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A B S T R A C T   

In this paper, the large tensile deformation and Mode-I crack propagation of hydrogel are 
effectively simulated by the bond-associated (BA) non-ordinary state-based (NOSB) peridynamics 
(PD). Based on the nonlocal theory and meshless characteristic, the fracture involving large 
deformation of hydrogel is solved with simple implementations. In the analysis, the Gent model is 
first introduced into NOSB PD as the constitutive model to describe the stress-stretch response of 
hydrogel under a large tensile stretch. The bond-associated scheme is applied to overcome zero- 
energy modes and numerical oscillation in conventional NOSB PD. Effective stretch criterion is 
applied to capture the crack propagation. With the explicit dynamic solver, the tensile defor-
mation of a hydrogel sheet with a hole and the crack propagation process of a hydrogel sheet with 
a pre-notch under pure shear are analyzed. The predicted stress-stretch responses are in good 
agreement with the experimental observations, which demonstrates the effectiveness and effi-
ciency of the developed PD approach for predicting large deformation and crack propagation of 
hydrogel.   

1. Introduction 

Hydrogel is a type of network of one or more polymers suspended in water [1]. As a rubber-like material, hydrogel can possess 
superb mechanical properties like ultra-high strength, resilience and toughness. The major component water makes hydrogel to 
possess excellent biocompatibility which can be used in drug delivery and wound dressing [2]. Besides, by introducing ions, hydrogel 
can also conduct electronic signal to be used for extensile ionotronic devices [3]. With these advantages, hydrogel can be widely used 
as a smart soft matter in biological medicine, soft robot and other new fields of smart materials and structures [4–6]. 

The excellent mechanical properties of hydrogel have attracted the attention of researchers in recent years. Many experimental 
works were carried out to study the large deformation and crack propagation characters of hydrogel [7–9]. However, numerical studies 
are few, because the constitutive model of hydrogel cannot be properly established due to the complicated material composition. Many 
models of rubber-type of materials have been proposed. Descriptions of phenomenological rubber elasticity in classical continuum 
mechanics is based on the assumptions of a homogeneous, isotropic, hyperelastic material for which the strain energy density is 
expressed as power series in terms of three invariants (I1, I2 and I3) of the right Cauchy-Green strain tensor. Neo-Hookean model [10] 
is represented by the first term of the series linear in I1. It can capture the stress-stretch response at low stretches in uniaxial tension but 
fails to predict the response in high stretch regimes. Mooney-Rivlin model [11,12] is constituted by the first and second terms linear in 

* Corresponding authors. 
E-mail addresses: yangy33@sustech.edu.cn (Y. Yang), liuyj3@sustech.edu.cn (Y. Liu).  

Contents lists available at ScienceDirect 

Engineering Fracture Mechanics 

journal homepage: www.elsevier.com/locate/engfracmech 

https://doi.org/10.1016/j.engfracmech.2023.109261 
Received 12 October 2022; Received in revised form 7 March 2023; Accepted 8 April 2023   

mailto:yangy33@sustech.edu.cn
mailto:liuyj3@sustech.edu.cn
www.sciencedirect.com/science/journal/00137944
https://www.elsevier.com/locate/engfracmech
https://doi.org/10.1016/j.engfracmech.2023.109261
https://doi.org/10.1016/j.engfracmech.2023.109261
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engfracmech.2023.109261&domain=pdf
https://doi.org/10.1016/j.engfracmech.2023.109261


Engineering Fracture Mechanics 284 (2023) 109261

2

I1 and I2. It can predict the uniaxial tensile behavior for moderate stretches. However, the same parameters show much stiffer response 
for other states of loading such as biaxial tension. Many other models use the combination of higher order invariants to achieve large- 
stretch response. Yeoh model [13] involves a third-degree polynomial in I1. Gent model [14] uses a logarithmic function of I1 which in 
turn can be written in an infinite series containing all degrees of polynomial of I1. These models perform well in predicting the 
deformation response for moderate to large stretches. 

