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Abstract

A novel method for predicting dynamic crack propagation based on coupling the boundary element method (BEM) and
ond-based peridynamics (BBPD) is developed in this work. The special feature of this method is that it can take full advantages
f both the BEM and PD to achieve a higher level of accuracy and efficiency. Based on the scale of the structure and the location
f cracks, the considered domain can be divided into a non-cracked region and a cracked region. For the non-cracked region, a
eshfree boundary-domain integral equation method (meshfree-BDIEM) is employed in the analysis to reduce the dimension

y one and to increase the computational efficiency. The bond-based PD is applied to simulate the cracked region, which can
odel the initiation and propagation of the cracks automatically. The boundary nodes from the BEM on the interfaces can

nteract with the material points from the PD directly. By using the displacement continuity and force equilibrium conditions
n the interfaces, a combined model is obtained by merging the mass, stiffness, and force matrices from each region of the
omain. Both the implicit and explicit BEM-PD coupled solution methods can deliver accurate results without inducing the
host forces. Several benchmark problems of dynamic crack propagation have been modeled by using the method, which
emonstrate that the developed BEM-PD coupled approach can be an efficient numerical tool to model the dynamic crack
ropagation problems.
2022 Elsevier B.V. All rights reserved.

eywords: Dynamic crack propagation; Peridynamics; Boundary element method; Implicit and explicit methods; Coupling BEM with PD

1. Introduction

Analysis of dynamic cracks and their growth is an important issue as to avoid catastrophic failures of structures
nder dynamic loadings. However, dynamic crack problems, such as prediction of the initiation and propagation of
racks in solids, still represent a challenge for the classical continuum mechanics. This is because of the conflict
etween the continuity hypothesis in the continuum theory and the discontinuity in the actual problem to be
olved [1]. Thus, more appropriate theories should be developed to match the discontinuous nature of the crack
roblems.
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Peridynamics (PD) [2] based on non-local theory has been proposed as a particle method in modeling crack
roblems, where the solid is discretized using a set of material points, and the interactions between these points
re expressed in an integral form. Hence, the continuity assumption is not required and the discontinuities such
s fractures are captured inherently. Recently, some success has been achieved in applying PD to study the crack
ropagation problems [3,4], and the PD theory itself has also been improved accordingly [5].

PD introduces the concept of structural damage for material points. However, PD, based on the non-local
haracteristic, depends on integration of many material points, which renders it a time-consuming numerical method.
n order to increase the efficiency, various types of coupling schemes of the PD method with other computational
ethods were developed [6–8], especially, much effort has been devoted to coupling the PD grids to the FEM meshes

or different applications. Macek and Silling [9] proposed to embed PD nodes in FEM elements over a region by
isplacement constraint. Coupling between PD and FEM was presented by [10], The coupling was introduced by
efining an overlap region. The displacement and body force densities in the overlap region were determined using
EM and PD, respectively. Liu and Hong [11] coupled the PD with FEM by introducing the interface elements.
he PD method was coupled with classical continuum mechanics using a morphing approach, in which the PD
one is discretized utilizing a discontinuous Galerkin approach [12,13]. An effective way to couple FEM meshes
nd PD grids was proposed by Galvanetto et al. [14–16] to solve the static and dynamic problems. An implicit
oupling FEM and PD was developed [17] for the dynamic problems of solid mechanics with crack propagation.
he coupling domain is achieved by considering that the nodes and material points share the common information.
ie et al. [18] proposed the coupling approach of ordinary state-based PD with node-based smoothed FEM. The

ransient information was governed by the unified coupling equations of motion. An approach was presented by
un et al. [19] to couple the PD theory with numerical substructure method for modeling structures with local
iscontinuities. The PD was integrated in the substructure model using interface elements with embedded PD nodes.
ven with the above-mentioned approaches, FEM-PD coupling is still an active research area, because most of the
oupling methods are affected by some kind of arbitrariness or new approximations [16].

As the name implies, the boundary element method (BEM) requires meshing only on the domain boundary.
hus, it reduces the dimensionality of the problem by one. Based on the analytical fundamental solutions, BEM
an achieve improved accuracy, especially for modeling stress concentration problems, such as cracks and their
ropagations [20,21]. Besides, the computational efficiency of the BEM has been improved significantly with the
evelopment of the fast solution methods in the last two decades [22,23].

Therefore, exploring the advantages of coupling the BEM and PD can provide an opportunity for the development
f a novel method of modeling crack propagations [24]. The static crack propagation analysis has been carried out
y using a coupling approach of the BEM and PD [24]. The numerical examples solved by using this method show
higher computational efficiency than using the approach of the PD coupled with FEM [24]. Thus, the development
f a convenient and efficient coupling scheme of the PD and BEM to combine the advantages of these two methods
ill be of great interests for the dynamic crack propagation problems as well.
In this paper, a coupled BEM and PD is developed to investigate the dynamic crack propagation problems.

ifferent from the coupling approaches mentioned above, the BBPD subregion is directly coupled with the BEM
ubregion instead of using overlapping regions or the morphing strategy. The continuous displacements and the
quilibrium forces are transformed by the interface elements. The dynamic equation with the mass and stiffness
atrices for the whole domain is constructed. Both explicit and implicit time integration techniques are employed

o investigate the stability and accuracy of the coupled solution method.
The remainder of this paper is outlined as follows: In Section 2, the formulations of bond-based peridynamics and

he meshfree boundary-domain integral equation method are reviewed. In Section 3, the coupling method between
he BBPD and BEM is described in detail. In Section 4, several numerical examples are studied to verify the
roposed coupling approach. Some concluding remarks are made in the final section.

