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Abstract: A new approach to accelerating the evaluation of monopole and dipole source integrals via
the fast multipole method (FMM) in the time domain for general three-dimensional (3-D) aeroacoustic
problems is presented in this paper. In this approach, the aeroacoustic field is predicted via a hybrid
method that uses computational fluid dynamics (CFD) for near-field flow field calculations and
the Ffowcs Williams–Hawkings (FW-H) acoustic analogy for far-field sound field predictions. The
evaluation of the surface integrals of the monopole and dipole source terms appearing in the FW-H
formulation is accelerated by a 3-D FMM to reduce computational cost. The proposed method is
referred to as Fast FW-H in this work. The performance and efficiency of the proposed methodology
are demonstrated using several examples. First, aeroacoustic predictions for the cases of a stationary
acoustic monopole, moving acoustic monopole and stationary acoustic dipole in a uniform flow are
studied, generally showing good agreement with the analytical solutions. Second, the sound field
radiating from a flow passing a finite-length circular cylinder and the propeller of an unmanned
aerial vehicle (UAV) during forward flight are studied, and the computed results obtained via the
FW-H and Fast FW-H methods in the time domain with a stationary, permeable surface are compared.
The overall computational efficiency of the sound field solutions obtained via the Fast FW-H method
is found to be approximately two times faster than the computational efficiency of the original FW-H
method, indicating that this proposed approach can be an accurate and efficient computational tool
for modelling far-field aeroacoustic problems.
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1. Introduction

The development of aeroacoustic noise prediction tools for analysing the aeroacoustic
characteristics of a source, a propagation path and the region of a far-field sound receiver
is of great interest. The demand for a low level of aeroacoustic noise in the initial design
of aircraft, propellers, high-speed trains, cars and fans should be considered since noise
regulations have become more stringent [1]. Therefore, more robust, accurate and efficient
computational aeroacoustic methods are needed to achieve the desired noise reduction
without causing a significant loss of performance. The far-field sound receiver region is
often of interest in evaluating the impact of environmental noise. With the increasing
power of computers, using numerical methods to investigate the sound field is becoming
a popular approach. Compared with the use of a direct calculation method for an aeroa-
coustic prediction, a hybrid calculation method uses less storage space and less calculation
time [2]. Consequently, hybrid aeroacoustic calculation methods are currently widely used;
namely, the computational fluid dynamics (CFD) approach is applied to capture the sound
generation and propagation of a fluid flow in the near field, while in the far field, the
acoustic analogy theory is adopted to compute the sound field distribution. Additionally,
as calculation models become increasingly complex, larger storage spaces are required
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for hybrid calculation methods, resulting in longer calculation times despite the rapidly
increasing capacity of computers. Therefore, solving the storage space difficulty with using
computational aeroacoustic models and improving computing efficiency are also urgent
problems that need to be addressed.

The sound generated by a fluid flow can be described using the basic equations of fluid
mechanics, namely, the Navier–Stokes equations. In 1952, Lighthill [3] rearranged the flow
continuity and momentum equations and took the fluctuating density as an independent
variable to obtain an acoustic analogy; this marked the birth of aeroacoustics. Under
conditions in which the source terms can be obtained independently, such as via CFD
methods, Lighthill’s acoustic analogy can describe the sound generated by an unsteady
flow in an unbounded domain. Subsequently, to eliminate the influence of rigid boundaries
on aeroacoustics, Curle [4] extended Lighthill’s acoustic analogy to Curle’s equation in 1955
by using Kirchhoff’s method, which acts as dipole source terms contributed by the loads
of a rigid boundary surface. Considering the influence of arbitrary moving boundaries
on aeroacoustics, Ffowcs Williams and Hawkings [5] further extended Curle’s equation in
1969 by using the generalised function method to obtain the well-known Ffowcs Williams–
Hawkings (FW-H) acoustic analogy equation. The FW-H equation is an inhomogeneous
wave equation, and the right-hand side of the FW-H equation includes the original noise
terms, comprising monopole, dipole and quadrupole terms.

Since the FW-H equation was proposed, most of the research studies in engineering
applications have focused on means of calculating the sound generated by various sound
sources through an acoustic analogy method. However, in many cases, calculating a
quadrupole sound source in relation to fluid nonlinearity is difficult. Therefore, some
researchers have attempted to find new ways to calculate the total aerodynamic noise,
including nonlinear fluid effects. In 1979, Hawkings [6] established an aeroacoustic model of
a high-speed open rotor by using Kirchhoff’s integral formulation and obtained satisfactory
results to solve the generation of sound in non-uniform flow. In 1988, Farassat and Myers [7]
extended Kirchhoff’s formulation to a more general case that could be used to calculate
the sound field generated by any moving flow medium. However, the application of the
FW-H method was greatly limited due to its requirement of fluid impenetrability on the
integral surface [8]. In 1997, Brentner et al. [9,10] focused on the quadrupole source terms in
the FW-H equation and converted the volume component of the quadrupole source terms
into a surface integral form, thereby forming a formulation Q1A method for solving the
quadrupole source contribution. In 1997, Di Francescantonio [11] combined Kirchhoff’s
integral formulation and the FW-H equation to deduce the K-FWH formulation, which
breaks the impenetrability limit of the integral surface. This development enabled the
FW-H equation to be widely applied in the numerical prediction of aeroacoustic problems.