There also exists stretch based and physically based models. Ogden model [15] with many adjustable material parameters that need 
to be calibrated against experimental data. The difficulty of using these phenomenological models involves an appropriate calibration 
of the material parameters which bear no physical meaning and their choice requires a caution regarding the satisfaction of Drucker 
stability postulate. Arruda-Boyce eight chain model [16] and Anand model [17] are physically based models. The advantage of such 
models is that they usually contain few constitutive parameters and that such parameters are directly connected to the microscopic 
properties of the material. On the other hand, the main disadvantage is the complexity of such models for analysis and simulation, and 
the fact that the stress–strain relationship is usually not expressed in an explicit closed form. By comparison, the Gent model not only is 
based on a simple mathematical framework, but also can be applied over the entire range of strains in hydrogel. Thus, the Gent model 
has been chosen for the work reported in this paper. In the literature, Li et al. [18] used Gent model for elastic part of the material free 
energy and captured the deformation and instability in dielectric elastomer composites. Li et al. [19] captured large swelling ratios of 
polyelectrolyte gels based on Gent model. Wang et al. [20] employed Gent model to analyze large deformation of spherical hydrogel. 

Rubber materials show progressive damage and rupture with the increase of loading. This is also the case for hydrogel. Wu et al. 
employed Arruda–Boyce and model into phase field analysis and captured complex crack patterns [21]. Zhang et al. [22] analyzed 
dynamic fracture of hyper-elastic materials based on Neo-Hookean models. Peng et al. used Neo-Hookean and Mooney-Rivlin models 
in smoothed finite element method with phase field model [23], in simulating the Mode I and Mode II cracks. Besides these reported 
results, simulations of cracks in rubber-like materials are very few in the literature. 

Peridynamics (PD) has been developed rapidly to model the initiation and propagation of cracks in various materials and struc-
tures, since the first work published in 2000 [24]. PD based on a nonlocal theory, uses integro-differential equations and thereby 
removes the smoothness requirement of the field variables. Thus, it has inherently advantages in modelling crack initiation and 
propagation. In PD modeling, the domain is discretized into material points and each point can form a bond to interact with other 
points within a certain horizon. Failure description means simply removing the interaction between two material points, which makes 
it convenient to describe complex cracks, especially in 3D cases. The peridynamic differential operators [25] have been demonstrated 
owing advantages in capturing crack bifurcation [26,27]. Moreover, PD permits multi-scale modeling and can be coupled with mo-
lecular dynamics [28], finite element method [29,30], boundary element method [31,32], smooth particle hydrodynamics method 
[33] and others [34]. 

Bond-based PD treats the interaction between the two material points as a spring. It can capture the complex crack path and 
branches in brittle material [35]. However, bond-based PD has a major drawback: the Poisson’s ratio is fixed at 1/3 for plane stress 
cases and 1/4 for plane strain and 3D cases. To solve this problem, state-based PD has been developed. Ordinary state-based PD allows 
the volume change of a horizon allowing different Poisson’s ratio. Xu et al. [36] modeled various hyperplastic models in ordinary state- 
based PD and presented satisfactory simulation results. Non-ordinary state-based (NOSB) PD builds a bridge to conventional consti-
tutive model by the expression of deformation gradient in PD form [37]. Conventional NOSB PD is known to have zero-energy mode 
which can cause significant numerical oscillation, due to a non-unique mapping between the deformation states and force states. To 
overcome zero-energy mode, many modifications have been proposed, such as introducing a fictitious spring force to a bond, using the 
average displacement over a horizon as a correction [38], and a higher order approximation of deformation gradient [39]. Among the 
solutions, bond-associated (BA) non-ordinary state-based (NOSB) PD is one of the most promising one, since it uses the points within a 
bond proximity to calculate its deformation gradient, avoiding the zero-energy mode inherently [40–42]. Based on BA NOSB PD, 
Behera et al. [43] and Roy et al. [44] analyzed the finite elastic deformation and rupture in Neo-Hookean materials as well as polymers 
predicted by Anand and Talamini-Mao-Anand (TMA) models, respectively. The numerical results are in good agreement with the 
experimental data. Ref. [43] and [44] both applied the weak form of peridynamics which is presented by Erdogan et al [45]. Weak 
form of BA NOSB PD was also demonstrated accuracy with non-uniform discretization [46]. 

