the time varying damage index (TVDI) feature extracted from the 

* Corresponding authors. 
E-mail addresses: yangy33@sustech.edu.cn (Y. Yang), liuyj3@sustech.edu.cn (Y. Liu).  

Contents lists available at ScienceDirect 

Engineering Analysis with Boundary Elements 

journal homepage: www.elsevier.com/locate/enganabound 

https://doi.org/10.1016/j.enganabound.2022.03.030 
Received 9 January 2022; Received in revised form 19 March 2022; Accepted 28 March 2022   

mailto:yangy33@sustech.edu.cn
mailto:liuyj3@sustech.edu.cn
www.sciencedirect.com/science/journal/09557997
https://www.elsevier.com/locate/enganabound
https://doi.org/10.1016/j.enganabound.2022.03.030
https://doi.org/10.1016/j.enganabound.2022.03.030
https://doi.org/10.1016/j.enganabound.2022.03.030
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2022.03.030&domain=pdf


Engineering Analysis with Boundary Elements 139 (2022) 232–245

233

Fig. 1. Input and output of the inverse problem.  

Fig. 2. (a) Geometry and (b) BEM model of the 2D plate with a circular defect.  

Table 1 
Stresses of the 2D plate with a circular defect as compared with the analytical 
results.  

Node σx σy σ (BEM) σ (Exact) Error (%) 

1 0.0000 − 0.9836 − 0.9836 − 1.0 1.64 
2 3.0079 0.0000 3.0079 3.0 0.26 
3 0.0001 − 1.0111 − 1.0111 − 1.0 1.11 
4 3.0064 0.0000 3.0064 3.0 0.21  

Fig. 3. (a) Geometry and (b) BEM model of the 2D plate without a circular defect.  

Table 2 
Strains of the 2D plate without a circular defect as compared with the analytical 
results.  

Node εx εy εy/εx(BEM) εy/εx(Exact) ν Error (%) 

1 0.9469 − 0.2841 0.3000 0.3 0.3 0.00 
2 0.9471 − 0.2827 0.2985 0.3 0.3 0. 49 
3 0.9475 − 0.2842 0.3000 0.3 0.3 0. 00 
4 0.9471 − 0.2841 0.3000 0.3 0.3 0. 00  
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time-domain wave signals and one-dimensional convolutional neural 
network (1-D CNN), the important temporal information of the original 
Lamb wave signal was preserved, which allows accurate localization of 
damages in plates with few transducers. An inverse problem in nonlinear 
elastostatics was considered by Stavroulakis et al. [21], in which con
cerns the identification of unilateral contact cracks by means of 
boundary displacement measurements for given static loadings. Chen 
et al. [22] developed a novel deep learning inverse solution of identi
fication method to determine and identify the impact load conditions of 
shell structures based on their final state of damage or inelastic 
deformation. 

Most of the inverse problems in the literature as mentioned above are 
solved by the classification techniques [23]. By giving several reason
able solutions in advance, the solved features satisfy the conditions for 
one of the solutions, then which is considered as the real solution to the 
problems, although this solution may not be the best of all the solutions 
to this problem. However, a practical issue for a category of inverse 
problems is that the dataset is not suitable to be divided into classes, and 
it makes the classification approaches unfeasible. Therefore, for prob
lems involving accurate quantitative predictions, such as defect 

localization, which will be investigated in this work, the regression 
approach will be more reliable. 

In this work, we propose the combination of the ML and the 
boundary element method (BEM) to address two major issues in 
regression method-based data-driven mechanics problems: (i) the ac
curacy of the datasets directly affects the performance of the network; 
(ii) large number of datasets is needed for the networks to extract the 
input-output mappings. Based on analytical fundamental solutions, the 
BEM based on the boundary integral equations can deliver high accu
racy. The discretization process is only carried out on the boundaries 
where the solutions are needed as the input, and therefore, it immedi
ately reduces the computation work load on data generation. An effec
tive supervised machine learning model based on regression algorithms 
is constructed by capturing the relationship between the input boundary 
strains and the output defect location. The flexible parameters are 
adjusted to minimize a cost function. Exact predictions of the defect 
locations are then generated using the test dataset. 