. BEM and PD formulations

.1. Review of the BBPD formulation

In the present work, the crack and potential cracked region are modeled by using the PD. Only the BBPD is
onsidered in this present work. A brief outline of the BBPD is presented below, and more details can be found in
ef. [1].
2
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Fig. 1. Description of bond-based PD theory.

The fundamental equation of motion for any material point in BBPD is given by:

ρü (x, t) =

∫
Hx

f [η,ξ , t] dVx′ + b (x,t) , ∀x′
∈ Hx (1)

here HX is the neighborhood of point x, which is usually taken to be a spherical region of radius δ centered at
oint x, as shown in Fig. 1; ü and ρ are the acceleration vector and mass density, respectively, which are the same
s in the continuum mechanics; b is the body force density vector. The response function f, defined as a force vector
er unit volume square, represents the response of point x′ when the force is exerted on point x. The initial relative
osition vector ξ between x and x′ in the reference configuration and their current relative displacement vector η

t time t are given, respectively, by

ξ=x′
− x and η=u′

(
x′,t

)
− u (x,t) (2)

For a prototype micro-elastic brittle (PMB) material, the force function f can be expressed as [25]

f (η, ξ) =
∂w (η, ξ)

∂η
=

η + ξ

|η + ξ |
s (η, ξ) c (ξ , δ) , ∀η, ξ (3)

where w (η, ξ) =
c(ξ ,δ)s(η,ξ)2

|ξ |

2 [26] is the micro-elastic potential, |·| is the Euclidean norm. s represents the stretch
f a bond, which is related to the strain in continuum mechanics and is expressed as

s (η, ξ) =
|η + ξ | − |ξ |

|ξ |
(4)

Using Taylor’s series expansion [24], we can evaluate s as follows:

s (η, ξ) =
η + ξ

|η + ξ |
·

η

|ξ |
(5)

Substituting of Eqs. (5) and (2) into Eq. (3), the pairwise force yields,

f (η, ξ) =

{
c(ξ ,δ)

|ξ |

(
u′

(
x′,t

)
− u (x,t)

)
, |ξ | ≤ δ

0, |ξ | > δ
(6)

where c (ξ , δ) = c (0, δ) g (ξ , δ) is the micro-modulus function indicating the stiffness of a pairwise bond. The
micro-modulus c (0, δ) is obtained based on the consistency between the strain energy densities using the PD theory
and classical continuum theory. The kernel function g (ξ , δ) describes the intensity spatial distribution of long-rang
forces in the material. A modified micro-modulus function expression proposed by [27] is used in this analysis
(Eq. (7)). The variation of the micro-modulus function is plotted in Fig. 2. It not only satisfies the non-local nature
of the PD theory precisely, but also reflects the weakening of the long-range force intensity when the distance
3
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Fig. 2. Variation of the micro-modulus function.

between two particles increases. This leads the PD model to be more localized and thus reduces the quadrature
error and the surface effect.

c (0, δ) =

⎧⎪⎨⎪⎩
72E
πδ4 , 3D
315E
8πδ3 , plane stress
210E
5πδ3 , plane strain

and, g (ξ , δ) =

⎧⎪⎨⎪⎩
(

1 −

(
|ξ |

δ

)2
)2

, |ξ | ≤ δ

0, |ξ | > δ

(7)

here E is the macroscopic Young’s modulus. Failure of the material occurs when the stretch s reaches its critical
alue [27,28]:

s0 =

√
1024πG0

7 (120π − 133) Eδ
(8)

here G0 is the critical energy release rate for mode I fracture.
A bond-breaking parameter µ (ξ , t) is defined as:

µ (ξ , t) =

{
1, if s < s0, for all 0 ≤ t

0, otherwise
(9)

The rupture of the bond is irreversible so that the constitutive model is history-dependent. The damage level ϕ

at a material point x at time t is defined as:

ϕ (x, t) = 1 −

∫
Hx

µ (ξ , t) dVX′∫
Hx

dVX′

, 0 ≤ ϕ ≤ 1 (10)

It should be noted that ϕ = 0 represents the undamaged state and ϕ = 1 is the complete separation of the single
material point from all surrounding points within its horizon.