In this paper, the Gent model is applied to predict the response of hydrogel using the BA NOSB PD approach. The material pa-
rameters were calibrated through the pure shear test of one type of hydrogel [47]. Effective stretch criterion was applied to predict the 
crack propagation. Based on an explicit dynamic equation solver, the large deformation of a rectangular hydrogel sheet with a hole 
under tension is computed. The crack propagation of a pre-notch hydrogel sheet under pure shear is also simulated. The obtained 
results clearly demonstrate the effectiveness and efficiency of the developed BA NOSB PD approach in simulating the mechanical 
responses of hydrogel. 

2. PD framework 

Peridynamics is based on nonlocal interactions. A material point, represented by initial position vector x,can interact with other 
material points which are within a certain domain (horizon) denoted by Hx. Usually, Hx is characterized by a circular (2D) or spherical 
(3D) region with a radius δ. Any point x’ in Hx is called a neighborhood point of x. The bond vector is defined as ξ = x’ − x. The 
equation of motion for point x can be written as: 

ρ(x)ü(x, t) =
∫

Hx

(t − t’) dVx’ + b(x, t) (1) 
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where ρ is the mass density, u the displacement vector, ü the acceleration vector, b the body force density vector. t = t(x, t) and t’ =

t(x’, t) are the pair-wise force density vectors, representing the interaction between the material points. The force density vector takes 
the form of 

t(x, t) = γ(s, t)wP(x)K− 1(x)ξ (2)  

where P is the first Piola-Kirchhoff stress tensor expressed as 

P(F) = ∂Ψ(F)
∂F

(3)  

with Ψ being the strain energy density. While, the deformation gradient F represents a connection between PD with the traditional 
local theory. The conventional deformation gradient F in PD expression is point associated and expressed as: 

F(x) =
∫

Hx

w[(y’ − y) ⊗ (x’ − x)]dVx’ K− 1(x) (4)  

where ⊗ denotes the dyadic product of two vectors, y is the deformed position vector, w is a scalar valued weight function evaluating 
the influence of neighborhood points according to their distance |ξ|. Different schemes of weight function are listed and analyzed in 
[48]. In this study, the uniform weight function is used, that is, the value of w is one. K is the shape tensor defined as 

K(x) =
∫

Hx

w[(x’ − x) ⊗ (x’ − x)]dVx’ (5) 

Parameter s is the stretch of a bond defined as 

s =
|y’ − y|
|x’ − x|

(6) 

γ is a history-dependent function to include damage description in the material response and can be define as 

γ(s, t) =
{

1, if s(t’)〈sc for all 0⩽t’⩽t
0, otherwise (7)  

where t is time, sc is the critical stretch. When the stretch of a bond s exceeds its critical stretch sc, failure occurs. 

3. Bond-associated scheme 

Bond-associated scheme is one of the methods to overcome zero-energy modes. As is claimed in [42], the zero-energy modes and 
the non-unique mapping from deformation states to force states probably root in the point-associated expression of deformation 
gradient in conventional NOSB PD. As an improvement, bond-associated deformation gradient was proposed, which has been proved 
effective in accuracy and removing numerical oscillation. 

As is shown in Fig. 1, for a bond vector ξ from x to x’, its bond-associated deformation gradient tensor is computed by considering 
the intersection region of Hx and Hx’ . 

The shape tensor in BA NOSB PD is rewritten as 

Kξ(x) =
∫

Hx∩Hx’

w[(x’’ − x) ⊗ (x’’ − x)]dVx’’ (8) 

Its corresponding bond-associated deformation gradient tensor F is expressed as 

Fig. 1. Bond-associated scheme diagram.  
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Fξ(x) =
{∫

Hx∩Hx’

w[(y’’ − y) ⊗ (x’’ − x)]dVx’’

}

K− 1
ξ (9) 

The PD strain energy of a bond at material point x is contributed by all the bonds belonging to the domain of intersections of point x 
and x’’: 

δWPD
ξ (x) =

∫

Hx∩Hx’