2. Methodology 

The inverse problem of defect localization is solved using single or 
multi-layer perceptron [2]. For this specific problem, the networks 
require less than three fully-connected hidden layers with 2 to 200 
neurons, in addition to the input and output layers. Boundary strains (εx 
and εy) obtained from the BEM are given as the input neurons, which are 
used to predict the center coordinates (cx and cy) and radius (r) of the 
unknown circular defect inside the plate, as shown in Fig. 1. 

2.1. Dataset preparation 

A two-dimensional (2D) plate with a circular defect is fixed on the 
left boundary and subject to a tensile pressure p on the right boundary as 
shown in Fig. 2(a). In computational mechanics, we usually calculate the 
stress and strain distribution based on the known defect location and 
boundary conditions. In contrast, for the inverse problem considered in 
this paper, the boundary conditions are unchanged but the defect 
location is varied. A FORTRAN program of the BEM for 2D elasticity 
problems with constant elements [24] is employed to obtain the strain 
distribution on the boundary nodes of this defected plate as the input 
dataset. The center coordinates and the radius of the circular defect are 
collected as the output dataset. 

The equilibrium and stress-strain relations are described as 

σij,j = 0, andεij =
1
E
[
(1+ ν)σij − νσkkδij

]
, (1)  

respectively, in which σij and εij are the stress and strain tensors, 

Fig. 4. (a) Geometry and (b) BEM model of the square plate with a circular defect.  

Table 3 
ANN parameters for case 1.  

Number of examples in Training dataset 4592 

Number of examples in Testing dataset 1969 
Batch-size 32 
Number of neurons in the input layer 800 
Number of hidden layers 1–3 
Number of neurons in the hidden layer 20–200 
Number of neurons in the output layer 2 
Activation layers ReLU 
Number of epochs 500 
Validation split 0.2 
Optimizer RMSprop  

Table 4 
Model performance with different architectures for case 1.  

Neurons at each 
layer 

Trainable 
parameters 

Number 
of 
Epochs 

Loss 
value 
(m) 

Accuracy CPU 
time 
(s) 

800–100–2 80,302 500 0.0190 0.9512 104 
800–200–2 160,602 500 0.0263 0.9345 168 
800–100–100–2 90,402 500 0.0268 0.9639 114 
800–200–200–2 200,802 500 0.0267 0.9594 189 
800–200–200–200–2 241,002 500 0.0377 0.9589 213 
800–200–100–20–2 182,362 500 0.0377 0.9558 179  
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respectively, and δij is the Kronecker delta symbol. Since the BEM can 
reduce problem dimension by one [24–26], only boundary elements on 
the edges of the plate and the circular are needed. Each edge of the plate 
is discretized by 100 constant elements and the edge of the circular is 
discretized by 360 constant elements as plotted in Fig. 2(b). In this 
study, the Young’s modulus E = 1N /m2, Poisson’s ratio ν = 0.3 and the 
pressure load p = 1Pa. For verification, the stresses of four points located 
on the edge of the circular pointed in Fig. 2 are compared with the 
analytical results and listed in Table 1. The boundary strains of the 
model without circular defect are also compared with the analytical 
results, the location of the four chosen points and the corresponding 
BEM model are illustrated in Fig. 3 and the errors are almost 0 (Table 2). 

2.2. Data normalization 

The collected data from the previous step have a wide range of the 
data types and scales which raise the difficulties in feature identifica
tion, and therefore, it is not suitable to be directly used for model 
training. Thus, data transformation is used to normalize the input data to 
meet the requirements of machine learning algorithms [27–29]. 

In this research, the Z-score normalization [27–28], which is one of 

the most popular normalization schemes, is employed to transform the 
data. Assume a sample with N data, {xn}N, its mean value and variance 
are 0 and 1, respectively, and given as: 

μ =
1
N

∑N

n=1
xnandσ2

variance =
1
N

∑N

n=1
(xn − μ) (2) 

The set of data after the Z-score normalization yields: 

x̂n
=

xn − μ
σvariance

(3) 

After the data normalization, the total data is split into two sets, one 
for training the network, and the other for testing. In the present paper, 
70% data are used for training the neural network and the remaining 
30% data are used for testing. 