The numerical approximation of the PD equation starts with the subdivision of the structure into nodes, and each
node is associated with a certain volume V j , and the union of all volumes covers the entire body volume. Therefore,
he discretized form of Eq. (1) is:

ρü (xi , t) =

∑
j

f (η, ξ , t) υ j V jµ
(⏐⏐ξ i j

⏐⏐ , t
)
+ b (xi , t) , ∀x j ∈ Hxi (11)

In the discretized implementation, a regular grid of nodes is used. The grid spacing is the same in all directions
∆x = ∆y = ∆z). Then a cubic cell of volume Vi = ∆x3 (or a square cell of volume Vi = ∆x2) is associated to

each node which is placed at the center of the corresponding cell. The spatial integration is performed by making
use of one integration point. Substituting the pairwise force defined in Eq. (6) yields,

ρüt
i +

∑ c
(
ξ i j , δ

)⏐⏐ξ ⏐⏐ (
ut

i − ut
j

)
υ j V jµ

(⏐⏐ξ i j

⏐⏐ , t
)

= bt
i , ∀x j ∈ Hxi (12)
j i j

4
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where υ j is the volume reduction factor. When the volume V j of node j falls completely within the horizon of
the central node xi , υ j is equal to 1; and when δ − ∆x/2 <

⏐⏐ξ i j

⏐⏐ < δ, υ j =
(
δ + ∆x/2 −

⏐⏐ξ i j

⏐⏐) /∆x . In this
paper, a linearized bond-based PD is adopted, since the examples are characterized by small strains and displace-
ments.

The discretized form of Eq. (12) can also be written in a standard matrix form of dynamic system equations as
follows:

ρP üP + KP uP = bP (13)

Subscript P denotes that the variables are associated with the PD region.

.2. Formulation of meshfree BDIEM equations

The remaining domain of the elastic body will be modeled by the boundary element method. Due to the fact that
he fundamental solutions for the traditional dynamic boundary integral equations are more complicated, a meshfree
oundary domain integral equation method [29] is applied based on using the elastostatic fundamental solution. The
etailed formulations are presented below.

The governing equations of motion for a 2D homogeneous elastic body occupying domain Ω with boundary Γ
s

σi j, j + fi = ρüi (14)

n Eq. (14), the tensor σi j and vector ui are the stress and displacement components, respectively. The stress is
elated to the displacement field by σi j = ci jkluk,l , where the elastic tensor ci jkl = λδi jδkl + G

(
δikδ jl + δilδ jk

)
,

and λ = Eν/ (1 + ν) (1 − 2v), shear modulus G = E/2 (1 + ν), v is the Poisson’s ratio, and δi j is the Kronecker
symbol.

Assuming the body force fi = 0, and applying the Somigliana’s identity for elastostatic problems and the Gauss’s
divergence theorem, the displacement integral equation can be obtained as [22]:

ci (x) ui (x, t) =
∫
Γ U ∗

i j (x, y) t j (y, t) dΓ (y) −
∫
Γ T ∗

i j (x, y) u j (y, t) dΓ (y)

−
∫
Ω ρU ∗

i j (x, y) ü j (y, t) dΓ (y)
(15)

where ci is a constant coefficient, t j = σ jknk is the traction, U ∗

i j and T ∗

i j are the elastostatic fundamental solutions
for the displacement and traction, respectively. For the 2D plane strain case [22]:{

U ∗

i j (x, y) =
1

8π(1−v)G

[
(3 − 4v) δi j ln

( 1
r

)
+ r,ir, j

]
T ∗

i j (x, y) =
−1

4π(1−v)r

{
(1 − 2v)

(
nir, j − n jr,i

)
+

[
(1 − 2v) δi j + 2r,ir, j

]
r,lnl

} (16)

n which r = |x − y| is the distance between the source point x and the field point y; n j is the component of the
utward unit normal n to the boundary Γ of the considered domain Ω .

It should be noted that a domain integral exists in the displacement integral Eq. (15), due to the employed static
undamental solutions for the dynamic equation. In order to maintain the advantage of BEM in discretizing the
omain with boundary elements only, this domain integral will be transformed into the boundary integral by using
he radial integration method [30]. First, the acceleration in the domain integral is expressed by a combination of
he radial basis function and polynomials as:⎧⎪⎨⎪⎩

ü j (y, t) =
∑

A α̈A
j (t) φA (R) + äk

j (t) yk + ä0
j (t)∑

A α̈A
i = 0∑

A α̈A
i y A

j = 0
(17)

where α̈A
j (t), äk

j (t) and ä0
j (t) are the parameters to be determined; yk and y A

j are the coordinates of the field point
y and the application point A respectively. The collocation scale of A will directly affect the efficiency and accuracy
of the radial integration, and which always composed by the boundary nodes and some integral nodes as depicted
in Fig. 3(a). For the sake of description in the following equations, the boundary nodes, internal and application

A
points are denoted as ‘b’,‘i’ and ‘t’. φ (R) is the 4th order spline radial basis function as shown below, which has

5
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Fig. 3. (a) The collocation points in BEM domain; (b) the relationships of the source point, field point and application point.

been verified as the most efficient radial basis functions [29,30]:

φA (R) =

⎧⎨⎩1 − 6
(

R
dA

)2
+ 8

(
R

dA

)3
− 3

(
R

dA

)4
, 0 ≤ R < dA

0, R ≥ dA

(18)

here R is the distance between field point y and the application point A, and dA is the collocation scale of
pplication points. The relationships between the source point, field point and application point are plotted in
ig. 3(b).