ϕ(x, x’’)
[(

t’’
ξ − tξ

)T δ(y’’ − y)
]
dVx’’ (10)  

Here, ϕ(x, x’’) is a volume ratio proposed in Ref. [49], allowing non-uniform grid discretization and horizon size, and can be defined as 

ϕ(x, x’) =

∫

Hx’
dVx’’

∫

Hx’
dVx’’ +

∫

Hx
dVx’’

(11) 

Noted that ϕ(x,x’)+ ϕ(x’,x) = 1. For a uniform grid discretization and an identical domain of interaction at each material point, 
ϕ(x,x’) = ϕ(x’,x) = 1/2. 

In classical continuum mechanics (CM), the variation of strain energy density takes the form of 

δWCM
ξ (x) = tr

(
PT

ξ δFξ

)
(12) 

By substituting of bond-associate deformation gradient tensor of PD, Eq. (12) can be expressed as 

δWCM
ξ (x) =

∫

Hx∩Hx’

[
wPξK− 1

ξ (x’’ − x)
]T

δ(y’’ − y)dVx’’ (13) 

As is claimed in [41] and [49], there is a relation between Eq. (10) and Eq. (13): 

δWPD
ξ (x) = ϕξ(x, x’)δWCM

ξ (x) (14)  

where ϕξ is volume fraction defined as 

ϕξ(x, x’) =

∫

Hx∩Hx’
dVx’’

∫

Hx
dVx’’

(15) 

Substituting Eqs. (10) and (13) into Eq. (14) leads to 
∫

Hx∩Hx’

{
ϕ(x, x’’)

[
tξ(x) − tξ(x’’)

]T
− ϕξ(x, x’)

[
wPξK− 1

ξ (x’’ − x)
]T}

δ(y’’ − y)dVx’’ = 0 (16) 

Since Eq. (16) is valid for arbitrary variation of y’’ − y, this leads to 

tξ(x) − tξ(x’’) =
ϕξ(x, x’)

ϕ(x, x’’)
wPξK− 1

ξ (x’’ − x) (17) 

Similarly, consider the strain energy at material point x’ results in 

tξ(x’) − tξ(x’’) =
ϕξ(x’, x)
ϕ(x’, x’’)

wP’
ξK’− 1

ξ (x’’ − x’) (18) 

Let x’’ = x’ in Eq. (17) and x’’ = x in Eq. (18) lead to 

tξ(x) − tξ(x’) =
ϕξ(x, x’)

ϕ(x, x’)
wPξK− 1

ξ (x’ − x) (19) 

and 

tξ(x’) − tξ(x) =
ϕξ(x’, x)
ϕ(x’, x)

wP’
ξK’− 1

ξ (x − x’) (20) 

Combining Eqs. (19) and (20) results in 

tξ(x) − tξ(x’) =
1
2

[ϕξ(x, x’)

ϕ(x, x’)
wPξK− 1

ξ (x’ − x) −
ϕξ(x’, x)
ϕ(x’, x)

wP’
ξK’− 1

ξ (x − x’)

]

(21) 

which leads to the final expression of force density in bond-associated scheme as: 

tξ(x) =
1
2

ϕξ(x, x’)

ϕ(x, x’)
wPξK− 1

ξ (x’ − x) (22) 
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Along with the history-dependent function γ, expression can be written as: 

tξ(x) =
1
2

γ(s, t)
ϕξ(x, x’)

ϕ(x, x’)
wPξK− 1

ξ (x’ − x) (23)  

4. Constitutive relation for Gent model 

Gent model can capture the stress-stretch response of hydrogel under large deformation using an expression, which is the first 
constitutive model introduced in the BA NOSB PD. In Gent model, the strain energy density can be expressed as: 

Ψ = −
μJm

2
ln
(

1 −
I1 − 3

Jm

)

+
1
D

(
J2 − 1

2
− lnJ

)

(24)  

here Ψ is the strain energy density, μ is the shear modulus, Jm represents tensile limit. I1 is the normalized first invariant of right 
Cauchy-Green strain tensor which can be expressed as I1 = trCJ− 2/3 with C = FTF and J = detF. The second term on the right-hand 
side is added to represent the effect of volume change. For material with slight compressibility, D can be set to a relatively small value. 