2.3. Neural network optimization 

Neural network optimization is a process designed to achieve a high- 
quality network structure, as well as to improve the generalization 
ability of the model. In the present work, mini-batch gradient descent 
algorithm [27–28] is applied to optimize the network structure. The 

Fig. 5. Accuracy and cost function training history of case 1.  
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training set is divided into several small batches to compute the loss 
function and the gradient one batch after another, and then the corre
sponding parameters are updated. The mini-batch gradient descent al
gorithm improves the training efficiency and reduces the possibility of 
overfitting. The proposed neural network is constructed in sequence by 
one input layer, L hidden layers and one output layer, where each hid
den layer contains K neurons, and the input and output layer have N and 
J neurons, respectively. Eq. (4) shows the general structure of the neural 
network: 

Oj = factivation

(
∑KLi

m=1
WLi

m TLi − 1
m +BLi

m

)

, j = 1, 2, 3 (4)  

where 

factivation = ReLU =

{
0, x < 0
x, x ≥ 0 (5)  

which is a non-linear activation functions for the output layer and hid
den layers. The ReLU (Rectified Linear Unit) function [27–28] is 
employed to active almost 50% neurons, which makes the neural 
network sparse. The fact that the derivative of ReLU being equal to 1 at x 
≥ 0 avoids gradient explosion during training and improves the 
convergence efficiency. The parameters to be trained are weights, W and 
biases, B. The input layer consists of N = 2n input neurons, each of which 
represents the strain value of either εx or εy for total n boundary nodes, 
whereas the output layer consists of J = x003D3 neurons, each of which 
represents center coordinates of the circular defect and its radius. 
Weights and biases are tuned using the root mean square prop 
(RMSprop) [27–28] algorithm. 

The purpose of the learning or training process in the ANN meth
odology is to reduce the error at the output layer. This is done by 
adjusting the weight and bias of each neuron through back-propagation 
algorithm. The error of the output layer is described by a loss function, 
floss (training), which is the deviation between the target value versus the 
predicted value. In this paper, the mean absolute error (MAE) [27–28] is 
taken as the loss function for the training process: 

floss =
1
J
∑J

j=1

[
yjTarget − yjPred

]
, J = 2or3 (6) 

Due to the powerful data fitting ability of ML, the fine-tuned weights 
and biases will result in very small loss function values, but this often 
leads to overfitting and impedes generalization for the unseen datasets. 
Therefore, regularization [27–28] is employed to avoid overfitting by 
limiting model complexity. Here,ℓ2 norm is used to regularize the neural 
network, and the loss function can be rewritten as: 

Fig. 5. (continued). 

Fig. 6. Architecture of the prediction model for case 1.  
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f ′loss =
1
J
∑J

j=1

[
yjTarget − yjPred

]
+ λℓ2 (7)  

where, λ = 0.01 is the coefficient of ℓ2 norm. 

3. Results and discussion 

In this section, a steel plate with Young’s modulus E = 2.06 ×
108N /m2, Poisson’s ratio ν = 0.28and the tensile pressure p = 1000Pa is 
considered. 

3.1. Case 1: Square plate with a circular defect 

A square plate of side length 500 mm with a circular defect of fixed 
radius 10 mm is plotted in Fig. 4(a). Each boundary and the perimeter of 
the plate is discretized into 100 and 360 elements, respectively, as 
illustrated in Fig. 4(b). Data are collected by moving the center of the 
circular along x and y axis 1 mm at a time, and each sample contains the 
strain distribution on the boundaries as the input and the coordinates of 
the defect center as the output. 6561 samples are collected in total for 
the current plate configuration. 

The configuration of NN models is defined in Table 3. Six NN models 
with different number of layers and neurons are tested and the results 
are shown in Table 4. All networks exhibit high accuracy between 

Fig. 7. Comparison of the predictions and truth detect locations for case 1.  

Fig. 8. Test set error distribution histogram for case 1.  
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93.45% and 96.39% at predicting of center coordinates. The 800–100–2 
configuration reaches an accuracy of 95.12% after 500 epochs with 
80,302 trainable parameters. A less notable difference in the accuracy 
with increasing the number of trainable parameters, but an exponential 
time cost increased with increasing the hidden layer of the neural 
network architectural. 