Using Eq. (17) and the radial integration technique, the domain integral can be written as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
Ω ρü jU ∗

i j dΩ = ρ
(∑

A α̈A
j

∫
Γ

1
r

∂r
∂n P A

i j dΓ + äk
j

∫
Γ

1
r

∂r
∂n Pk

i j dΓ + ä0
j

∫
Γ

1
r

∂r
∂n P0

i j dΓ
)

P A
i j =

∫ r
0 rφAU ∗

i j dr

Pk
i j =

∫ r
0 r ykU ∗

i j dr

P0
i j =

∫ r
0 rU ∗

i j dr

(19)

Then, an integral equation with only boundary integrals is obtained and expressed as:

ci ui =
∫
Γ U ∗

i j t j dΓ −
∫
Γ T ∗

i j u j dΓ

−ρ
(∑

A α̈A
j

∫
Γ

1
r

∂r
∂n P A

i j dΓ + äk
j

∫
Γ

1
r

∂r
∂n Pk

i j dΓ + ä0
j

∫
Γ

1
r

∂r
∂n P0

i j dΓ
) (20)

Discretizing the boundary integral equation using quadratic boundary elements [29,30], Eq. (20) can be written
n a matrix form as:

MB ü + KBu = GBt (21)

n which the index B denotes the BEM domain. In order to keep a consistent form with PD domain matrix equation,
here only the force vector is on the right-hand side of the equation, a series matrix operators are taken as follows.
irst, the matrices are partitioned according to the boundary nodes ([Mbt ], [Kbt ], [Gbb]) and internal nodes ([Mi t ],

[Ki t ], [G ib]):[
Mbt

Mi t

]
{üt } +

[
Kbt

Ki t

]
{ut } =

[
Gbb

G ib

]
{tb} (22)

Then, inverse of [Gbb] is multiplied to the both sides of the first equations in (22). Finally, one obtains the
matrix equations as:[

M̄bt
¯

]
{üt } +

[
K̄bt
¯

]
{ut } =

{
tb

}
(23)
Mi t Ki t 0
6
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Fig. 4. The coupled scheme of PD and BEM.

where{
M̄bt = G−1

bb Mbt

K̄bt = G−1
bb Kbt

and

{
M̄i t = Mi t − G ib

(
G−1

bb Mbt
)

K̄i t = Ki t − G ib
(
G−1

bb Kbt
) (24)

For large scale problems, the G matrix can be multiplied to the varied force at each time step without computing
the inverse.

2.3. The coupled equations

The coupling approach is based on the idea proposed in [24], where the coupled stiffness matrix is defined and
used to solve linear static problems. To gain the efficiency from BEM analyses and exploit the generality of PD
in the presence of discontinuities, the solution domain is partitioned into a BEM subdomain, where there is no
crack, and a PD subdomain, where cracks exist or are expected to propagate, as shown in Fig. 4. Due to the local
nature of BEM, the overall computational cost and surface effect can be greatly reduced. In PD domain, each node
in the center of a square cell has a uniform mass distribution. The nodes on the interface are boundary nodes in
BEM domain, which are also seen as the material points in the PD domain. No gap or overlap into the domain is
needed.

The nodes on the BEM domain boundaries are denoted by ‘b’, the internal nodes are denoted by ‘i’, and the
common nodes on the interfaces are denoted by ‘c’. The matrices are constructed as displayed:⎡⎢⎣M̄bb M̄bc M̄bi

M̄cb M̄cc M̄ci

M̄ib M̄ic M̄i i

⎤⎥⎦
⎧⎪⎨⎪⎩

üb

übc

üi

⎫⎪⎬⎪⎭ +

⎡⎢⎣K̄bb K̄bc K̄bi

K̄cb K̄cc K̄ci

K̄ib K̄ic K̄i i

⎤⎥⎦
⎧⎪⎨⎪⎩

ub

ubc

ui

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
tb
tbc

0

⎫⎪⎬⎪⎭ (25)

The PD equation is also constituted by the common nodes on the interfaces and other internal material points,
and is presented as:[

ρc 0
0 ρp

] {
ü pc

ü p

}
+

[
Kcc Kcp

K pc K pp

] {
u pc

u p

}
=

{
bpc

bp

}
(26)

The common nodes on the interfaces should satisfy the displacements continuity and the traction equilibrium. A
transformation operation can be used to construct the equilibrium relationship between the traction in BEM domain
and the body force in PD domain, and is described as (see Fig. 5):{

ubc = u pc = uc

tbc = −bpc · ∆x
(27)
7



Y. Yang and Y. Liu Computer Methods in Applied Mechanics and Engineering 399 (2022) 115339

o

r
n

2

h
c
m
i

w

w
a

Fig. 5. Traction equilibrium of interface nodes.

Thus, based on Eq. (27), the BEM and PD equations can be coupled as follows:⎡⎢⎢⎢⎣
M̄bb M̄bc M̄bi 0

M̄cb M̄cc + ρc · ∆x M̄ci 0

M̄ib M̄ic M̄i i 0
0 0 0 ρp

⎤⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

üb

üc

üi

ü p

⎫⎪⎪⎬⎪⎪⎭

+

⎡⎢⎢⎢⎣
K̄bb K̄bc K̄bi 0

K̄cb K̄cc + Kcc · ∆x K̄ci Kcp · ∆x

K̄ib K̄ic K̄i i 0
0 K pc 0 K pp

⎤⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ub

uc

ui

u p

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
tb
0
0
bp

⎫⎪⎪⎬⎪⎪⎭ (28)

r

Mü + Ku = F (29)

As verified from several examples, only the number of boundary nodes on the interface and its parallel edges
equire the same density in distribution as that of the PD grid, while other boundary nodes and internal nodes have
o special size requirement.