By derivative of Ψ with respect to F gives 

∂Ψ
∂F

=
μ
2

Jm

Jm − trCJ − 2/3 + 3

(
∂trC
∂F

J− 2/3 −
2
3

trCJ − 5/3 ∂J
∂F

)

+
1
D

(

J
∂J
∂F

−
1
J

∂J
∂F

)

(25) 

and substituting of ∂trC/∂F = 2F and ∂J/∂F = JF− T into Eq. (25), the first Piola-Kirchhoff stress tensor P can be evaluated as 

P =
∂Ψ
∂F

=
μJ− 2/3Jm

Jm − trCJ− 2/3 + 3

(

F −
1
3

trCF− T
)

+
1
D
(
J2 − 1

)
F− T (26) 

In the following section, we focus on the plane stress case. Under plane stress assumption, conditions can be equivalently imposed 
on the second Piola-Kirchhoff stress tensor S: S13 = S23 = S33 = 0. Then, the second Piola-Kirchhoff stress tensor S can be obtained 
according to the first Piola-Kirchhoff stress P as 

S = F− 1P =
μJ− 2/3Jm

Jm − trCJ − 2/3 + 3

(

I −
1
3

trCF− 1F− T
)

+
1
D
(
J2 − 1

)
F− 1F− T (27) 

Since C− 1 = F− 1F− T, 

S = F− 1P =
μJ− 2/3Jm

Jm − trCJ − 2/3 + 3

(

I −
1
3

trCC− 1
)

+
1
D
(
J2 − 1

)
C− 1 (28) 

Enforcing S13 = S23 = 0 results in (C− 1)13 = (C− 1)23 = 0 and (C− 1)33 = 1
C33

. 
Enforcing S33 = 0 leads to an expression as 

μJ− 2/3Jm

Jm − trCJ − 2/3 + 3

(

C33 −
1
3

trC
)

+
1
D
(
J2 − 1

)
= 0 (29) 

Substitute Eq. (29) into Eq. (28) gives 

S =
μJ− 2/3Jm

Jm − trCJ− 2/3 + 3
(
I − C33C− 1) (30) 

Then, the first Piola-Kirchoff stress tensor can be recast into 

P = FS =
μJ− 2/3Jm

Jm − trCJ− 2/3 + 3
(
F − C33F− T) (31) 

For numerical implementation, trC and J are expressed as follows, respectively 

trC = trC
∼

+ C33

J =
̅̅̅̅̅̅̅
C33

√
J
∼

,
(32)  

in which, trC = C11 + C22 and J =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

C11C22 − C2
12

√

. The superscript “~” represents the tensor for 2D case. 
Then, C33 can be extracted by solving Eqs. (29) which is derived by substituting Eq. (32) into (29) 

μJ
∼− 2/3

JmC− 1/3
33

Jm −
(

trC
∼

+ C33

)

J
∼− 2/3

C− 1/3
33 + 3

(
2
3
C33 −

1
3

trC
∼
)

+
1
D
(
C33J2 − 1

)
= 0 (33) 

Finally, the first Piola-Kirchhoff stress tensor P can be obtained as 
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P =
μJ
∼− 2/3

JmC− 1/3
33

Jm −
(

trC
∼

+ C33

)

J
∼− 2/3

C− 1/3
33 + 3

(
F
∼

− C33F
∼− T)

(34)  

5. Determination of material parameters 

Pure shear test is one of the commonly used methods to characterize the material parameters of hydrogel. As shown in Fig. 2, the 
top and bottom ends of a rectangular sheet hydrogel was clamped. The effective dimension is 10 mm by 70 mm and the thickness is 3 
mm. It was elongated slowly in the y direction. The top clamp was connected to a force tensor to output the displacements and its 
corresponding nominal stresses. The detailed experiment conditions are described in [47]. 

