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A B S T R A C T   

Structures with holes are prevalent in engineering applications. Analyzing the stress concentration effects caused 
by holes using the finite element method (FEM) or the boundary element method (BEM) is challenging and time- 
consuming. Typically, a large number of elements are necessary in the vicinity of holes to achieve accurate 
results. In this paper, a series of improved hole elements and tube elements are constructed for simulating the 
holes and cylinders, respectively. Two construction methods for hole elements, based on Lagrange and trigo-
nometric interpolations, respectively, are introduced. The general formulas for evaluating singular integrals over 
the proposed elements are derived. Additionally, the adaptive element sub-division technique is applied to 
address the nearly singular integrals over these elements and account for the interactions of multiple holes. Five 
numerical examples are studied to demonstrate the accuracy and efficiency of the proposed elements. The results 
demonstrate that employing hole and tube elements can reduce the number of nodes while maintaining stress 
accuracy, in comparison to using several quadratic elements.   

1. Introduction 

Holes are frequently encountered in structural design, whether they 
are for bolts, film-cooling on engine blades, and so on. Some holes may 
be intended for reducing weight, while some holes may serve to 
accommodate the passage of other components. Regardless of their 
design purpose, holes will alter the stress distribution in the vicinity, 
leading to stress concentration. 

In general, engineers employ numerical methods to obtain the stress 
distribution over the structures, such as the finite element method [1–3] 
(FEM) and boundary element method [4–6] (BEM). Achieving accurate 
analysis of stress concentration around holes with the FEM requires a 
dense distribution of nodes and quadratic elements within the compu-
tational domain, particularly when the hole size is significantly smaller 
than the overall structure. Consequently, employing FEM complicates 
mesh generation and increases computational time. In the case of the 
BEM, only the boundaries of the computational domain are discretized, 
eliminating the need for intricate mesh generation within the compu-
tational domain. Nevertheless, refined discretization of the holes is still 
essential to achieve accurate stress distributions in their vicinity. A 
conventional and viable method involves employing numerous constant 
elements, linear elements, or quadratic elements to approximate circular 

or elliptical geometries and interpolate variables over them. This implies 
that a substantial number of nodes are still required around the holes, 
potentially leading to high computational costs. 

Therefore, some researchers have constructed boundary elements 
resembling holes and developed associated techniques to address cir-
cular geometries, such as holes, cylinders, and spheres, based on BEM. 
Henry and Banerjee et al. constructed a 3-node trigonometric hole 
element to simulate displacements and temperatures around the holes. 
They streamlined the boundary integral formulas by considering the 
geometrical characteristic, resulting in reduced computational costs 
[7–10]. Buroni et al. expanded the hole elements to 4, 5 and 6 nodes to 
simulate the cylindrical voids within the domain. They also devised 
techniques for evaluating weakly and strongly singular integral over 
these elements [11,12]. However, Buroni et al. did not consider the 
impact of closely spaced holes, neglecting the consideration of nearly 
singular integrals. Zhang’s team created a tubular element based on 
3-node hole element to simulate the open-ended tubular holes. They 
integrated these elements in boundary face method to analyze the dis-
tributions of temperature [13], stress [14] and acoustic pressure [15] 
over the relevant structures. Feng et al. designed specialized boundary 
elements to discretize a spherical surfaces with high geometrical accu-
racy when analyzing the acoustic properties of spheres [16]. 
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Recently, a series of isoparametric closure elements were proposed 
by Gao et al. [17–19], containing hole elements, tube elements, ring 
elements, disk elements, and sphere elements as depicted in Fig. 1. 
Different from the hole elements mentioned above, their hole elements 
are derived by the Lagrange polynomial interpolation formulation and 
closure conditions at two ends of an arc. The tube and ring elements can 
be created by multiplying the shape functions of the corresponding 
nodes in the hole elements and line elements. The disk and sphere ele-
ments are formed by summing the shape functions of the associated 
nodes on the ring and tube elements, respectively. The evolutionary 
relationships between these elements are illustrated in Fig. 2. It is 
evident that the hole element serves as the foundation for these ele-
ments, and the accuracy of the hole element impacts its derived 
elements. 

However, the accuracy of the Lagrange hole elements is not satis-
factory in geometrical discretization when the node count is less than 8. 
Therefore, Ma et al. constructed an 8-node hole element with improved 
smoothness by incorporating two auxiliary nodes into the expanded 
Lagrange polynomial interpolation functions [20,21]. This element 
performs better in the mechanics problems than those created by merely 
closing two ends of an arc. 

In summary, the construction of the hole elements serves as the 
foundation for the construction of the isoparametric closure elements. 
Hence, it is necessary to investigate the accuracy of hole elements with 
varying number of nodes and different interpolation methods. The au-
thors believe that the previously proposed hole elements may lack the 
necessary accuracy in simulating stress concentration effect of closely 
spaced holes. Therefore, in this paper, the authors will follow the 
improvement idea from Ma to enhance the accuracy of Lagrange hole 
elements by introducing more auxiliary nodes. Meanwhile, the trigo-
nometric hole elements are expanded to include 8-node, 12-node, and 
16-node versions. Then, based on the hole element, the tube elements 
are constructed to simulate the cylindrical holes in three-dimensional 

models. An adaptive element sub-division technique will be applied to 
evaluate the nearly singular integrals over the proposed elements. 
Finally, the authors will compare the performance of two interpolation 
hole elements in simulating stress concentration effect on the holes. 
They will also verify the necessity of employing trigonometric hole el-
ements with more nodes and the high accuracy of the tube elements 
based on trigonometric interpolation. 

The rest of the paper is organized as follows. First, some basic BEM 
formulas are presented. Second, the construction concepts for the 
Lagrange, trigonometric hole elements and tube elements are discussed. 
Third, the methods for evaluating singular and nearly singular integrals 
over the hole and tube elements are introduced. Then, five examples are 
given to compare the accuracy of the proposed elements when simu-
lating the plate with single small circular hole, single elliptic hole, 
double circular holes, randomly positioned multi-holes and the cubic 
structure with cylindrical holes. Finally, some conclusions are drawn to 
summarize the paper. 