.4. Time integration techniques

In order to better solve the dynamic equation, Eq. (29), two explicit and three implicit time integration algorithms
ave been implemented and compared in terms of their efficiency. Two explicit direct integration methods are the
entral difference scheme and one which is based on the Velocity-Verlet scheme. Three implicit time integral
ethods are Houbolt, Newmark and the Wilson-θ . The proposed coupling method work properly with all the

ntegration schemes. The details of each scheme are reported below:
Central difference method (CDM):{

üt
=

(
ut−∆t

− 2ut
+ ut+∆t

)
/∆t2

u̇t
=

(
ut+∆t

− ut−∆t
)
/2∆t

where ut−∆t
= ut

− ∆t u̇t
+

∆t2

2 üt and∆t <
√

2ρ∑
j V j c j

(30)

ith equivalent equation as:(
M
∆t2

)
ut+∆t

= Ft
−

(
K −

2M
∆t2

)
ut

−

(
M
∆t2

)
ut−∆t (31)

here V j and c j represent the occupied volume of node j and the corresponding micro-modulus. Equivalent stiffness
nd force matrices are K∗

=
M and F∗

= Ft
−

(
K −

2M
)

ut
−

(
M

)
ut−∆t , respectively.
∆t2 ∆t2 ∆t2

8
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Velocity-Verlet method (V-V):⎧⎪⎨⎪⎩
u̇t+ 1

2∆t
= u̇t

+
∆t
2 üt

ut+∆t
= ut

+ ∆t u̇t+ 1
2∆t

u̇t+∆t
= u̇t+ 1

2∆t
+

∆t
2 üt+∆t

where∆t =
∆min√

E
3(1−2ν)ρ

(32)

with equivalent equation as:(
2M
∆t2

)
u̇t+∆t

= Ft+∆t
+

(
M −

K∆t2

2

)
üt

+

(
2M
∆t

− K∆t
)

u̇t
− Kut (33)

where ∆min is the length of the shortest bond in the grid (the minimum nodal distance in the discretized domain).
Equivalent stiffness and force matrices are K∗

=
2M
∆t2 and F∗

= Ft+∆t
+

(
M −

K∆t2

2

)
üt

+
( 2M
∆t − K∆t

)
u̇t

− Kut ,
respectively.

The Houbolt method:{
üt+∆t

=
(
2ut+∆t

− 5ut
+ 4ut−∆t

− ut−2∆t
)
/∆t2

u̇t+∆t
=

(
11ut+∆t

− 18ut
+ 9ut−∆t

− 2ut−2∆t
)
/6∆t

(34)

with equivalent equation as:(
2M
∆t2 + K

)
ut+∆t

= Ft+∆t
+

(
5M
∆t2

)
ut

−

(
4M
∆t2

)
ut−∆t

+

(
M
∆t2

)
ut−2∆t (35)

which are two-backward-difference formulas. It is more accurate to calculate ut−∆t and ut−2∆t by some other means.
Equivalent stiffness and force matrices are K∗

=
2M
∆t2 and F∗

= Ft+∆t
+

(
5M
∆t2

)
ut

−

(
4M
∆t2

)
ut−∆t

+

(
M
∆t2

)
ut−2∆t ,

respectively.
The Newmark method:{

u̇t+∆t
= u̇t

+
[
(1 − δ) üt

+ δüt+∆t
]
∆t

ut+∆t
= ut

+ u̇t∆t +
[( 1

2 − α
)

üt
+ αüt+∆t

]
∆t2 (36)

ith equivalent equation as:(
M

α∆t2 + K
)

ut+∆t
= Ft+∆t

+

(
M

α∆t2

)
ut

+

(
M

α∆t

)
u̇t

+

[(
1

2α
− 1

)
M

]
üt (37)

here α and δ, which control the integration accuracy and stability, are parameters to be determined. Newmark
as originally proposed as an unconditionally stable scheme. It is a constant-average-acceleration method (also

alled trapezoidal rule) when δ = 1/2 and α = 1/4. However, a modified Newmark method [29] with δ = 0.7
nd α = 0.5 are used in this analysis. Equivalent stiffness and force matrices are K∗

=
M

α∆t2 + K and

F∗
= Ft+∆t

+

(
M

α∆t2

)
ut

+
( M

α∆t

)
u̇t

+
[( 1

2α
− 1

)
M

]
üt , respectively.

The Wilson-θ method:{
üt+∆t

=
6

θ3∆t2

(
ut+θ∆t

− ut
)
−

6
θ2∆t

u̇t
+

(
1 −

3
θ

)
üt

u̇t+∆t
= u̇t

+
[
üt

+ üt+∆t
]
∆t
2

(38)

ith equivalent equation as:(
6M

θ2∆t2 + K
)

ut+θ∆t
= Ft+θ∆t

+

(
6M

θ2∆t2

)
ut

+

(
6M
θ∆t

)
u̇t

+ (2M) üt (39)

For unconditional stability we need to use θ ≥ 1.37, and usually we employ θ = 1.4. Equivalent stiffness and
orce matrices are K∗

=

(
6M

+ K
)

and F∗
= Ft+θ∆t

+

(
6M

)
ut

+
( 6M )

u̇t
+ (2M) üt , respectively.
θ2∆t2 θ2∆t2 θ∆t

9
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e
d

Fig. 6. Flowchart for solving the dynamic problem with the proposed coupled BEM-PD method.