Parameters λx, λy and λz are defined to be the ratio of the current length to the initial length of the hydrogel along x, y and z direction 
respectively. Due to the assumption of incompressibility, it is assumed λx = 1, λy = λ and λz = 1/λ. In this specific loading condition, 
the strain energy density can be written as 

Ψ = −
μJm

2
ln

(

1 −
λ2

x + λ2
y + λ2

z − 3
Jm

)

= −
μJm

2
ln
(

Jm − λ2 − λ− 2 − 2
Jm

)

(35) 

Nominal stress measured by the sensor can be expressed as 

Fig. 2. Illustration of pure shear test.  

Fig. 3. Stress-stretch response of pure shear test given by experiment and fitted data.  
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s =
∂Ψ
∂λy

=
μJm(λ − λ− 3)

Jm − λ2 − λ− 2 + 2
(36) 

The values of μ and Jm can be evaluated by fitting the Eq. (36) to the experimental data. Fig. 3 shows the experimental data and the 
fitted line with the least square method. The resulted μ and Jm are 4.55 kPa and 162.6, respectively. 

6. Numerical results 

In the following sections, three numerical examples using the developed PD approach are presented. For convenience, in all cases λ 
represents the stretch ratio along the loading direction unless otherwise specified. 

6.1. Tension test of a hydrogel sheet with a hole 

A rectangular hydrogel sheet with a center hole having a diameter of 20 mm is studied. The width and length of the sheet are 80 mm 
and 160 mm, respectively, as shown in Fig. 4. Symmetric tensile displacement is applied on the top and bottom edges. The left and right 

Fig. 4. A rectangular hydrogel sheet with a hole in the center.  
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Fig. 5. Contour plots of horizontal displacement under λ = 1.5, 1.75 and 2.0. The unit of the contour is millimeter.  

Table 1 
The comparison of maximum horizontal displacements between present results and FEM.  

λ Umax_FEA(mm) δ ¼ 2.515dx δ = 3.015dx δ ¼ 3.515dx   

Umax_PD (mm) error (%) Umax_PD (mm) error (%) Umax_PD(mm) error(%)  

1.50  8.62  8.48  1.62 8.43  2.20 8.40  2.60  
1.75  11.10  10.94  1.44 10.87  2.07 10.85  2.25  
2.00  13.01  12.81  1.54 12.75  2.00 12.73  2.15  

Fig. 6. The comparison of nominal stresses of pure shear test between experiment, fitted data and BA NOSB PD prediction.  
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edges are free of loading. The sample is treated as plane stress case. In PD modeling, the domain is discretized into 80x160 material 
points uniformly which leads to the spatial discretization size dx of 1 mm and the points within the hole are removed. The dis-
placements applied on the top and bottom layer of points increased gradually and then maintained at a fixed value to obtain a static 
solution. Simulations were performed with the horizon size δ = 2.515dx, 3.015dx and 3.515dx. 

Fig. 5 shows the horizontal displacement under 3.015dx at λ = 1.5, 1.75 and 2.0. The maximum horizontal displacement umax 

locates at the midpoint on the left edge, i.e., the red point in Fig. 4. FEA was also performed with the same material parameters and 
loading conditions using ANSYS with 2014 quadratic quadrilateral elements. The relative difference is defined as 

error =

⃒
⃒
⃒
⃒
umax FEA − umax PD

umax FEA

⃒
⃒
⃒
⃒× 100% (37) 

Table 1 shows the comparison of stretch ratio between present method and FEM. The differences of stretch ratio for different 
horizon size are all within 3% which implies the very good agreement of present method with FEA predictions. 

For δ smaller than 2.515dx, there are bit mutual material points for a bond, resulting in less accuracy in evaluating deformation 
gradient. For δ larger 3.515dx, too many neighborhood points would result in significant computational cost. It can also be observed 
that the error increased as δ increased. One of the reasons is surface effect [50]: the stiffness of points on the edge or at the corner varies 
since they do not have enough neighborhood as the point in the bulk. Moreover, Daniele et al. [51] pointed out that for failure 
prediction, δ should be lager enough to overcome the dependency of crack path on the orientation of grids, and suggested δ should be 
larger than 3dx [51]. Thus, δ is set to 3.015dx in the following samples. 