2. Brief introduction of BEM for elasticity problems 

For elasticity, the boundary integral equation (BIE) can be expressed 
as follows [4–6]: 

cui(P) =
∫

Γ
u∗

ij(P,Q)tj(Q)dΓ(Q) −

∫

Γ
t∗ij(P,Q)uj(Q)dΓ(Q) (1)  

where uj and tj are the displacements and tractions on the boundary Γ at 
the j-th direction; P and Q represent the source point and the field point, 
respectively; u∗

ij and t∗ij are the Kelvin’s fundamental solutions, which can 
be written as: 

Fig. 1. The isoparametric closure elements.  
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u∗
ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
8π(1 − ν)μ

[

(3 − 4ν)δijln
(

1
r

)

+
∂r
∂xi

∂r
∂xj

]

for2D

1
16π(1 − ν)μr

[

(3 − 4ν)δij +
∂r
∂xi

∂r
∂xj

]

for3D
(2)  

t∗ij = −
1

4πα(1 − ν)rα

{
∂r
∂n

[

(1 − 2ν)δij + β
∂r
∂xi

∂r
∂xj

]

+(1 − 2ν)
(

ni
∂r
∂xj

− nj
∂r
∂xi

)}

(3)  

in which μ is the shear modulus; ν is the Poisson ratio; β is the dimension 
of the problems and α = β− 1; the subscripts i and j obey Einstein sum-
mation convention (the same hereinafter). 

The BIE for calculating interior stresses can be expressed as follows: 

σij(P) =
∫

Γ
U∗

ijk(P,Q)tk(Q)dΓ(Q) −

∫

Γ
T∗

ijk(P,Q)uk(Q)dΓ(Q) (4)  

where U∗
ijk and T∗

ijk can be calculated by the following two formulas: 

U∗
ijk =

1
4πα(1 − ν)rα

[

(1 − 2ν)
(

δik
∂r
∂xj

+ δjk
∂r
∂xi

− δij
∂r
∂xk

)

+ β
∂r
∂xi

∂r
∂xj

∂r
∂xk

]

(5)    

where γ = β + 2. 
To evaluate the boundary integrals in Eqs. (1) and (3), boundary Γ 

could be discretized into boundary elements, where the displacements, 
surface tractions and even geometric coordinates are interpolated by the 
same shape functions, i.e. 

ui(ξ) = Nα(ξ)uα
i (7)  

ti(ξ) = Nα(ξ)tα
i (8)  

xi(ξ) = Nα(ξ)xα
i (9)  

in which Nα is the shape functions; α represents the α-th node and the 
repeated scripts α also obeys Einstein summation convention; ξ is the 
intrinsic coordinate on the element, range from − 1 to 1. 

After discretizing the boundaries of the computational domain, if 
regarding each boundary node as the source point, one node corre-
sponds two or three algebraic equations. By assembling these equations 
together, a system of linear algebraic equations can be derived as fol-
lows: 

[H]{u} = [G]{t} (10)  

in which {u} and {t} are the displacement and surface traction vector 
containing the displacements and surface tractions of all the boundary 
nodes, respectively; [H] and [G] are the coefficient matrix. By rear-
ranging the equation, with unknowns on the left-hand side and known 
terms on the right, and then solving the resulting system, the displace-
ments and surface tractions at each node will be obtained. Next, by 

substituting these values into the discretized stress BIEs, the stress at 
source point P can be obtained. Specially, if source point P is on the 
boundary, the hyper-singular and strong-singular integrals should be 
evaluated according to the Eqs.(3)-(5). To avoid that, in this paper, the 
traction recovery method [5] is employed to calculate the stresses on the 
boundaries. 

Fig. 2. The evolutionary relationships between isoparametric closure elements.  

T∗
ijk =

μ
2πα(1 − ν)rβ

{

β
∂r
∂n

[

(1 − 2ν)δij
∂r
∂xk

+ ν
(

δik
∂r
∂xj

+ δjk
∂r
∂xi

)

− γ
∂r
∂xi

∂r
∂xj

∂r
∂xk

]

+βν
(

ni
∂r
∂xj

∂r
∂xk

+ nj
∂r
∂xi

∂r
∂xk

)

+ (1 − 2ν)
(

βnk
∂r
∂xi

∂r
∂xj

+ njδik + niδjk

)

+ (1 − 4ν)nkδij

} (6)   
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3. Construction of the improved hole and tube elements 

In this section, Lagrange and trigonometric hole elements, as well as 
tube elements are introduced, including their intrinsic coordinate sys-
tem, node distributions, shape functions and so on. Additionally, the 
node distributions of the hole elements on the ellipse will be discussed 
because of the asymmetry of ellipse. 

3.1. “Repeated winding” Lagrange hole elements 

The Lagrange hole elements are proposed by Gao et al. [17], with 
shape functions derived from the Lagrange line elements by adding one 
extra node. This constructing method is called “end to end”. The α-th 
node’s shape function of the N-node line element can be expressed as 

Nα(ξ) =
∏N

i=1,i∕=α

ξ − ξi

ξα − ξi
1 ≤ α ≤ N (11) 

Consequently, the α-th node’s shape function of (N-1)-node hole 
element can be expressed as 

Nα(ξ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∏N

i=2

ξ − ξi

ξ1 − ξi
+

∏N− 1

i=1

ξ − ξi

ξN − ξi
α= 1

∏N

i=1,i∕=α

ξ − ξi

ξα − ξi
1 <α ≤ N − 1

(12) 

For example, adding up the shape functions of node 1 and node 4 in a 
4-node line element, the shape functions of 3-node hole element are 
obtained, as is shown in the Eq.(13) and Fig. 3. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1 = −
1

16
(1 − ξ)

(
1 − 9ξ2)

N2 =
9

16
(
1 − ξ2)(1 − 3ξ)

N3 =
9

16
(
1 − ξ2)(1 + 3ξ)

N4 = −
1

16
(1 + ξ)

(
1 − 9ξ2)

⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

N′
1 = N1 + N4 = −

1
8
(
1 − 9ξ2)

N′
2 = N2 =

9
16

(
1 − ξ2)(1 − 3ξ)

N′
3 = N3 =

9
16

(
1 − ξ2)(1 + 3ξ)

(13) 

The intrinsic coordinate of first node is − 1 or 1, while those of the 
second and the third are − 1/3 and 1/3, respectively. It should be noted 
that hole elements can only be utilized to simulate the variables (or 
coordinates) located on the edge of the hole, not within the hole. 