All the time integration approaches satisfy the prescribed initial conditions as follows:{
u = u0 at t = 0
u̇ = ν0 at t = 0

(40)

For each time step, the displacements, velocities and accelerations of all nodes can be obtained by solving the
quivalent equations. The loop on time steps continues until the final time step. The flowchart for solving the
ynamic problem with the proposed coupled BEM-PD method is shown in Fig. 6.
10
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t
I

Fig. 7. A plate under a dynamic load.

Fig. 8. The dynamic load: (a) a harmonic load, and (b) a transient load.

3. Numerical examples

In this section, the coupled BEM-PD method is applied to analyze some dynamic problems. First, the accuracy
and efficiency of the developed method is investigated using a harmonic and transient vibration of a plate. Then,
the developed coupled method is applied to model a few dynamic crack propagation problems.

In PD, the ratio m = δ/∆ (radius of the horizon to the nodal spacing) plays an important role in the accuracy
and quality of numerical solution, especially in the case of failure analysis [7]. A survey of studies [31–33] in the
literature reveals that m ≥ 3 has been adopted for most cases. In the present study m = 3 is used.

All the simulations are performed with a research Fortran code and a computer having Intel(R) Xeon(R) Gold
6136 CPU, 128 GB RAM Windows 10 Pro 64 bit OS.

3.1. Efficiency and ghost force test

A plate with 48 m in length and 12 m in width, fixed at the left side and subjected to a in plane dynamic
force at the free end (Fig. 7). The parameters used are E = 3.0 × 107 Pa, v = 0.3 and ρ = 1.0 kg/m3. External
excitation force P = 1000g (t). For a harmonic load g (t) = sin (ωt) with frequency ω = 27, and for a transient
load g (t) = 1, 0 ≤ t ≤ 0.5 s, as shown in Fig. 8.

Two different cases are considered. First, the cantilever is divided into two equal subdomains as plotted in Fig. 9.
A total of 16 boundary elements and 9 internal nodes are used to discretize the left BEM subdomain. In the PD
domain, nodal spacing is given as ∆x = 3 m, which results in 57 total nodes. It should be noted that the BEM

omain edge which is parallel to the interface should have the same nodal interval as the material spacing in PD
omain. The solutions obtained by the considered models for the vertical displacement component of the nodes A
nd B are presented for an interval of 2.0 s.

For comparison, the displacement response of Point A and B calculated by BEM-only [29], PD-only [24] and
he present BEM-PD method are shown in Fig. 10 and Fig. 11 for the harmonic and transient load, respectively.
n the BEM-only case, the nodal distance is 1.5 m and dt = 5.0 × 10−3 s. In the PD-only case, the nodal spacing
11
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i
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d
P
m

Fig. 9. Discretization of the plate with two subdomains.

Fig. 10. Comparison of harmonic displacement responses: (a) point A; (b) point B.

Fig. 11. Comparison of transient displacement responses: (a) point A; (b) point B.

s ∆x = 0.4 m, which is 7.5 times smaller than that of the coupled method, and dt = 5.0 × 10−4 s. It can be
een that as the integration time increases, an increased phase error occurred between the BEM-only and PD-only
isplacements response. Such a small difference between the solutions is due to the wave dispersion property of
D, and it can be mitigated by refining the solution domain [31]. The results obtained by the BEM-PD coupled

ethod are in agreement with PD solutions.

12
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Table 1
Efficiency scheme comparison for harmonic vibration of the plate.

Methods Node spacing (m) Total nodes Time interval CPU time (s)

BEM 3.0 61 0.005 500.83
BBPD 0.4 3600 0.0005 13266.78
BEM-PD 3.0 57 0.0002 58.53
Ref. [5] 0.6 1701 0.00012 –

The above-mentioned harmonic vibration of the plate is also studied by Shojaei et al. in Ref. [5], where an
veraged nodal spacing of 0.6 m is used with 1701 nodes. Although with almost 30 times the total nodes number
f the current coupled BEM-PD method, the results in Ref. [5] have the similar accuracy.

It should be noted that, smaller node spacing will lead the time integration steps to grow significantly and slow
own the convergence. The material point spacing in the PD subdomain can be set up with a little larger length
ccording to the BEM scheme to speed up convergence without decreasing the accuracy. For this case, a large node
pacing is employed in the BEM-PD method, a smaller time interval is set to illustrate its efficiency. Table 1 shows
hat, with almost same number of the nodes, the time integral step of BEM-PD is 25 times than that of BEM-only,
ut it takes one tenth of the time used with the BEM-only. As it known, the BBPD is time consuming, which
sing 36 times number of points and 200 times seconds obtains the same accuracy of BEM-PD coupled method.
herefore, by comparison, it can be concluded that, the developed BEM-PD coupled method can achieve accurate
ynamic results by using a coarser nodal spacing with high efficiency.