Fig. 5 shows the training and validation history of the accuracy and 
cost function. There is a good agreement between the training and 
validation accuracy. Loss values in the considered models ranges from 
0.0190 to 0.0377, after a stabilization period and stay roughly consistent 
with increasing number of epochs. Since the NN configuration of 
800–100–100–2 depicted in Fig. 6 shows the highest accuracy with 
relatively small number of trainable parameters, which gives much 
higher efficiency, we choose this configuration for testing. 

A visualization of localization results, which is obtained from 
random testing data, is given in Fig. 7. The predictions match very well 
with the true locations. 

Root mean square errors of the test dataset are analyzed and the 
corresponding histogram presented in Fig. 8. Almost 74% predicted 
results can achieve errors less than 5%. However, there are about 200 
samples, which comprise only 9% of the total samples, result in higher 
errors over 10%. This is believed to be an intrinsic difficulty of the 

regression network compared to the classifying network for the inverse 
problem, for the latter depends less on the accuracy of the numerical 
values. Indeed, the higher error level can be reduced by increasing the 
volume of training dataset, but it cannot be completely avoided. This 
behavior of the regression network will be verified by the following 
examples. 

3.2. Case 2: Rectangular plate with a circular defect 

In this case, a different plate geometry is investigated. A rectangular 
steel plate with the same material properties, boundary supports and 
tensile pressure distribution as in case 1 is considered. The length and 
the width of the plate is 500 mm and 300 mm, respectively and a circular 
defect with a fixed radius 10 mm is placed inside the plate. Each 
boundary of the plate and the perimeter of the circular is again dis
cretized into 100 and 360 elements, respectively. The detail geometry 
and the mesh description of the plate is illustrated in Fig. 9. 

Data are collected by moving the center of the circular along x and y 
axis in 1 mm spacing at a time, and each sample contains the strain 
distribution on the boundaries as the input and the coordinates of the 
defect center as the output. 3240 samples are collected in total for the 
current plate configuration. After the data normalization, 70% of the 
dataset are used for training the model and the other 30% are used for 
prediction. The configuration of NN models tested in case 2 is defined in 
Table 5. Four NN models with different number of layers and neurons 
are tested and the results are shown in Table 6. All networks exhibit high 
accuracy. Three of the networks achieve the accuracy over 96%, and the 
highest accuracy is 97.22%. Fig. 10. shows the training and validation 
history of the accuracy and cost function. 

Loss values in the considered modes ranges from around 0.0160 to 
0.0296, after an initial stabilization period. As indicated in Fig. 10, the 
loss values stay roughly consistent with increasing number of epochs 
after a stabilization period. It also can be seen that there is a good 
agreement between the training and validation accuracy. The NN 
configuration of 800–200–100–20–2 shows the highest accuracy and is 
chosen to predict the results as shown in Fig. 11. 

A visualization of localization results, which is obtained from 
random testing data for case 2, is given in Fig. 12. It can be seen that, the 
predicted defect locations match very well with the truth locations. 

Root mean square errors of the test dataset are analyzed and the 
corresponding histogram of case 2 are presented in Fig. 13. For this case, 
almost 64% predicted results can achieve errors less than 5%. However, 
about 130 samples, which comprise only 13% of the total samples result 
a higher error over 10%. 

Fig. 9. (a) Geometry and (b) BEM model of the studied rectangular plate with a circular defect.  

Table 5 
ANN parameters for case 2.  

Number of examples in Training dataset 2268 

Number of examples in Testing dataset 972 
Batch-size 32 
Number of neurons in the input layer 800 
Number of hidden layers 1–3 
Number of neurons in the hidden layers 20–200 
Number of neurons in the output layer 2 
Activation layers ReLU 
Number of epochs 500 
Validation split 0.2 
Optimizer RMSprop  

Table 6 
Model performance with different architectures for case 2.  