However, the elements constructed by “end to end” exhibit low ac-
curacy when the number of nodes is fewer than 8. Fig. 4 shows the re-
sults of simulating a unit circle by hole elements with 3 to 8 nodes. The 
images in Fig. 4 are generated from 1000 points on the elements and the 
radius error of each point is calculated by (radius-1.0)/1.0 × 100% (all 
the actual radii are 1). It can be found that 8-node element yields the 
best performance. The images of 3-node and 4-node elements exhibit 
significant distortion. The image of 6-node element is not smooth at the 
first node where two ends of line element are superposed. 

To improve the Lagrange hole elements, Ma et al. [20,21] proposed 
smooth hole elements by adding two supplemental nodes at both sides of 
the original end node. For example, as depicted in Fig. 5, nodes labeled 

as 0, 7 and 8 in the 9-node line element on the left, referred to as 
auxiliary nodes, are positioned to coincide with the nodes 6, 1 and 2, 
respectively. Then, by summing the shape functions of coincident nodes, 
the smooth 6-node element is obtained. It should be noted that the 
intrinsic coordinates of 9-node line element are from − 4/3 to 4/3. 

Inspired by the idea from Ma et al., the authors believe that more 
auxiliary nodes can be incorporated to construct higher-order hole ele-
ments without increasing the actual number of nodes. This process is 
akin to winding a string around a circle for several times. Therefore, this 
construction method can be referred to as "repeated winding." For 
convenience, in this paper, if the number of nodes in the original line 
element is denoted as "a", and the number of nodes in the generated hole 
element is “b”, it is called “a-b Lagrange hole element”. For example, 9–4 
Lagrange hole element represents winding a 9-node line element around 
a circle twice, as shown in Fig. 6. The shape functions are as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1 =
1

45

(
ξ2
(
− 36+ξ2( 13 − 4ξ2)2

))

N2 =
1

315
( − 8(− 2+ξ)(− 1+ξ)ξ(1+ξ)(2+ξ)(− 1+2ξ)(3+2ξ)(− 5+4ξ))

N3 =
1

315
(
315+(− 2+ξ)ξ2(2+ξ)

(
449 − 488ξ2 +144ξ4))

N4 =
1

315
( − 8(− 2+ξ)(− 1+ξ)ξ(1+ξ)(2+ξ)(− 3+2ξ)(1+2ξ)(5+4ξ))

(14) 

It should be noted that the shape functions generated by this method 
still satisfy Kronecker delta properties. 

To assess the geometric accuracy of the “repeated winding” hole 
elements, a unit circle is also simulated by 5–4, 7–4, 9–4, 13–4, 17–4 
Lagrange hole elements, whose results are shown in Fig. 7. It is obvious 
that the more auxiliary nodes are used, the higher geometric accuracy 
the elements deliver, in terms of 4-node Lagrange hole elements. 

3.2. Trigonometric hole elements 

Lagrange elements are based on a set of polynomials such as 1, ξ, ξ2, 
ξ3 and so on. Considering the characteristics of the circle or ellipse, 
intrinsic coordinate ξ can be transformed into another intrinsic coordi-
nate θ, with the relationship denoted as: 

θ = π(1+ ξ)θ ∈ [0, 2π) (15) 

The nodes are equally distributed around the circumference. The 3- 
node trigonometric hole element features three nodes with intrinsic 
coordinates 0, 2π/3, and 4π/3 as depicted in Fig. 8. The bases of trigo-
nometric hole elements are replaced by a series of trigonometric func-
tions, such as 1, cos θ, sin θ, cos2θ, etc. The coefficients for these bases 
can be determined by solving the equations derived from Kronecker 
delta properties of the shape functions. For example, the shape function 
at the first node in 3-node trigonometric hole elements can be expressed 
as: 

N1(θ) = a + bcosθ + csinθ (16) 

According to the Kronecker delta property, equations are: 

Fig. 3. The 3-node hole element evolved from 4-node Lagrange line element.  
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⎧
⎨

⎩

N1(0) = a + bcos0 + csin0 = 1
N1(2π/3) = a + bcos(2π/3) + csin(2π/3) = 0
N1(4π/3) = a + bcos(4π/3) + csin(4π/3) = 0

(17) 

By solving a, b and c, the shape function can be obtained as follows: 
N1(θ) =

1
3
+

2
3

cosθ (18) 

Similarly, the other two shape functions can be determined as 

Fig. 4. Results of simulating a unit circle by four kinds of hole elements.  

Fig. 5. Construction of the smooth 6-node Lagrange hole element.  

Fig. 6. Construction of 9–4 Lagrange hole element.  

Fig. 7. Results of simulating a unit circle by 5 kinds of 4-node Lagrange hole elements.  

Fig. 8. 3-node trigonometric hole element.  

Fig. 9. Pascal triangle for choosing the bases.  
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follows: 

N2(θ) =
1
3
−

1
3

cosθ +

̅̅̅
3

√

3
sinθ

N3(θ) =
1
3
−

1
3

cosθ −

̅̅̅
3

√

3
sinθ

(19) 

When constructing the trigonometric hole elements with more 
nodes, some high order bases should be employed. Fig. 9 illustrates a 
Pascal triangle with trigonometric function bases. Due to the linear 
dependence among trigonometric functions, only the terms on the right 
side of the dotted line are selected as bases, while those on the left are 
disregarded. For example, the bases of 4-node element consist of 1, cos θ, 
sin θ, cos2θ. The bases of 6-node element include 1, cos θ, sin θ, cos2θ, sin 
θ cos θ, cos3θ. Naturally, this is not the sole method for selecting the 
bases. One can replace cos2θ by sin2θ as the base for 4-node element, 
which will result in the same shape functions. The shape functions of 4, 
6, 8, 12, and 16-node trigonometric hole elements will be provided in 
Appendix A, at the last of this paper. 

3.3. Node distributions on the ellipse 

When simulating a circle, using either the Lagrange or the trigono-
metric hole elements, the node distributions obey the principle of 
equally dividing a circle by all the nodes. However, when simulating an 
ellipse, two options are available. Taking 8-node hole element as the 
example, the second node can either be positioned at the midpoint of the 
arc between the first and third nodes, or at the point where the bisector 
of the angle intersects the arc, as is shown in Fig. 10 (node 4, 6, and 8 
encounter a similar situation). For convenience, in this paper, these 
options are referred to as “arc-middle” and “angle-middle” point, 
respectively. 