At present, the retarded time method [12,13] is mainly used to solve actual aeroacoustic
problems. This method requires a numerical solution for the retarded time terms, which
form a transcendental equation. In addition, the retarded time method needs to store a large
amount of aerodynamic data for a period of time and to conduct numerical interpolation,
so this method is very inefficient for solving large-scale problems, such as those with a large
number of cells on the integral surface and a large number of receiver points. Therefore,
to improve the calculation efficiency, for the FW-H equation derived by Farassat [13],
the retarded time terms of the Farassat 1 and Farassat 1A equations were solved in 2003
by Casalino [14], who proposed an advanced time approach for FW-H acoustic analogy
predictions. This approach further improved the aeroacoustic calculation efficiency.

The above-mentioned solution method for solving the FW-H equation is in the time
domain, referred to as the “time-domain method”. The topic of helicopter noise and open
rotor noise has been studied extensively using such methods [1]. To avoid the Doppler
singularity when the source velocity is supersonic and to improve the computational ef-
ficiency in the time-domain method, Gennaretti et al. [15] adopted a frequency response
function to predict the tonal noise emitted by rotors in arbitrary steady motion and de-
rived a frequency domain method of predicting the monopole and dipole terms of the
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harmonic noise generated by the open rotors, hereinafter referred to as the “frequency-
domain method”. Tang et al. [16] used the free-space frequency-domain Green’s function to
obtain a frequency-domain solution for the FW-H equation which can solve the monopole,
dipole and quadrupole terms of the FW-H equation for problems involving radiation from
a penetrating sound source. In addition, the frequency-domain method can avoid the
retarded time terms and avoid the interpolation in the time-domain method due to the
integral calculation on the surface of the sound source, further improving the solution
efficiency [17–21]. Some other recent contributions in the research on computational aeroa-
coustics using FW-H integrals, CFD, boundary elements, finite volume methods and/or
experimental validations can be found in Refs. [22–27].

With the increases in the sizes of the models used in the analysis of aeroacoustic
problems, such as the increase in the length scale of the sound field and the increase in
the number of sound receiver points, the above-mentioned traditional numerical methods
(either the time-domain method or frequency-domain method) have difficulty meeting the
requirements of large-scale numerical simulations with respect to calculation time, storage
capacity and lower computational costs. Therefore, studies of other methods, such as the
fast multipole method (FMM), to accelerate aeroacoustic calculation, reduce the prediction
time and improve the calculation accuracy are urgently needed for solving large-scale
aeroacoustic models. The boundary element method (BEM) has attracted the attention of
researchers in recent years.

The FMM was first proposed by Greengard and Rokhlin [28,29] to accelerate the
Laplace equation solutions, promising to reduce the computation cost in a FMM-accelerated
BEM from O(N2) to O(N) (with N being the number of unknowns). The key idea behind
the FMM is a multipole expansion of the kernel function in which the connection between
the receiver point and the source point is separated. Many research works have been
published since then to improve and extend the applicability of the FMM [30]. The FMM
was later extended to the solutions of the traditional acoustic Helmholtz equation [31–34].
A comprehensive review on the FMM was provided by Nishimura [35] and Liu [33,34,36].
Subsequently, the FMM was also applied to the study of fast aeroacoustic algorithms in the
frequency domain. Cheng et al. [37] used a three-dimensional (3-D) broadband adaptive
FMM to calculate high-frequency cases and used the partial wave expansion formulation of
rotating coaxial translation to calculate low-frequency cases, and this approach effectively
accelerated the sound field calculation in the wide frequency domain. Wolf et al. [38,39]
adopted a hybrid calculation method in which the near-field aerodynamic information was
obtained via CFD and the far-field sound field was calculated using the accelerated FW-H
equation. The results showed that the sound field solution obtained via the accelerated
FW-H equation is more efficient than the solution obtained via the conventional FW-H
equation. Wolf et al. [40] numerically predicted the convective effect of quadrupole noise
caused by the airflow of an NACA0012 aerofoil. The results showed that the aerofoil’s
convective effects appeared for all frequencies, and the quadrupole source had a more
pronounced effect for medium and high frequencies at a higher Mach number. Mao and
Xu [41] used the spherical harmonic series expansion method to accelerate the solution of
the FW-H equation and numerically verified the correctness of the numerical acceleration
method for aerodynamic noise. However, this method is only suitable for evaluating
far-field aerodynamic noise and cannot be used to predict near-field noise.

In general, the FW-H accelerated by the FMM in the frequency domain is advantageous
when the discrete frequency or the tonal noise phenomena are of great interest. However,
with the frequency numbers increasing, the frequency-domain method causes the sound
field computation to be more time-consuming than when the time-domain method is
used. A more efficient method for solving large-scale aeroacoustic problems with multiple
receiver points in the far field must be proposed. To the best knowledge of the authors,
the computation of aeroacoustic integrals accelerated by the FMM has been limited to the
frequency domain, and there are no studies in the literature regarding the related research
on accelerating the aeroacoustic integral formulation in the time domain.
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In this work, a time-domain numerical method accelerated by the FMM (termed
the Fast FW-H method) is proposed for calculations of 3-D aeroacoustic problems. The
sound field is predicted via a hybrid method that uses the CFD for the near-field flow field
calculation and the FW-H formulation accelerated by the FMM to predict the far-field sound
field to reduce the computational cost. The performance and efficiency of the proposed
approach are demonstrated using several benchmark examples, including a comparison of
the results with experimental data.