To have more insight of the effect of the point collocation, three cases of collocation distribution are investigated
s depicted in Fig. 12. The node intervals on the top and bottom edges of the BEM domain remain the same, and
he node intervals on the interface and the edges which are parallel to the interface vary with the material point
pacing in PD domain. The material spacing for these three cases are ∆x = 3 m, ∆x = 1.5 m and ∆x = 1 m,
espectively. The vertical displacements of these three cases, again at points A and B are plotted in Fig. 13. The
esults of these three cases are almost the same with that of PD-only. With decreasing material point spacing, the
mplitude of the displacement response approaches that using PD only.

To explore the efficiency of the time integration techniques, two explicit and three implicit time integral
pproaches mentioned above are employed to analyze the harmonic and transient vibration of the plate. The
isplacement responses of point A and B are presented in Figs. 14 and 15, respectively. It can be seen from Fig. 14(a)
hat the CDM and V-V approaches can yield stable results for the harmonic vibration, but the displacements response
t point A has small dissipation error in the high-frequency regime for the transient vibration (Fig. 14(b)). For
mplicit BEM-PD coupled method, the displacement responses are stable for the harmonic or transient vibration
ith only small amplitude differences among Houbolt, Newmark and Wilson methods as shown in Fig. 15. Fig. 16
lots the transverse and vertical displacements response contours for the harmonic and transient vibration. It can
e concluded that, the variations of the displacements are continuous and smooth and there is no ghost force at the
nterfaces.

The same plate, which is divided into three equal subdomains, is studied next. The central subdomain is
iscretized using the PD, and the remaining subdomains are discretized using the BEM. Similarly, the node intervals
n the interfaces and the edges parallel to the interfaces need to be the same as the point spacing in the PD
omain. The material point spacing is ∆x = 2 m, and the node intervals on the top and bottom edges of the
EM domains can be arranged discretionarily. The discretization scheme is shown in Fig. 17. The explicit and

mplicit time integration methods are employed to solve the BEM-PD coupled dynamic equations. Straightforward
mplementation of CMD and V-V, which are explicit time integral approaches, may increase the error and cause
ivergence. However, with the implicit time integration approaches, stable results can be obtained quickly. The
isplacement responses of point A for harmonic and transient vibrations by implicit BEM-PD are shown in Fig. 18,
nd the corresponding displacement contour plots are also shown in Fig. 19, with no ghost force effects.

Numerical error in the displacement field at element interfaces is often the drawback of the various coupling
ormulations (such as FEM-PD formulations). Compatibility of the displacement field at element interfaces plays
key role in the stability of these formulations. The verification examples demonstrate that the present BEM-PD

oupled equations are appropriate for assembling the BEM and PD equations together with no ghost force effects.
he dynamic responses show that the use of the implicit time integration can lead to stable results much faster,
specially when using the Houbolt and the modified Newmark Method.
13
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A

F

Fig. 12. Three cases of node collocations.

Fig. 13. Displacement responses with three cases of nodes collocation: (a) point A; (b) point B.

.2. Examples of crack propagation

This part is devoted to show the capability of the present method in solving dynamic crack propagation problems.
wo benchmark examples are presented below.

pre-notched plate
The first example considered is a pre-notched rectangular plate with dimensions 0.1 × 0.04 m2, as shown in

ig. 20. The brittle material used is Duran Glass with E = 65 GPa, ρ = 2235 kg/m3, and fracture energy
2
G0 = 204 J/m . The fracture energy value used in this example is experimentally measured at the branching

14



Y. Yang and Y. Liu Computer Methods in Applied Mechanics and Engineering 399 (2022) 115339
Fig. 14. Displacements response of the explicit BEM-PD coupled method (a) harmonic vibration; (b) transient vibration.

Fig. 15. Displacement responses of the implicit BEM-PD coupled method (a) harmonic response; (b) transient response.

Fig. 16. Displacement contour plots: (a) u of harmonic vibration, (b) v of harmonic vibration, (c) u of transient vibration, (d) v of transient
vibration.

for a dynamic crack [7,34]. A tension load σ = 12 MPa is applied to the upper and lower edges at the initial time
step and maintained at the same level after that.

The grid is made of BEM nodes and PD nodes. PD nodes are distributed in the region where the pre-crack is

located as well as in the whole region in front of the crack tip where there is the possibility of crack propagation.

15
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B
b

Fig. 17. Discretization of three subdomains.

Fig. 18. Displacement responses of point A for (a) harmonic and (b) transient load.

Fig. 19. Displacement response contour plots for (a) u and (b) v for harmonic load; (c) u and (d) v for transient load.

he remaining region of the solution domain is discretized by using BEM nodes. The load is directly applied to the
EM domain, which can eliminate the boundary effect in using the PD. The initial crack is conveniently modeled

y breaking the corresponding bonds in PD. In addition, the BEM nodes are positioned far enough from the initial

16
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a

Fig. 20. A pre-notched rectangular plate.

Fig. 21. BEM-PD model of the rectangular plate.

Table 2
Efficiency comparison for traction of pre-cracked plate.

Methods Node spacing (m) Total nodes Time interval CPU (s)

BBPD 0.001 4000 40 ns 37679.53
BEM-PD 0.001 3080 40 ns 5088.19

crack so that the visibility criterion is observed. For the whole model, a grid with an average nodal spacing of
∆x = 0.001 m with 3080 nodes in total is considered as shown in Fig. 21.