So, which one is better for Lagrange and trigonometric hole ele-
ments? To give the answers, an ellipse with semi-major axis of 5 and 
semi-minor axis of 3 is simulated by both node distribution methods and 
two different types of hole elements, whose results are presented in 
Fig. 11. Based on these results, it can be inferred that, considering 
geometric accuracy, angle-middle is superior to the arc-middle for both 
trigonometric and Lagrange hole elements. Furthermore, the error will 
not be acceptable if combining arc-middle distributions with Lagrange 
hole elements. 

3.4. Tube elements 

Tube elements are derived from the hole elements and line elements. 
They are 2D elements represented by coordinate ξ for circumferential 
orientation and coordinate η for longitudinal orientation, and they are 
used in 3D BEM. The shape functions of the tube elements are derived by 
the product of the shape functions of hole elements (represented by Ca) 
and line elements (represented by Lb), which can be expressed as:: 

Nα(ξ, η) = Ca(ξ)Lb(η) − 1 ≤ ξ, η ≤ 1 (20) 

For example, a 24-node (8 × 3) tube element, as depicted in Fig. 12, 
is derived from an 8-node hole element and a 3-node quadratic line 
element. The shape functions for all nodes can be determined by the 
following formula: 

Nα(ξ, η) =

⎧
⎨

⎩

Cα(ξ)L1(η)1 ≤ α ≤ 8
Cα− 8(ξ)L2(η)9 ≤ α ≤ 16

Cα− 16(ξ)L3(η)17 ≤ α ≤ 24
(21) 

Usually, several tube elements can be used to simulate a straight or 
curved cylindrical hole, the lateral surface of a cylindrical truncated 
cone and so on. Generally, the nodal sequence shown in Fig. 12 indicates 
that the outward normal is oriented away from the center. If the outward 
normal points towards the center, the sequence along ξ or along η di-
rection should be reversed. 

4. Evaluation of singular integrals over the hole element 

To achieve accurate results in BEM, it is essential to accurately 
evaluate the integrals in BIEs. Generally, Gauss-Legendre quadrature 
formula can be used to calculate regular integrals with a few integration 
points (in this paper, the number of integration points = 4 × the number 
of nodes in the element). However, when the source point P is located on 
the integration element or very close to it, the integral become a singular 
integral or near-singular integral, respectively. Only considering the 
portions in the fundamental solution responsible for the singularity, the 
integrals become: 

Iw =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ 1

− 1
ln
(

1
r

)

Nα(ξ)Jdξfor2D

∫ 1

− 1

∫ 1

− 1

1
r
Nα(ξ, η)Jdξdηfor3D

(22)  

Is =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ 1

− 1

1
r
⋅Nα(ξ)Jdξfor2D

∫ 1

− 1

∫ 1

− 1

1
r2Nα(ξ, η)Jdξdηfor3D

(23)  

Ih =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ 1

− 1

1
r2⋅Nα(ξ)Jdξfor2D

∫ 1

− 1

∫ 1

− 1

1
r3Nα(ξ, η)Jdξdηfor3D

(24)  

in which Iw, Is, Ih represent weak-singular, strong-singular, and hyper- 
singular integrals, respectively. Due to the use of traction recovery 
method, the evaluation of hyper-singular integrals can be avoided. So, in 
this section, the weak-singular integrals, strong-singular integrals and 
nearly weak-, strong-, hyper-singular integrals are mainly concerned. 

4.1. Weak-singular integral 

Integral in Eq.(21) will become weak-singular when the source point 
P is located on the integration element. 

For hole elements used in 2D problems, r, the distance from the 
source point P to the field point Q, can be written as: 

r2 = (ξ − ξP)
2( f 2

1 + f 2
2

)
(25)  

in which ξ and ξP are the intrinsic coordinates of point Q and P, 
respectively, and 

fi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Nα(ξ) − Nα(ξP)

ξ − ξP
⋅xα

i ξ ∕= ξP

∂Nα(ξ)
∂ξ

⃒
⃒
⃒
⃒

ξ=ξP

⋅xα
i ξ = ξP

(26)  

Fig. 10. Two choices of the second nodes: arc-middle and angle-middle.  
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where repeated α represent summation and subscript i range from 1 to 2. 
It is obvious that ξ - ξP will result in the singular parts of the integrals and 
the rest terms are regular. Therefore, the integral in Eq (21). becomes: 

Iw = Iws + Iwr =

∫ 1

− 1
ln
⃒
⃒
⃒
⃒

1
ξ − ξP

⃒
⃒
⃒
⃒Nα(ξ)Jξdξ −

1
2

∫ 1

− 1
ln
(
f 2
1 + f 2

2

)
Nα(ξ)Jξdξ (27)  

in which Iws and Iwr are the singular part and regular part of the weak- 
singular integral, respectively. Then, the regular part can be calcu-
lated by Gauss-Legendre quadrature formula just like other regular in-
tegrals, while the singular part can be evaluated by logarithmic 
quadrature formula, i.e. 

∫ 1

0
ln
(

1
x

)

f (x)dx ≈
∑n

i=1
wif (xi) (28)  

where the integration points and their weights can be found in the 
Ref. [22]. 

In 3D problems involving tube elements, the degenerated element 
method [5] is employed. First, one can map the tube element to the 
intrinsic parameter space as shown in Fig. 13, resulting in a square 
shape. This process is akin to slicing the cylindrical lateral surface along 
a generatrix (ξ = ξP + 1 or ξ = ξP - 1), which is opposite to the source 
point. Then, the square can be sub-divided into four triangles by con-
necting the source point and four corners. Then, one can map each tri-
angle to a 4-node square element where source point corresponds to two 
nodes, as shown in Fig. 14 (Only for the upper triangle). Describing the 
process by a formula, the integration takes the form: 
∫ 1

− 1

∫ 1

− 1

1
r
NαJdξdη =

∑4

i=1

∫

Ti

1
r
NαJdξdη =

∑4

i=1

∫ 1

− 1

∫ 1

− 1

1
r
NαJ⋅JTi dξ′dη′ (29)  

where Jacobian JTi at source point P equals zero, which eliminate the 
singularity caused by 1/r. 

4.2. Strong-singular integral 

In this paper, the strong-singular integrals in coefficient matrix [H] 
are indirectly evaluated using the rigid body motion method. In fact, 
strong-singular integrals consistently contribute to the diagonal ele-
ments of the displacement coefficient matrix [H]. If assuming that the 
displacements of all nodes are 1 in the computational domain, the 
strains, stresses, and surface tractions all equal to 0. This implies that if 
adding all the elements of any row in matrix [H], the result must be zero. 