6.2. Validation using a hydrogel sheet 

The hydrogel sheet model shown in Fig. 2 is studied in this section. The bottom edge is fixed. The top edge was applied with a small 
velocity, moving upward gradually, until λ = 5.125. The nominal stress was calculated during the loading process, as shown in Fig. 6. 
The predicted stress is less than the experiment data, with the error within 10% in general. Except surface effect, the primary cause of 
the error is from the determination of material parameters: λx is assumed to be 1.0. While horizontal shrink would certainly occur, 
leading to less nominal stress detected. To overcome this deviation originated form data fitting, the fitted value can be set a little larger 
than experiment data deliberately. The vertical displacement under λ = 5.125 is shown in Fig. 7. The corresponding deformation 
profile is in good agreement with the experimental data shown in Fig. 7. 

Fig. 7. Vertical displacement contour (left) and experiment photo (right) at λ = 5.125. The unit of the contour is millimeter.  

Fig. 8. Pure shear of a hydrogel sheet with a pre-notch.  
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Fig. 9. Flowchart of the failure prediction.  
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6.3. Crack propagation analysis of a hydrogel sheet with a pre-notch under pure shear 

A 20-millimeter pre-notch was introduced on the middle of right edge, as shown in Fig. 8. The domain is divided into 210x30 
material points. The bottom edge is fixed. Displacement is applied on the top edge. For pre-notch modelling, bonds passing through 
pre-notch are removed. 

Fig. 10. The comparison of nominal stresses of a hydrogel sheet with a pre-notch between experiment and BA NOSB PD prediction.  

Fig. 11. PD prediction of the deformation and crack propagation of hydrogel sample.  
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There exist various criteria for bond breakage. Many criteria are based on fracture energy. An in-depth study of the relation be-
tween critical stretch and energy release rate was performed by Yu and Li [52]. Stress tensor-based criteria can also govern the crack 
propagation [53]. Crack tip of hyperplastic material can be regarded as a circular arc in Mode-I crack and material near the crack tip is 
under uniaxial tension [54]. Therefore, the failure at the crack tip of hyperplastic material is assumed to occurred when bond stretch s 
exceeds sc, which is the effective stretch criterion for hyperplastic material. The value of sc should be calibrated through the simulation 
or the experiments [43]. According to the calibration and experimental data, the maximum bond stretch is around 7.2 when failure 
occurred. Thus sc is set to 7.2 in this simulation. The flowchart of the present method is presented in Fig. 9. 

The nominal stress predicted by using BA NOSB PD and experiment data are plotted in Fig. 10. The progressive damages of the 
hydrogel sheet are plotted in Fig. 11, where the damage of a material point dmg(x) is defined as 

dmg(x) = 1 −

∫

Hx
γ
(
s(ξ), t

)
dVx’

∫

Hx
dVx’

(38) 

When the loading stretch ratio is larger than 3, the number of bond breakage surged indicating the progressive failure propagation. 
In this state, the propagated crack released much elastic energy and the released energy accelerated crack propagation. The nominal 
stress before progressive failure is 10.05 kPa from BA NOSB PD prediction and 10.25 kPa from experiment. The error is 2%. The source 
of the error is similar as discussed in the previous part. The results illustrate the present model can be applied to analyze the stable 
crack propagation and is valid to predict the start of the progressive crack propagation of hydrogel. 

7. Conclusions 

In this paper, a BA NOSB PD approach is presented to predict the large deformation and Mode I crack propagation of hydrogel. The 
Gent model is employed for the constitutive relation under large stretch of the hydrogel. The kinetic equation is based on bond- 
associated deformation gradient to avoid zero-energy modes. Verification and validation of the approach and model are performed 
through comparisons of the present results with those of the FEA prediction, as well as the data from experiments in the absence of 
failure. Adopting the effective stretch as the failure criterion, crack propagation analysis of hydrogel sheets with a pre-notch is 
simulated. The numerical results show a very good agreement with the experimental results. The developed BA NOSB PD approach and 
model are found to be effective and efficient in modeling the large deformation and fracture of hydrogel. 
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