The rest of this paper is organised as follows. In Section 2, an improved delayed,
detached eddy simulation (IDDES) turbulence model and the monopole source and dipole
source terms of the FW-H acoustic analogy are reviewed, and an FW-H formulation in the
time domain, accelerated by an FMM (referred to as Fast FW-H), is proposed. In Section 3,
sound predictions made using the proposed method are demonstrated, and the results
are compared with analytical solutions. In Sections 4 and 5, applications of the method
to the generation of aerodynamic noise via vortex shedding from a finite-length circular
cylinder and the propeller of an unmanned aerial vehicle (UAV) during forward flight are
demonstrated, validations are provided using experimental results, and comparisons of
the computational efficiencies between the conventional FW-H and Fast FW-H methods are
demonstrated. In Section 6, a summary is provided to conclude the paper.

2. Formulations
2.1. IDDES Model

Combining the Reynolds-averaged Navier–Stokes (RANS) equations and the large
eddy simulation (LES), the detached eddy simulation (DES) [42] uses the RANS equations
to approximate the behaviour of the mean boundary layer and adopts the LES to more
accurately obtain time-dependent flow structures far from geometric surfaces. This com-
bination can effectively reduce the cost of high-Reynolds-number simulations using the
LES and guarantee the accuracy of the results. Furthermore, the IDDES turbulence model
is a hybrid RANS-LES model consisting of a combination of various new and existing
techniques that provides a more flexible and convenient scale-resolving simulation model
for high-Reynolds-number flows [43]. In this paper, an IDDES turbulence model based
on Menter’s shear stress transport (SST) κ − ω two-equation eddy-viscosity turbulence
model [44] was solved using a finite volume method, and this model was employed to
simulate the aerodynamic performance.

2.2. FW-H Acoustic Analogy

We begin with the acoustic analogy formulation developed by Ffowcs Williams and
Hawkings. Then, the FW-H equation can be written as the following inhomogeneous wave
equation [10]:

(
1
c2

0

∂2

∂t2 −
∂2

∂x2
j

)[
H( f )p′

]
=

∂

∂t
[
Qjδ( f )

]
− ∂

∂xj

[
Ljδ( f )

]
+

∂2

∂xi∂xj

[
TijH( f )

]
(1)

with

Qj = ρ0Ujn̂j = [(ρ0 − ρ)vj + ρuj]n̂j Uj =

(
1− ρ

ρ0

)
vj +

ρ

ρ0
uj (2)

Lj = ρuj(un − vn) + [(p− p0)δij − τij]n̂j (3)

Tij = ρuiuj +
[
(p− p0)− c2

0(ρ− ρ0)
]
δij − τij (4)

where Qjδ( f ) and Ljδ( f ) represent the surface source distributions of mass and linear
momentum, respectively [14]; Tij is the Lighthill stress tensor; δ( f ) is the Dirac delta
function; c0 is the speed of sound; t is the time; xj is the space in the j (j = 1, 2, 3) direction;
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H( f ) is the Heaviside function; p′ is the sound pressure; p is the static fluid pressure in
the quiescent medium; p0 is the mean fluid pressure; ρ is the static fluid density; ρ0 is
the initial fluid density in the quiescent medium; un is the normal flow velocity; vn is the
normal integral surface velocity in the moving medium; uj represents the components
of the flow velocity; vj represents the components of the integral surface velocity in the
moving medium; n̂j represents the components of the unit external normal vector on the
integral surface; δij is the Kronecker delta symbol; τij is the viscous stress tensor; and
f (x, t) = 0 is an implicit function that describes the boundary integral surface, as shown
in Figure 1. Additionally, f (x, t) < 0 in the interior region, and f (x, t) > 0 in the outside
region, and the implicit function f (x, t) satisfies ∇ f (x, t) = n̂ [13] in which n̂ denotes the
unit normal vector that points towards the outside of the integral surface.
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The right-hand side of Equation (1) represents the thickness (monopole), loading
(dipole) and quadrupole sound source terms. For a flow with a low Mach number, the
sound contribution from the quadrupole source becomes small. In this case, the quadrupole
source can be neglected [11].

Green’s time-domain function in the unbounded 3-D space [45] is used to solve
Equation (1), and the integral solution of Equation (1) is thus given by [13]

p′(x, t) = p′T(x, t) + p′L(x, t) (5)

where p′T is the expression of the sound pressure of the thickness (monopole) source terms,
and p′L is the sound pressure of the loading (dipole) source terms.