Fig. 11. Results of simulating an ellipse by two kinds of node distribution methods.  

Fig. 12. 24-node tube element.  

Fig. 13. Mapping a tube element to the intrinsic parameter space.  
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So, the diagonal of matrix [H] can be calculated by the following 
formula: 

[H]ii = −
∑N

k=1,k∕=i

[H]ik (30)  

where N is the number of elements in the i th row of [H]. Of course, it can 
be easily found that this method also eliminates the need to determine 
the coefficient c in Eq.(1), which originally involves the geometric in-
formation of the computational domain. 

4.3. Nearly singular integral 

When the source point is not located on the element, it seems that no 
singularity problem needs to be concerned. However, when the source 
point is close to the element, the terms r-1, r-2 or ln(r-1) in the integrands 
change drastically, which possibly makes Gauss-Legendre quadrature 
inaccurate. In this paper, nearly weak-, strong- and hyper-singular in-
tegrals are all treated by adaptive element sub-division method [23]. To 
implement this method, it is necessary to define what "close" means first. 
In this paper, the nearly singularity will be concerned if the distance 
from the source point to the element (represented by rmin) satisfies the 
following formula [5]: 

rmin ≤
Li

4

(e
2

)− p/(2mi)

(31)  

in which Li represents the element real length along the i th direction and 
can be easily obtained by integration with few Gauss points; e is the 
predetermined upper limit of integral errors using Gauss-Legendre 
quadrature formula; mi is the predetermined maximum number of 
Gauss points along the i th direction; p is determined by the singularity 
order λ of the integrand, which can be expressed as follows: 

p =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
3

λ +
2
5

√

(32) 

The second problem is to determine rmin, from the source point to an 
element, which can be in any position. In this paper, the Newton iter-
ation method is applied. The iteration begins with an initial estimate of 
the point on the element that is closest to the source point, whose 
intrinsic coordinate is represented by ξ. The iterative increment Δξ can 
be obtained by solving the following equation: 
(

∂xi

∂ξ
⋅
∂xi

∂ξ
+ ri⋅

∂2xi

∂ξ2

)

Δξ = − ri⋅
∂xi

∂ξ
(33)  

in which the repeated subscripts i imply summations, which range from 
1 to 2 for 2D problems and from 1 to 3 for 3D problems; ri signifies 
distance along the i th orientation from the source point to the guessed 
point. For the hole elements or the first dimension of tube elements, the 
results may converge at the maximum distance because the essence of 
the Newton iteration is to identify a stationary point of the distance 
function. Therefore, after the iteration converges at intrinsic coordinate 
ξ, it is necessary to compare the distance from the source point to the 
coordinate ξ + 1 or ξ – 1, with ξ. The shorter one is the minimum 

distance. 
The main idea of element sub-division is to divide the element into 

several sub-elements to decrease L for adhering to the principle outlined 
in Eq.(30). This principle can also be transformed into another form for 
obtaining the length of each sub-element: 

Li = 4r
(e

2

)p/(2mi)

(34)  

where r represents the minimum distance from the source point to the 
sub-element, and it would be changed as the element is sub-divided 
successively. The process of element sub-division unfolds as follows:  

1) Calculate the length Li of the element. Get the minimum distance rmin 
and intrinsic coordinate of the minimum distance point A. Mean-
while, record the intrinsic coordinate of the maximum distance point 
B.  

2) Based on Li and rmin, judge if the Eq.(30) is true. If it does not, there is 
no need to sub-divide this element in term of this source point along 
the i th direction. If it is true, continue the element sub-division 
procedure.  

3) In case of the hole elements or the first dimension of tube elements, 
sub-division process should always be implemented along two ori-
entations, spanning from the minimum distance point A to the 
maximum distance point B, as shown in Fig. 15. For the second 
dimension of tube elements, sub-division process should be imple-
mented in the intervals [− 1, ηP] and [ηP, 1]. Within each sub-division 
interval, set rmin be r, calculate Li1 and identify the first sub-division 
point.  

4) In each sub-division interval, ascertain the distance between the 
source point P and the latest sub-division point, denoted as rn. Set rn 
be r, calculate Lin, which signifies the length of the n-th sub-element, 
and identify the next sub-division point. If the intrinsic coordinate of 
this point exceeds the maximum distance point B or the boundary of 
this direction, terminate the sub-division process along the i th 
direction. 

Fig. 15 shows possible sub-division results of a hole element and a 
tube element. 

5. Numerical examples 

To compare the robustness of Lagrange and trigonometric hole ele-
ments and verify the correctness of the techniques about the hole and 
tube elements, five numerical examples are implemented in this section. 

5.1. Plate with single small hole 

The first example, a 100×100 square plate with a hole of radius 1 in 
the center is considered. For convenience, the origin of the coordinate 
system is set at the center of the hole, with the x and y axes aligned 
parallel to the plate’s edges, as shown in Fig. 16. Four boundaries of the 
plate are subjected to the surface tractions, of which the distributions are 
determined by the following formula: 

Fig. 14. Mapping a triangle to a square element.  
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{
t1 = σ11n1 + σ12n2
t2 = σ21n1 + σ22n2

(35)  

in which n = (n1, n2) denotes the outward normal vector of the 
boundaries; t = (t1, t2) is the surface traction on the boundaries; the 
components of stresses are calculated by: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11 =
qx2

x2 + y2

(

1 −
R2

x2 + y2

)

+
qy2

x2 + y2

(

1 +
R2

x2 + y2

)

σ22 =
qy2

x2 + y2

(

1 −
R2

x2 + y2

)

+
qx2

x2 + y2

(

1 +
R2

x2 + y2

)

σ12 = σ21 = −
2qxyR2

(
x2 + y2)2

(36)  

in which q = 1 in this example; R represents the radius of the hole and 
equals 1. Consequently, the stress distributions over the entire plate are 
the same as the Eq.(35), and the von-Mises stress can be written as 
follows: 

σmises =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
3R4

(x2 + y2)
2

√

(37) 

This stress distribution is the same as that of the infinite plate with a 
circular hole. 