Five plots of damage levels and the corresponding displacement contours at various instants are shown in Fig. 22.
The total simulation time is 64 µs with a time step of 40 ns. The crack starts propagating at nstep = 280 and branches
at around nstep = 890 at xbranch = 0.068 m measured from the left edge of the plate. The results are in very good
greement with those obtained for a full PD model with ∆x = 0.001 m, where the following values were obtained:

tstart = 7 µs, tbranch = 23.9 µs and xbranch = 0.0682 m. The integration time used with the BEM-PD method is
almost one seventh of that using the full PD model as listed in Table 2.

Using different values of the applied tensile stress, different crack patterns are observed as shown in Fig. 23. It
can be seen that the crack grows along a straight path without any branching and runs through the plate when the
tensile stress σ = 0.2 MPa (Fig. 23(a)). When σ = 12 MPa, the crack is first seen to propagate along the branch
direction, and suddenly the crack begins to split into two stable branches, and subsequently reached the top and
bottom edge of the plate (Fig. 23(d)). When the applied tensile stress is increased to σ = 22 MPa, the crack first
branches and then the branches go across the plate in the horizontal direction (Fig. 23(g)).
17
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Fig. 22. Contour plots of the crack propagation and displacement.

Kalthoff–Winkler’s experiment
Another well-known study of fracture dynamics is the Kalthoff–Winkler’s experiment [35], in which a pre-

cracked steel plate is hit on the top as shown in Fig. 24. It shows that the fracture type of such experiment
configuration depends on the impact speed. When the plate is made of steel 18Ni1900, an impact speed causes
a brittle fracture mainly in mode I. The crack propagation takes place at an angle of approximately 70 degrees with
respect to the vertical direction.

A BEM-PD coupled model has been established as shown in Fig. 25. On the top, three independent rectangular
BEM subdomains with 0.04 m in height are discretized by boundary and internal nodes. Coupled with the BEM
subdomains at three interfaces is the PD subdomain, which is 0.06 m in height with two notches. A coarse model
with ∆x = 0.002 m is used to discretize the BEM-PD model. The properties of the material are E = 191 GPa,
ρ = 8000 kg/m3, G0 = 42408 J/m2 and ν = 0.25 with plane strain conditions assumed. The fracture dynamics is
simulated by imposing the impact on the top surface of the sample between the two cracks with an initial vertical
speed of v = 32.0 m/s. We assume that the projectile and the plate have the same elastic impedance, and boundaries
are free. The simulation duration is t = 117.45 µs with a time step ∆t = 87 ns is chosen. A full PD model with

∆x = 0.0001 m are also studied for comparison.

18
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o

Fig. 23. Crack morphology and corresponding displacement contour plots obtained by applying different tensile stresses.

Fig. 24. Model geometry of the Kalthoff–Winkler’s example.

Table 3
Comparison of CPU times for the Kalthoff–Winkler’s example.

Methods Node spacing (m) Total nodes Time interval CPU (s)

BBPD 0.0001 20101 87 ns 33266.78
BEM-PD 0.002 3330 87 ns 3350.16

Fig. 26 shows a sequence of frames of the damaged plate. The impact creates compressive stress waves that move
nto the interior of the plate. As these waves interact with the notch tips, mode-II loading occurs and depending
n the impact velocity, fracture may initiate at the notch tips at t = 25.23 µs. However, the cracks do not grow

in parallel to the notches. Instead, a mode transition occurs, and the notches grow as mode-I cracks along straight
lines at 68-degree angles to the notches. This result agrees with the experimentally determined propagation paths. A
similar fracture patten was observed in the full PD model and in Ref. [17]. However, the present BEM-PD coupled
approach has a much higher computational efficiency than that of the BBPD, as is illustrated in Table 3. The CPU
time used with the BEM-PD approach is about one tenth of that with the full PD approach.
19
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Fig. 25. BEM-PD model of the Kalthoff–Winkler’s example.

Fig. 26. The contour plots of the crack propagation at different time steps.

4. Conclusions

In this paper, a coupled method based on the boundary element method (BEM) and bond-based peridynamics
(BBPD) is developed for modeling the dynamic crack propagation problems. The pre-crack and the potential
propagation region are simulated by the BBPD dynamic equation, where the stiffness matrix is derived by the
Taylor’s expansion of the stretch. The rest of non-crack region is simulated by using the meshfree boundary-

domain integral equation method to reduce the problem dimension by one, such that the computational efficiency
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can be improved. A simple physical transform through the displacement continuity and force equilibrium at the
interface nodes is employed to combine the two subregions for the global dynamic equation. This eliminates the
need for overlapped elements or blending functions. The explicit and implicit time integral techniques can both be
used to solve the coupled dynamic equations. However, the harmonic and transient dynamic numerical examples
demonstrate that the implicit coupled BEM-PD methods are much easier to use and faster to deliver stable response
results. The pre-cracked plate with traction and the Kalthoff–Winkler’s example illustrate that the present coupled
method can model the dynamic crack propagation accurately even with a coarse discretization. Because of the
effectiveness and stability of the developed BEM-PD coupled method, it can be easily extended to model multiscale
problems for which a large number of time steps in integration are required. Improved coupling schemes and
extension to model crack propagation in 3D structures are possible topics for further work.
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