Finally, the monopole source terms of the FW-H equation (MSFW-H) are obtained as
follows [13]:

4πp′T(x, t) =
∫

f=0

{
1

(1−Mr)
∂

∂τ

[
ρ0n̂jUj

r(1−Mr)

]}
ret

dS(y)

=
∫

f=0

[
ρ0

( .
U j n̂j+Uj

.
nj

)
r(1−Mr)

2

]
ret

dS(y) +
∫

f=0

[
ρ0Uj n̂j

(
r

.
Mj r̂j+c0

(
Mr−M2

j

))
r2(1−Mr)

3

]
ret

dS(y)
(6)

where the dots above the quantities denote the time derivative with respect to the source
time τ = t− |x− y(τ)|/c0; it takes a certain time for the sound from the source location to
reach the location of the sound receiver, and this time difference is expressed in terms of the
retarded time, denoted as [· · · ]ret, which means that the time-dependent variable inside the
brackets is evaluated at the retarded time τ; x and y are the locations of the receiver points
and the integral surface, respectively; t and τ are the point time of the receiver and the
retarded time of the integral surface, respectively; and r = |x− y| represents the distance
between the location of the source’s integral surface and the receiver point; Mr = Mj r̂j
represents the components of the source’s Mach number vector in the direction of the
observer; Mj = vj/c0 represents the components of the Mach number in the j direction;
and r̂j= (xj − yj)/r is a unit vector from a sound source point to a receiver point.
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The dipole source terms of the FW-H equation (DSFW-H) are also obtained as fol-
lows [13]:

4πp′L(x, t) = 1
c0

∫
f=0

{
1

1−Mr
∂

∂τ

[ Lj r̂j
r(1−Mr)

]}
ret

dS(y) +
∫

f=0

[ Lj r̂j
r2(1−Mr)

]
ret

dS(y)

= 1
c0

∫
f=0

[ .
Lj r̂j

r(1−Mr)
2

]
ret

dS(y)

+
∫

f=0

[
Lj r̂j−Lj Mj

r2(1−Mr)
2

]
ret

dS(y)

+ 1
c0

∫
f=0

[
Lj r̂j

[
r

.
Mr+c0

(
Mr−M2

j

)]
r2(1−Mr)

3

]
ret

dS(y)

(7)

A flowchart of the FW-H aeroacoustic solution method is given in Figure 2. All the
sound field calculations are solved using a Fortran code. The flowchart of the FW-H code
shows the main tasks of the program. The program begins by reading the CFD data to
identify the nodes and cells of the integral surface and cells and the CFD parameters applied
in the FW-H method, such as the fluid pressure p and the velocity u in the nodes of the cells.
For a specific microphone (receiver point) location, the MSFW-H and DSFW-H method can
be used to calculate the values of the integrand, such as the cell coordinate information, cell
direction vector, and the distance between the cell centre and the microphone. Note that
the above solutions are performed within the retarded time τret. Finally, the time history of
the sound pressure for a specific microphone position can be obtained.
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2.3. Fast Multipole Method

In the CFD calculation process, regardless of the sound sources (translation or rotation),
any moving object can be dealt with similarly to the model case of a wind tunnel [46], as
shown in Figure 3. Therefore, a permeable surface is used to enclose the sound source
to obtain the flow field information (fluid pressure, fluid velocity, etc.), the aeroacoustic
integral equation is further calculated for the permeable integral surface, and the sound
pressure of the sound receiver points can be obtained. Research shows that a reasonable
permeable integral surface can ensure calculation accuracy [2,47].
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Therefore, the stationary permeable surface that surrounds the sound source is cho-
sen as the integral surface of the FW-H. In this paper, the permeable surface remains at
rest in the fluid domain; therefore, vi = 0, vn = 0, Mr = 0. In practice, it is common
to neglect the viscous stress tensor τij for high-Reynolds-number flows, giving simply
Lj = ρujun + (p− p0)δijn̂j. Subsequently, the MSFW-H and DSFW-H formulations can be
simplified as

p′T(x, t) =
1

4π

∫
f=0

[
ρ

.
ujn̂j

r

]
ret

dS(y) (8)

p′L(x, t) =
∫

f=0

[ .
Lj r̂j/c0

4πr

]
ret

dS(y) +
∫

f=0

[ Lj r̂j

4πr2

]
ret

dS(y) (9)

An FMM is employed to solve the FW-H formulation (8) and (9). The MSFW-H and
DSFW-H formulations in the time domain accelerated by the FMM are referred to as the
Fast MSFW-H method and Fast DSFW-H method, respectively. Several expansions and
translations are needed in the FMM, and most formulations for potential problems are well
documented in Refs. [33–35].

2.3.1. Fast MSFW-H Method

The fundamental solution G(x, y) for 3-D potential problems can be expanded with a
series expansion as follows [31,33–35,48]:

G(x, y) =
1

4πr
=

1
4π

h

∑
n=0

n

∑
m=−n

Sn,m(x− yc)Rn,m(y− yc), |y− yc| < |x− yc| (10)

where yc is the expansion centre close to the node y of the cell in the integral surface, ()
is the complex conjugate, and h is the number of expansion terms (set at 15 in this study).
The two functions Sn,m and Rn,m are called solid harmonic functions [49].