For the sake of comparison, an FEM model and several BEM models 
are established. FEM model contains 1360 8-node elements and 4192 
nodes with 64 nodes uniformly distributed around the hole, as depicted 
in Fig. 17(a). In all BEM models, 80 quadratic line elements are uni-
formly distributed along four edges of plate, matching the interpolation 
accuracy of the FEM model. However, there are 30 different approaches 
to discretizing the central hole within these BEM models. This includes 
discretization using 4, 8, 32 quadratic line elements, 3, 4, 6, 8, 12, 16- 
node trigonometric hole elements, and 10–3, 16–3, 22–3, 28–3, 5–4, 
9–4, 13–4, 17–4, 21–4, 25–4, 7–6, 13–6, 19–6, 25–6, 9–8, 17–8, 25–8, 

Fig. 15. Adaptive element sub-division for a hole element and a tube element.  

Fig. 16. The coordinate system and boundary conditions of Example 1.  

Fig. 17. FEM model and BEM model with conventional boundary element.  
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13–12, 25–12, 17–16, 33–16 Lagrange hole elements. 
Following computation, the von-Mises stresses of the nodes on the 

hole are extracted. Compared with the benchmark (the exact stress 
distribution in this example), the stress errors are calculated by the 
following formula: 

error =

⃒
⃒
⃒
⃒

σ − σB

σmax − σmin

⃒
⃒
⃒
⃒× 100% (38)  

in which σ is the calculated stress; σB is the stress of benchmark (either 
the exact solution or the results of the refined mesh); σmax is the 
maximum stress over the entire computational domain of the bench-
mark, while σmin is the minimum one, and σmax - σmin represents the 
range of stress of the benchmark. The maximum error among the 
extracted nodes of each model is documented in Table 1. Some con-
clusions are drawn as follows. 

• It can be found that when simulating the effect of stress concentra-
tion around small holes, conventional BEM performs better than 
FEM, when they share the same interpolation order and the same 
number of nodes on the boundary (as observed in “FEM” and “BEM- 
32 quadratic” in Table 1).  

• Compared Lagrange and trigonometric hole elements with the same 
number of nodes, trigonometric elements perform as well as or better 
than Lagrange element.  

• From the errors of all the Lagrange hole elements, when the number 
of nodes is not greater than 8, employing more auxiliary nodes can 
lead to higher accuracy. However, in the case of 12-node or 16-node 
Lagrange hole elements, more auxiliary nodes may lead to lower 
accuracy. The authors believe this may result from Runge phenom-
enon associated with Lagrange interpolation.  

• In the context of a plate with single small hole, 3-node trigonometric 
hole element provides nearly equivalent accuracy to that of 32 
quadratic line elements (with 64 nodes on the hole) when simulating 
a circular hole, This highlights the advantage of the trigonometric 
hole element. 

5.2. Plate with elliptical holes 

The second example closely resembles the first one, with the sole 
difference being the substitution of the circular hole with an elliptic hole 
having a semi-major axis of 5 and a semi-minor axis of 3, as depicted in 
Fig. 18. Due to the alteration in geometry, it is not straightforward to 
obtain an exact stress solution. Therefore, a highly refined BEM mesh is 
used to calculate this problem, yielding results accurate enough to serve 
as benchmarks. Fig. 19 displays a segment of the von-Mises stress con-
tour around the elliptic hole. Meanwhile, 30 kinds of BEM discretization 
methods over the hole are calculated. In this example, some of the hole 
elements are tested with two node distribution methods: angle-middle 
and arc-middle. It should be noticed that the hole discretized by 
several quadratic line elements are all arc-middle distribution, based on 
prior experiences. 

Following the calculations, the maximum errors on the elliptic holes 
of all meshes are listed in Table 2 and Table 3, corresponding to angle- 
middle and arc-middle node distribution, respectively. When observing 
the overall performance of these hole elements in simulating elliptic 
holes, the results are generally consistent with those of circular holes. 
Some conclusions are summarized as follows.  

• When using the hole element to simulate the elliptic geometries, 
angle-middle node distributions are superior to arc-middle node 
distributions for both trigonometric and Lagrange hole elements.  

• When simulating the elliptic hole, all the trigonometric hole element 
and 17–4, 21–4, 25–4, 13–6, 19–6, 25–6, 17–8, 25–8 Lagrange hole 
elements are recommended. For 6-node hole element, 19–6, 25–6 
Lagrange hole element even perform better than trigonometric. 

Table 1 
The maximum errors on the circular hole (“BEM-4 quadratic” means 4 quadratic elements are used to discretize the hole; “BEM-10–3-Lag.-hole” means only one 10–3 
Lagrange hole element is used to discretize the hole; “BEM-3n-tri.-hole” means only one 3-node trigonometric hole element is used to discretize the hole and so on.).  

Discretization method error Discretization method error Discretization method error 

FEM 5.807% BEM-13–4-Lag.-hole 0.212% BEM-17–8-Lag.-hole 0.014% 
BEM-4 quadratic 2.367% BEM-17–4-Lag.-hole 0.037% BEM-25–8-Lag.-hole 0.014% 
BEM-8 quadratic 0.109% BEM-21–4-Lag.-hole 0.007% BEM-8n-tri.-hole 0.014% 
BEM-32 quadratic 0.014% BEM-25–4-Lag.-hole 0.004% BEM-13–12-Lag.-hole 0.012% 
BEM-10–3-Lag.-hole 10.78% BEM-4n-tri.-hole 0.003% BEM-25–12-Lag.-hole 0.274% 
BEM-16–3-Lag.-hole 3.966% BEM-7–6-Lag.-hole 6.807% BEM-12n-tri.-hole 0.013% 
BEM-22–3-Lag.-hole 1.478% BEM-13–6-Lag.-hole 0.025% BEM-17–16-Lag.-hole 0.075% 
BEM-28–3-Lag.-hole 0.561% BEM-19–6-Lag.-hole 0.013% BEM-33–16-Lag.-hole 1.314% 
BEM-3n-tri.-hole 0.013% BEM-25–6-Lag.-hole 0.013% BEM-16-n-tri.-hole 0.014% 
BEM-5–4-Lag.-hole 9.734% BEM-6n-tri.-hole 0.013%   
BEM-9–4-Lag.-hole 1.285% BEM-9–8-Lag.-hole 0.617%    

Fig. 18. The computational model of Example 2.  

Fig. 19. Von-Mises stress contour around the elliptic hole.  
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• The von-Mises stress results for 17–16 and 33–16 Lagrange hole el-
ements are unreliable when simulating elliptical holes, regardless of 
whether arc-middle or angle-middle node distribution is used. 
Fig. 20 displays the geometric representation of an elliptical hole 
using the 17–16 Lagrange hole element with arc-middle node dis-
tribution. It is obvious that the Runge phenomenon emerges during 
the interpolation of elliptical geometries. So, it can be inferred that 
the interpolation of physical variables also appears Runge phenom-
enon, contributing to the significant simulation errors. 