Neurons at each 
layer 

Trainable 
parameters 

Number 
of Epochs 

Loss 
value 
(m) 

Accuracy CPU 
time 
(s) 

800–100–2 80,302 500 0.0160 0.9660 234 
800–100–100–2 90,402 500 0.0204 0.9671 238 
800–200–100–2 180,502 500 0.0208 0.9455 301 
800–200–100–20–2 182,362 500 0.0296 0.9722 311  
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3.3. Case 3: Rectangular plate with a tiny circular defect 

In case 3, a same rectangular steel plate with the same material 
properties, boundary supports and tensile pressure distribution as in 
case 2 is considered. Only the radius of the circular defect in the plate is 
reduced to 2 mm. Data are also collected by moving the center of the 
circular defect along x and y axis 1 mm at a time, and each sample 
contains the strain distribution on the boundaries as the input and the 
coordinates of the center as the output. 3240 samples are collected in 

total for the current plate configuration. Among of these data, 70% are 
used for training and the other 30% are used for prediction. Only one NN 
architecture was constructed and tested in case 3 which is defined in 
Table 7. The results for this NN configuration are shown in 

Table 8. The accuracy and the cost function in log form of this NN 
configuration are plotted in Fig. 14. 

A high accuracy of 97.53% and loss value 0.0159 can be achieved by 
the current constructed NN after an initial stabilization period. As the 
same, the loss values stay roughly consistent with increasing number of 

Fig. 10. Accuracy and cost function training history of case 2.  
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epochs as shown in Fig. 14. Comparing the behavior of the validation 
dataset against the training one, good performance is observed by the 
current NN. The NN configuration of 800–200–100–20–2 presented in 
Fig. 15 was taking to predict the results. 

A visualization of localization results, which is obtained from 
random testing data for case 3, is given in Fig. 16. It can be seen that the 
predicted defect locations match very well with the truth locations. 

Root mean square errors of the test dataset are analyzed and the 
corresponding histogram of case 3 are presented in Fig. 17. For this case, 
the prediction accuracy is high, almost 80% predicted results can ach
ieve the error less than 5%. 44 samples, which comprise only 4.5% of the 
total samples result in a higher error over 10%. 

3.4. Case 4: Rectangular plates with various radius of circular defect 

Based on case 3, the various radius of the circular defect ranging 
from 7 mm to 20 mm in the rectangular plate is extracted as another 
feature in the case 4 model analysis. Data are collected not only by 
moving the center along x and y axis 1 mm at a time, also by increasing 
the radius of the circular defect 1 mm at a time. Each sample contains the 
strain distribution on the boundaries as the input and the center 

coordinates as well as radius of the circular defect as the output. 45,360 
samples are collected in total for the current plate configuration. The 
number of the dataset are almost 8–10 times than former cases. All the 
data normalized by Z-score normalization and 70% of them are used for 
training the model. The configuration of NN modes tested in case 4 is 
defined in Table 9. Two NN models with different number of layers and 
neurons are tested and the results are shown in Table 10. The accuracy 
and the cost function in log form of these NN configurations are plotted 
in Fig. 18. 

All these two NNs can achieve a higher accuracy between 98.18% 
and 98.64% at the prediction of center coordinates and the radius of the 
circular defect in the rectangular plate after 500 epochs. The accuracy is 
much higher than the former cases, which is due to the large number of 
the training dataset. Loss values in the considered models ranges from 
0.7061 to 0.7275, after an initial stabilization period. As indicated in 
Fig. 18, the loss values stay roughly consistent with increasing number 
of epochs. Comparing the behavior of the validation dataset against the 
training one, good performance is observed by the predictions of the 
NNs. The NN configuration of 800–100–3 (Fig. 19) reaches an accuracy 
of 98.64% after 500 epochs with 80,403 trainable parameters is applied 
to predict the results. 

Fig. 11. Architecture of the prediction model for case 2.  

Fig. 12. Comparison of the predictions and truth defect locations for case 2.  
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A visualization of localization results, which is obtained from 
random testing data for case 4, is given in Fig. 20. It can be concluded 
that, the predicted locations and the size of the defects matched very 
well with the truth defects. 

Root mean square errors of the test dataset are analyzed and the 
corresponding histogram of case 4 are presented in Fig. 21. For this case, 
almost 85% predicted results can achieve error less than 5%, and most of 
the predicted results errors are distributed between 0% and 2%. With an 
increasing number of training data, the prediction accuracy of the model 
is greatly improved, and it is reflected by the rapidly declined volume of 
the samples with over 6% error, which results from only 30 samples, 
comprising only 0.22% of the total test samples. 

3.5. Discussions 

In this work, identifications of defect size and localization are real
ized based on the combination of the BEM and multilayer perceptron. 
The performance of the proposed algorithm is evaluated systematically 
at four generalization levers:  

• Testing on the square plate with different defect locations from the 
training data.  