Using the static kernel G(x, y) and the integrand function ρ
.
ujn̂j (Equation (8)) related

to the integral surface of the sound source, which is only concerned with the flow field
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information on the permeable integral surface. Therefore, the MSFW-H equation can also
be expanded as follows:

p′T(x, t) =
∫

f=0
[G(x, y)ϕ(y, τ)]retdS(y) (11)

By applying the expansion in Equation (10), one can evaluate the integrals in Equation
(11) in a representation of the conventional boundary integral equation (CBIE) for f (x, t) = 0
as follows:

p′T(x, t) =
∫

f=0 [G(x, y)ϕ(y, τ)]ret dS(y)

= 1
4π

h
∑

n=0

n
∑

m=−n

[
Sn,m(x− yc)Mn,m(yc)

]
ret, |y− yc| < |x− yc|

(12)

where Mn,m represents the multipole moments centred at yc.
The moment-to-moment (M2M), moment-to-local (M2L) and local-to-local (L2L) trans-

lations are present for the F(x, y) kernel integral with the moment Mn,m [34].

2.3.2. Fast DSFW-H Method

First, the kernel G(x, y) is used to accelerate the first terms of the right-hand side of
the DSFW-H formulation (given by Equation (9)). The integrand function

.
Lj r̂j/c0 related to

the integral surface of the sound source is also called the φ1(y, τ) =
.
Lj r̂j/c0 function and is

only concerned with information about the flow field on the integral surface.
Next, the kernel F(x, y) of the fundamental solution for a three-dimensional potential

problem [33] is used to accelerate the second terms of the right-hand side of the DSFW-H
equation (as shown in Equation (9)). The normal derivative of the kernel G(x, y) with
respect to the normal direction of the integral surface can be obtained as follows [34]:

F(x, y) ≡ ∂G(x,y)
∂n(y) = − n̂j r̂j

4πr2

= 1
4π

h
∑

n=0

n
∑

m=−n
Sn,m(x− yc)

∂Rn,m(y−yc)
∂n(y) , |y− yc| < |x− yc|

(13)

The second terms of the right-hand side of the DSFW-H equation in Equation (9)
related to the integral surface are referred to as the φ2(y, τ) = Lj/n̂j function in this work;
this function is only concerned with information about the flow field on the integral surface.
Therefore, the right-hand side of the DSFW-H (Equation (9)) can also be expanded as
follows:

p′L(x, t) =
∫

f=0
[G(x, y)φ1(y, τ)]ret dS(y)−

∫
f=0

[F(x, y)φ2(y, τ)]retdS(y) (14)

By applying the expansion in Equations (10) and (13), one can evaluate the integrals in
Equation (14) in a CBIE for f (x, t) = 0 as follows:

p′L(x, t) = 1
4π

h
∑

n=0

n
∑

m=−n

[
Sn,m(x− yc)Mn,m(yc)

]
ret

− 1
4π

h
∑

n=0

n
∑

m=−n

[
Sn,m(x− yc)M̃n,m(yc)

]
ret

, |y− yc| < |x− yc|
(15)

where M̃n,m is the multipole moment centred at yc.
The same M2M, M2L and L2L translations are also valid for the F(x, y) kernel integral

with the moment M̃n,m [34].
The details of the implementations of the FMM and the various parameters used in the

FMM can be found in Ref. [34]. All the sound field calculations are solved using a Fortran
code. The program begins by reading the CFD data to identify the nodes and cells of the
integral surface and the CFD parameters applied in the FW-H method, such as the fluid
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pressure p and the velocity u in the nodes of the cells. All computations are performed on
a desktop workstation with an Intel Xeon Gold 6132 processor working at 2.6 GHz with
128 GB of memory.

3. Numerical Examples and Verification

In this study, the software package ANSYS Fluent 19.2 is used to carry out the flow
field calculations. The aeroacoustic numerical simulation is solved via the conventional
FW-H and Fast FW-H method codes. The scenarios of a stationary acoustic monopole and a
moving acoustic monopole in a uniform flow medium are employed to verify the MSFW-H
and Fast MSFW-H methods. Next, a stationary point dipole source in a moving medium is
studied numerically to verify the accuracy of the DSFW-H and Fast DSFW-H methods.

3.1. Test Case 1: A Stationary Acoustic Monopole in a Uniform Flow

As the first problem, a stationary acoustic monopole in a uniform background flow
is used to verify the MSFW-H (Equation (8)) and Fast MSFW-H (Equation (12)) meth-
ods. Lockard [50] provided a harmonic velocity potential function from the sound field
generated by a stationary acoustic monopole in a uniform flow as follows:

φ(x, t) =
A

4πR1
exp

[
iω
(

t− R2

c0

)]
(16)

where ω is the single frequency of the sound source; A is the velocity potential amplitude,
A = 1 m2/s in all cases; and the ambient speed of sound c0 is set to 340 m/s.

The other variables are defined as

R1 =
√
(x1 − y1)

2 + (1−M2
0)[(x2 − y2)

2 + (x3 − y3)
2] (17)

R2 =
R1 −M0(x1 − y1)

1−M2
0

(18)

where M0 = u0/c0 denotes the initial Mach number. When the sound source moves in the
−x1 direction at a uniform flow velocity u0, an equivalent flow involves a fixed source at
the origin in a uniform flow in the +x1 direction at a flow velocity u0. Additionally, the
induced particle velocity is obtained from

u(x, t) =
∂φ(x, t)

∂xj
(19)

Therefore, the sound pressure of the monopole source terms p′T(x, t) can be expanded
as follows:

p′T(x, t) = ρ′(x, t)c2
0 = −ρ0

[
∂φ(x,t)

∂t + c0M0
∂φ(x,t)

∂x1

]
= −ρ0

(
iω + c0M0

∂
∂x1

)
φ(x, t)

(20)

where ρ′(x, t) is the density of the acoustic medium. The initial flow density ρ0 is equal to
1.225 kg/m3 in this paper.