5.3. Plate with double holes 

The third example considers a 20mm×20 mm square plate with two 
holes of radius 1. Fig. 21 displays the hole positions, the coordinate 
system, and the boundary conditions. Two holes are symmetrically 
distributed on the left and right of the plate center, with their centers 
positioned 1.5 mm away from the plate center. Obviously, the stress 
distributions will be influenced by the interaction between the two 
holes. The right edge of the plate is subjected to uniformly distributed 
traction of 1 MPa, while the left edge is fixed. Due to the difficulty in 
obtaining an exact solution for this problem, a highly refined BEM mesh 
is employed to calculate it. The results are considered as the bench-
marks, and the von-Mises stress contour is depicted in Fig. 22. In the case 
of other BEM meshes, four edges of the square plate are all discretized by 
178 quadratic line elements. The two holes are discretized differently, 
with options including 3, 4, 6, 8, 12, 16-node trigonometric hole ele-
ments and 4, 8, 16, 32 quadratic line elements, respectively, for different 
kinds of meshes. In addition, to show the effect of near-singular in-
tegrals, the model with 16-node trigonometric hole elements is also 
calculated without employing any special treatment for near-singularity 
on the holes. 

Following the calculations, the maximum errors on the left hole of all 
the meshes are documented in the Table 4. In the case of the model using 

Table 2 
The maximum errors on the elliptic hole with angle-middle node distribution.  

Discretization method error Discretization method error Discretization method error 

BEM-10–3-Lag.-hole 18.63% BEM-21–4-Lag.-hole 0.005% BEM-17–8-Lag.-hole 0.003% 
BEM-16–3-Lag.-hole 5.683% BEM-25–4-Lag.-hole 0.002% BEM-25–8-Lag.-hole 0.001% 
BEM-22–3-Lag.-hole 1.963% BEM-4n-tri.-hole 0.001% BEM-8n-tri.-hole < 0.001% 
BEM-28–3-Lag.-hole 0.730% BEM-7–6-Lag.-hole 6.781% BEM-13–12-Lag.-hole 0.004% 
BEM-3n-tri.-hole 0.001% BEM-13–6-Lag.-hole 0.008% BEM-25–12-Lag.-hole 0.753% 
BEM-5–4-Lag.-hole 9.001% BEM-19–6-Lag.-hole < 0.001% BEM-12n-tri.-hole < 0.001% 
BEM-9–4-Lag.-hole 0.819% BEM-25–6-Lag.-hole < 0.001% BEM-17–16-Lag.-hole 2.987% 
BEM-13–4-Lag.-hole 0.118% BEM-6n-tri.-hole 0.001% BEM-33–16-Lag.-hole 46.79% 
BEM-17–4-Lag.-hole 0.021% BEM-9–8-Lag.-hole 0.509% BEM-16n-tri.-hole < 0.001%  

Table 3 
The maximum errors on the elliptic hole with arc-middle node distribution.  

Discretization method error Discretization method error Discretization method error 

BEM-4 quadratic 35.16% BEM-9–8-Lag.-hole 41.66% BEM-17–16-Lag.-hole 92.90% 
BEM-8 quadratic 11.03% BEM-17–8-Lag.-hole 3.908% BEM-33–16-Lag.-hole 84.09% 
BEM-16 quadratic 2.765% BEM-25–8-Lag.-hole 1.186% BEM-16n-tri.-hole 0.016% 
BEM-32 quadratic 0.002% BEM-8n-tri.-hole 0.056%    

Fig. 20. Result of simulating the elliptic hole by 17–16 Lagrange hole element.  

Fig. 21. The computational model of Example 3.  

Fig. 22. Von-Mises stress contour of the plate with two holes.  
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16-node hole elements, the von-Mises stresses on the left holes are 
extracted and plotted in Fig. 23, where the green dotted line with 
triangular points represents the results without special treatment of 
near-singularity on the hole elements, while the blue round points 
represent the results achieved by evaluating near-singular integrals on 
the holes using the proposed element sub-division method. The orange 
line represents the benchmark. Several observations are summarized as 
follows.  

• In terms of maximum errors of von-Mises stress on the left hole, the 
order is as follows: one 16-node hole element < 32 quadratic ele-
ments (64 nodes) < one 12-node hole element < 16 quadratic ele-
ments (32 nodes) < 8 quadratic elements (16 nodes) < one 8-node 
hole element. This suggests that using trigonometric hole elements 
for hole simulation can reduce the number of the nodes in the same 
accuracy requirement.  

• It appears that 3, 4 and 6-node trigonometric hole element are unable 
to accurately capture the variations of stresses over left holes due to 
the absence of higher-order trigonometric bases. It is imperative to 
expand the trigonometric hole elements to 8-node, 12-node, and 16- 
node versions for problems involving closely spaced holes.  

• Since the two holes are in close proximity, near-singular integrals 
over them require special treatment. The results indicate that the 
proposed sub-division method over hole elements can evaluate these 
near-singular integrals accurately. 

5.4. Plate with randomly distributed holes 

The fourth example considers a 100×100 plate with a total of 50 
circular holes and 6 elliptic holes. The positions and sizes of these holes 
are randomly generated, as illustrated in Fig. 24.The radii of the circular 
holes vary from 1 to 7. The minimum distance between any two holes is 
set to 2.0. The upper and right side of the plate is subjected to a uni-
formly distributed traction of 0.2, while the left and lower side is fixed. A 
highly refined BEM mesh is utilized as the benchmark. This mesh con-
sists of 320 quadratic elements along the four edges and 64 quadratic 
elements surrounding each hole. In other meshes, four edges are dis-
cretized by 160 quadratic line elements. The holes are discretized 
differently, with options including 8-node and 16-node trigonometric 
hole elements, as well as 4, 8, 16, or 32 quadratic elements. 

After calculation, von-Mises stresses on the nodes located at all the 
holes are extracted. Both the maximum errors and the average errors are 
evaluated and listed in the Table 5. Meanwhile, von-Mises stress con-
tours for both the refined mesh and the mesh with 16-node hole ele-
ments are displayed in Fig. 25. From Table 5, some conclusions are 
summarized as follows.  