• Testing on the rectangular plate with different defect locations from 
the training data. 

• Testing on the rectangular plate with tiny defect at different loca
tions from the training data.  

• Testing on the rectangular plate with various size and location of 
defect based on the training data. 

For all of these cases, only boundary strains of the considered 
structures are needed as the input, which can be directly collected by the 

Fig. 13. Test set error distribution histogram for case 2.  

Table 7 
ANN parameters for case 3.  

Number of examples in Training dataset 2268 

Number of examples in Testing dataset 972 
Batch-size 32 
Number of neurons in the input layer 800 
Number of hidden layers 3 
Number of neurons in the hidden layer 20–200 
Number of neurons in the output layer 2 
Activation layers ReLU 
Number of epochs 500 
Validation split 0.2 
Optimizer RMSprop  

Table 8 
Model performance with different architectures for case 3.  

Neurons at each 
layer 

Trainable 
parameters 

Number 
of Epochs 

Loss 
value 
(m) 

Accuracy CPU 
time 
(s) 

800–200–100–20–2 182,362 500 0.0159 0.9753 80  

Fig. 14. Accuracy and cost function training history of case 3.  
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Fig. 15. Architecture of the prediction model for case 3.  

Fig. 16. Comparison of the predictions and truth detect locations for case 3.  

Fig. 17. Test set error distribution histogram for case 3.  
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using the strain gauges in the real applications. Single or multilayers 
fully connected neural networks are constructed to train the data and 
predict the results. The process is simple and reduces the errors in the 
data transmission. In addition, a high lever accuracy of about 98% can 
be achieved. 

In the practical application, most of the structures have fixed ge
ometry, such as beams and columns in civil engineering, as well as 
machine components in mechanical engineering. The dataset of 
boundary strains is easily obtained by using the strain gauges on the 
boundaries or analyzed by the BEM. Training an appropriate neural 
network from the dataset can accurately predict the defect information 
of the structures. Thus, the proposed algorithm has a great potential in 

practical applications. 

4. Conclusions 

In this paper, a machine learning computational mechanics method 
based on fully connected multi-layer perceptron is proposed to solve for 
2-D inverse elasticity problems. Accurate prediction of the location of a 
circular defect and its radius in a plate is achieved by examining the 
boundary strain values. The BEM is first applied to accurately calculate a 
large amount of boundary strain values corresponding to various plate 
geometries and circular defect locations and radii. The strain values 

Table 9 
ANN parameters for case 4.  

Number of examples in Training dataset 31,751 

Number of examples in Testing dataset 13,609 
Batch-size 32 
Number of neurons in the input layer 800 
Number of hidden layers 1–2 
Number of neurons in the hidden layer 100 
Number of neurons in the output layer 3 
Activation layers ReLU 
Number of epochs 500 
Validation split 0.2 
Optimizer RMSprop  

Table 10 
Model performance with different architectures for case 4.  

Neurons at each 
layer 

Trainable 
parameters 

Number of 
Epochs 

Loss 
value 
(cm) 

Accuracy CPU 
time 
(s) 

800–100–100–3 90,530 500 0.7061 0.9818 701 
800–100–3 80,403 500 0.7275 0.9864 628  

Fig. 18. Accuracy and cost function training history of case 4.  

Fig. 19. Architecture of the prediction model for case 4.  
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along with the center coordinates and radii are divided as training, 
validation, and testing datasets, where the training set were then 
normalized using the Z-Score method before ML. ReLU function is used 
as the activation function of the neural network, and the model is trained 
iteratively using the RMSProp algorithm as the optimizer. Regulariza
tion based on l2 norm is used to prevent the training process from 
overfitting. The results show that the predicted results can achieve about 
98% accuracy. The proposed algorithm provides a new idea for solving 
inverse problems in computational mechanics. In additional, compared 
with the Lamb wave based SHM techniques, the proposed approach only 
requires the boundary strains of the considered structures as the input 
data and a simple training process for the regression problem. Therefore, 
it is much easier to implement and it has the potential in real SHM 
applications. 
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Fig. 20. Comparison of the predictions and truth defect for case 4.  

Fig. 21. Test set error distribution histogram for case 4.  
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