Maintaining a focus on the numerical implementation and verification, to avoid any bias
relating to the numerical accuracy caused by the CFD calculation, the flow properties of the
sound source’s surface are obtained from the exact solution of the flow field generated by the
stationary acoustic monopole, i.e., Equations (16)–(19). A closed spherical, permeable surface
with a radius rs = 2 is used as the flow data surface. Note that closed spherical, permeable
surfaces with different radii, e.g., rs = 1, 3, 4 . . ., are also verified, and the numerical results
match well with the analytical solution (the sound pressure in Equation (20) is referred to as
the analytical solution). The theoretical analysis results are then used as the flow field input to
the MSFW-H and Fast MSFW-H code for this problem.
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The monopole point source is placed at the origin of the coordinate system, and a
nondimensional variable R (also called the reference length) is adopted. The receiver points
are located at a geometrical centre of 340R (far field) or 5R (near field) from the acoustic
monopole source. In this work, the frequency bandwidth is set to 5 Hz, and two Mach
numbers, M0 = 0.5 and M0 = 0.85, are verified. In addition, the aeroacoustic Formulation
1C prediction model proposed by Najafi-Yazdi et al. [46] is also verified. Figure 4 shows a
comparison of the root mean square (RMS) values of the sound pressure generated by a
stationary acoustic monopole in a uniform flow with receiver points located at r = 340R.
The sound directivity pattern is biased towards the upstream position, and the amplitude of
the sound pressure is larger than the amplitude of the sound pressure downstream due to
the convection effect [46]; the same conclusion was also reached by Ghorbaniasl et al. [51].
With an increase in the mean flow or Mach number, the difference in the amplitude of the
sound pressure becomes more obvious. Compared with the analytical solution, the errors
generated by the MSFW-H and Fast MSFW-H codes are less than 0.25%. The MSFW-H
and Fast MSFW-H methods are adequate for numerically accurate far-field predictions, as
shown in Figure 4.
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Figure 5 shows a comparison of the RMS values of the sound pressure generated
by an acoustic monopole in a uniform flow in the near field with receiver points located
at r = 5R. Excellent agreement is obtained between the sound pressure amplitudes and
the sound directivity patterns compared with the analytical solution results. Compared
with the analytical solutions, the errors generated by the MSFW-H and Fast MSFW-H
formulations are less than 0.4%. The main reason for the small deviation between the
results of the numerical simulation algorithms and the analytical solution is that the
numerical predictions were made very close to the permeable integral surface; as a result,
the mesh cells were no longer acoustically compact [46].
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3.2. Test Case 2: A Rotating Acoustic Monopole in a Uniform Flow

The MSFW-H and Fast MSFW-H methods were verified for a stationary monopole in
a uniform flow via the previous test case. This section mainly verifies the correctness of
the aeroacoustic equation for a rotating acoustic monopole in a uniform flow. This case is
equivalent to a wind tunnel test and can be applied to predict the aerodynamic noise of
fans, helicopter propellers, rotating machinery, and so on. Figure 6 shows a 2-D sketch of
the motion of a rotating acoustic monopole in a uniform flow. The angular speed of the
rotating monopole is ω= 2π rad/s, the rotating centre of the monopole is at the origin of
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the coordinate system, the rotating monopole is initially located at the coordinate (0.7R, 0,
0), the Mach number is M0 = 0.5 in the +y1 direction, the axis of the acoustic monopole
rotates around the +y3 direction and the rest of the parameter settings are as listed for the
previous case. The stationary permeable surface f (x, t) = 0 that surrounds the rotating
acoustic monopole is chosen as the integral surface of the MSFW-H and Fast MSFW-H
methods.
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Figure 6. Sketch of a rotating acoustic monopole in a uniform flow.

Figure 7 shows the time history of the sound pressure generated by a rotating acoustic
monopole in a uniform flow with receiver points located at r = 2R. The results show that
the sound pressure predictions made via the MSFW-H and Fast MSFW-H methods have
high levels of consistency with the analytical solution data in the time domain. All the
above results confirm that the proposed Fast MSFW-H method is accurate for a monopole
source in subsonic inflow.

Acoustics 2023, 5 4 FOR PEER REVIEW  14 
 

 

domain. All the above results confirm that the proposed Fast MSFW-H method is accu-
rate for a monopole source in subsonic inflow. 

 
Figure 7. Comparison of the time history of the sound pressure of a rotating acoustic monopole, 
obtained via the MSFW-H method and Fast MSFW-H method and measured at 2=r R  [46]. 