• In terms of the maximum errors, the hierarchy is as follows: 32 
quadratic elements (64 nodes) < 16 quadratic elements (32 nodes) <
one 16-node hole element < 8 quadratic elements (16 nodes) < one 
8-node hole element < 4 quadratic elements (8 nodes). It can be 
concluded that using the trigonometric hole element is better than 
using several quadratic elements, in the premise of the same number 
of nodes on the hole.  

• In this example, the 8-node hole element exhibits a relatively large 
maximum error. It seems that 8-node hole element is unable to 
accurately simulate the circumferential stress variation of some holes 
which are located in close proximity to other holes. Combining this 
observation with the findings in the third example, it can be inferred 
that when two holes are in close proximity, a greater number of 
nodes in the hole element is required to accurately simulate the stress 
concentration effect. 

5.5. Cube with a cylindrical hole 

The fifth example considers a cube with a cylindrical hole, as is 
shown in Fig. 26, to demonstrate the advantages of the tube element. 
The cube has an edge length of 10, and the cylindrical hole has a radius 
of 1. The surface with its outward normal along the positive x-axis is 
subjected to a uniformly distributed traction of 1, while the surface with 
its outward normal along the negative x-axis is fixed. A refined mesh 
with 10,824 8-node quadratic elements is employed. The stress results 
from this mesh are regarded as benchmarks, and the stress contour is 
shown in Fig. 27. Besides, four types of meshes are used, with each of 
four lateral surfaces discretized by 10×10 8-node elements. The cylin-
drical hole is discretized by four different configurations: 32×10, 
16×10, 8 × 10 8-node quadratic elements, as well as 10 24-node tube 
elements (shown in Fig. 12). Four kinds of meshes are shown in Fig. 28. 

Table 4 
The maximum errors on the left hole of all kinds of meshes.  

Discretization method error Discretization method error Discretization method error 

4 quadratic elements 8.236% 8 quadratic elements 2.152% 16 quadratic elements 0.791% 
32 quadratic elements 0.244% 3-node trigonometric 23.107% 4-node trigonometric 14.826% 
6-node trigonometric 7.721% 8-node trigonometric 3.108% 12-node trigonometric 0.444% 
16-node trigonometric 0.070%      

Fig. 23. Von-Mises stresses on the left holes of all kinds of meshes.  

Fig. 24. The computational model of Example 4.  
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The stresses of the nodes on the cylindrical hole are extracted. The 
Mises stress contours over the cylinders of the refined mesh and the 
mesh with 10 24-node tube elements are shown in Fig. 29(a) and (b), 
respectively. And the maximum stress errors among these nodes of four 
kinds of meshes are listed in Table 6. The stress errors along the line x =
0, y = 1 (a generatrix of the cylinder) of four meshes are plotted in 
Fig. 30. From the table and the figure, it can be concluded that 10 24- 
node tube elements, despite having fewer nodes, perform better than 
320 quadratic elements in simulating the cylindrical hole. In the event of 
numerous cylindrical holes within a 3D model, opting for tube elements 
may be a more suitable choice. Meanwhile, it can be found that stress 
errors are large at two ends of the cylindrical hole. In general, more 
elements should be distributed there, which is not done here for 
straightforward comparison (Fig. 31). 

6. Conclusion 

In this paper, the construction methods of “repeated winding” 
Lagrange hole elements, trigonometric hole elements with varying 
number of nodes, and the corresponding tube elements are introduced. 
Meanwhile, the adaptive element sub-division method is expanded to 
both hole elements and tube elements to deal with the near-singularity. 
In the last section of the paper, five numerical examples are imple-
mented by using the proposed elements. The following concluding re-
marks can be drawn.  

• The sub-division processes for the hole elements and the first 
dimension of the tube elements should always be implemented along 
two orientations, both extending from the minimum distance point 
to the maximum distance point.  

• For a - b Lagrange hole element, if b (the number of nodes in the hole 
element) is 3, 4, 6 or 8, greater values of a (the number of nodes in 
the original line element) lead to higher accuracy, no matter for the 
accuracy of geometry or physical quantity. However, when b is 12 or 
16, the accuracy may be compromised due to the Runge phenome-
non of Lagrange interpolation.  

• Trigonometric hole elements perform as well as or better than 
Lagrange hole elements when simulating circular or elliptic holes in 
most cases. 

Table 5 
The maximum errors and the average errors of all the kinds of meshes.  

Discretization method Max. error Average error Discretization method Max. error Average error 

4 quadratic elements 11.24% 1.379% 8 quadratic elements 5.153% 0.434% 
16 quadratic elements 1.564% 0.138% 32 quadratic elements 0.609% 0.040% 
8-node trigonometric 8.637% 0.856% 16-node trigonometric 2.242% 0.093%  

Fig. 25. Von-Mises stress contours of two meshes.  

Fig. 26. The model of the fifth example.  

Fig. 27. The contour plot over the refined mesh.  
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• When two or more holes interfere with each other, low order hole 
elements such as 3, 4 or 6-node element, may not provide sufficient 

accuracy to depict the stress concentration over the holes. For these 
cases, 8, 12, or even 16-node trigonometric hole elements should be 
employed. 

• Compared with using several quadratic elements, using hole ele-
ments or tube elements to simulate the stresses over the holes or 
cylindrical holes can reduce the number of nodes required to meet 
the same accuracy standards.  

• When using the hole elements to simulate elliptic geometries, angle- 
middle node distributions yield better results than arc-middle node 
distributions, especially for Lagrange hole elements. 

The hole elements and tube elements are the base of the ring 
element, disk element and sphere element, of which the node distribu-
tions, singular integrals, applicability and so on can be further studied in 
the future. 
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Fig. 28. Four kinds of meshes for cube with cylindrical hole.  

Fig. 29. Von-Mises stress contours over the cylinder.  

Table 6 
The maximum errors of all the kinds of meshes in example 5.  

Discretization Total number of nodes in model Max. error 

10 24-node tube elements 2144 0.283% 
32×10 quadratic elements 2952 0.310% 
16×10 quadratic elements 2280 1.147% 
8 × 10 quadratic elements 2064 3.663%  

Fig. 30. Von-Mises stress errors along the line x = 0, y = 1 of four meshes.  
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Appendix A. The shape functions and diagrams of trigonometric hole elements

Fig. 31. The diagrams of 4, 6, 8, 12, 16-node trigonometric hole element.  
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