3.3. Test Case 3: A Stationary Point Dipole in a Moving Medium 
A stationary point dipole source in a moving medium is employed to verify the 

DSFW-H (Equation (9)) and Fast DSFW-H (Equation (15)) methods. The point dipole axis 
was aligned with the orientation of the 2x -axis. Lockard [50] provided a harmonic veloc-
ity potential function from the sound field generated by a stationary acoustic monopole 
in a uniform flow medium. Then, Najafi-Yazdi et al.[46] further extended the velocity 
potential function for such a dipole source in a uniform flow as follows: 

2

2 1 0

( , ) exp
4

RAt i t
x R c

φ ω
π

   ∂  = −   ∂     
x  (21)

when the sound source moves in the direction of the –x2 axis at a uniform flow velocity 

0u . An equivalent flow involves a fixed source at the origin in the direction of the +x2 axis 

at a flow velocity 0−u . This problem is similar to the aerodynamic noise measurement 
conducted in a wind tunnel test. 

In this study, two Mach numbers, 0=0M  and 0=0.5M , are verified. Figure 8 
shows a comparison of the RMS values of the sound pressure generated by the dipole in a 
uniform flow medium with receiver points located at 30=r R . The sound directivity 
pattern is biased towards the upstream position, and the sound pressure amplitude of the 
upstream location is larger than that of the downstream location due to the convection 
effect [46]. Compared with the analytical solution, the errors generated by the DSFW-H 
and Fast DSFW-H formulation are less than 0.3%. The DSFW-H and Fast DSFW-H 
methods are adequate for numerically accurate aeroacoustic predictions. 

Figure 7. Comparison of the time history of the sound pressure of a rotating acoustic monopole,
obtained via the MSFW-H method and Fast MSFW-H method and measured at r = 2R [46].

3.3. Test Case 3: A Stationary Point Dipole in a Moving Medium

A stationary point dipole source in a moving medium is employed to verify the DSFW-
H (Equation (9)) and Fast DSFW-H (Equation (15)) methods. The point dipole axis was
aligned with the orientation of the x2-axis. Lockard [50] provided a harmonic velocity
potential function from the sound field generated by a stationary acoustic monopole in a
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uniform flow medium. Then, Najafi-Yazdi et al. [46] further extended the velocity potential
function for such a dipole source in a uniform flow as follows:

φ(x, t) =
∂

∂x2

{
A

4πR1
exp

[
iω
(

t− R2

c0

)]}
(21)

when the sound source moves in the direction of the −x2 axis at a uniform flow velocity
u0. An equivalent flow involves a fixed source at the origin in the direction of the +x2 axis
at a flow velocity −u0. This problem is similar to the aerodynamic noise measurement
conducted in a wind tunnel test.

In this study, two Mach numbers, M0 = 0 and M0 = 0.5, are verified. Figure 8 shows a
comparison of the RMS values of the sound pressure generated by the dipole in a uniform
flow medium with receiver points located at r = 30R. The sound directivity pattern is
biased towards the upstream position, and the sound pressure amplitude of the upstream
location is larger than that of the downstream location due to the convection effect [46].
Compared with the analytical solution, the errors generated by the DSFW-H and Fast
DSFW-H formulation are less than 0.3%. The DSFW-H and Fast DSFW-H methods are
adequate for numerically accurate aeroacoustic predictions.
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4. Applications to a Circular Cylinder in a Uniform Flow
4.1. The Aeroacoustic Simulation

To compare the computational efficiencies, we conduct a study of a flow moving past
a circular cylinder of a finite length, which has been extensively studied and is reported in
refs. [52–55]. The circular cylinder’s diameter D is 20 mm, the circular cylinder’s spanwise
length is 9D, the streamwise velocity of the uniform flow is 64 m/s, the pressure at the
outlet boundary is 101,325 Pa, the initial flow velocity u is (64, 0, 0) m/s and the initial
turbulence intensity is 0.1%. Under the above flow conditions, the Reynolds number based
on the circular cylinder diameter is 0.876 × 105.

A 2-D schematic diagram of the calculation domain and boundary condition set for
modelling the circular cylinder case is shown in Figure 9. The width and height of the
calculation domain are 50D and 30D, respectively. The length from the circular cylinder
centre to the velocity inlet boundary is set to 15D, and the length from the circular cylinder
centre to the pressure outlet boundary is 60D. The total number of cells in this circular
cylinder case is approximately 11.8 million. A grid convergence test is also performed by
running a case with a mesh of approximately 27.4 million cells, and the test proves that
the mesh with 11.8 million cells is sufficiently fine for the current study. The distance from
the inner solid wall to the centroid of the first cell is 1 × 10−6 m, and the distance from
the interface to the first cell is 1 × 10−5 m. The diameter of the permeable integral surface
is 3D. In this case, the near-field unsteady flow behaviour around the circular cylinder
model is analysed using an IDDES turbulence model based on the κ − ω two-equation
eddy-viscosity model. The sound from the circular cylinder obtained via the FW-H (the
sum of the sound pressures of MSFW-H and DSFW-H) and Fast FW-H (the sum of the
sound pressures of Fast MSFW-H and Fast DSFW-H) methods were used to compare their
computational efficiencies.
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Figure 9. Calculation domain and boundary condition for modelling a circular cylinder.

4.2. Sound Characteristics in the Time/Frequency Domain

Figure 10a shows the simulation results of the pressure coefficients (Cp = (p− p0)/(0.5ρu2))
around the circular cylinder’s surface. Two different experimental results, those of Giedt [56],
Cantwell et al. [57], and the LES simulation results from Karthik et al. [58] are chosen for a
comparison with those of the present study. Although the IDDES simulation results do not
overlap with the experimental results, they are in reasonably good agreement. In Figure 10b, the
time history of the drag coefficients Cd and the lift coefficients Cl (Cd = Fx/(0.5ρLDu2) and
Cl = Fy/(0.5ρLDu2), where Fx and Fy are the drag forces and lift forces on the circular cylinder,
respectively), around the circular cylinder also prove the validity of the IDDES turbulence model.
The RMS lift coefficients are 0.51, and the averaged drag coefficients are 1.08. We can see that
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the RMS lift coefficients and the averaged drag coefficients are within the appropriate ranges
of [0.48, 0.61] and [0.98, 1.19], respectively, as shown in [57,59].

Figure 10. (a) Comparison of pressure coefficients of the circular cylinder with experiments; (b) time
history of drag and lift coefficients [56–58].

Figure 11 shows a comparison of the time history of the sound pressure generated
by the circular cylinder using the FW-H and Fast FW-H methods. The receiver point is
located on (0, 70D, 0). As shown in Figure 11, the time history curves of the sound pressure
obtained via the FW-H and Fast FW-H methods exhibit little difference within the range
of 0.7 s, and the maximum relative error is 0.35. The sound pressure predictions of the
Fast FW-H method correspond fairly well with the data of the FW-H method for the sound
pressure amplitude and the shape of the sound pressure distribution.
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Figure 11. Comparison of the time history of the sound pressure of a circular cylinder obtained via
the FW-H and Fast FW-H methods measured at (0, 70D, 0).

The sound pressure level (SPL) is defined in Equation [60] with the unit dB.

SPL = 10 log10(PSDp′L
/p2

ref) (22)

where PSD is the power spectral density of the sound pressure p′, and pref is the reference
sound pressure of 2× 10−5 Pa. The PSD of the computing time history of the sound pressure
is obtained using the Welch method, adopting a Hanning window with five segments, each
with 50% overlap.

Figure 12 displays the SPL received by the receiver point placed at (0, 70D, 0). The
time step size is set to 1 × 10−4 s. The total time of the aerodynamic noise prediction is
set to 0.7 s. This figure shows that the FW-H and Fast FW-H methods can successfully
calculate a flow passing a finite-length circular cylinder in a uniform flow medium, and the
two approaches capture the vortex shedding noise accurately. The simulated results are
compared to the experimental data available in the results in [53], and good agreements
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are observed in terms of the frequencies of the primary tone and its harmonics, the tonal
noise amplitude and the shape of the spectral distribution.

Figure 12. SPL of the sound pressure generated by the circular cylinder [53].

4.3. Convergence and Computational Efficiency

To compare the convergence of the Fast FW-H method, the receiver points are located
on a hemisphere concentric with the circular cylinder, and the distance between the receiver
points and the origin of the coordinate system is 10D. Figure 13 shows the sound radiation
patterns with different numbers of receiver points (RPNs) at t = 0.3 s. The sound pressure
of the receiver surface is solved via the Fast FW-H method. The maximum positive sound
pressure occurs in the direction perpendicular to the direction of the flow movement in
the +y1 axis orientation. In addition, the maximum negative sound pressure appears
in the windward direction of the circular cylinder in the −y1 axis orientation. With an
increase in the RPN, the sound pressure distribution on the hemispherical sphere reaches
computational convergence in a certain time with little difference, and the noise radiation
direction is a typical dipole pattern of directivity for the circular cylinder. This is because
the aerodynamic noise generated from vortex shedding is a dipole source.

The values of the total wall-clock time used by the FW-H and Fast FW-H approaches
in these calculations to solve the noise source generated by the above circular cylinder
with different numbers of cells from the integral surface and different RPNs are plotted
in Figure 14, which shows the significant advantage of the Fast FW-H method over the
FW-H method with respect to time savings. For example, for the largest model with
60,789 integral surface cells, the Fast FW-H method took less than 2600 s, while the FW-H
method took approximately 4958 s of wall-clock time, as shown in Figure 14a. With an
increase in the RPNs, there exists a linear relationship between the wall-clock time of all
sound pressure calculations and the RPNs, as shown in Figure 14b, because the FW-H and
Fast FW-H methods gradually integrate and calculate the sound pressure of the receiver
points using a numerical algorithm. In this studied case, the Fast FW-H method is found
to be approximately 51% faster than the FW-H method for solving the circular cylinder
model (with 16,003 receiver points and 16,262 integral surface cells) of a flow passing a
finite-length circular cylinder.
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Figure 13. Sound radiation patterns with different RPNs at t = 0.3 s: (a) RPN = 197; (b) RPN = 711;
(c) RPN = 1110; (d) RPN = 4263; (e) RPN = 7301; (f) RPN = 16,003.
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Additionally, compared with the FW-H method, the Fast FW-H method can solve
larger-scale aeroacoustic problems with larger RPNs. This is because the node-to-node
interactions in the FW-H method are replaced with cell-to-cell interactions in the Fast
FW-H method by a hierarchical tree structure of cells containing groups of nodes [34]. The
adoption of FMM acceleration will greatly reduce the computer storage space and the
calculation dimension. The Fast FW-H method accelerated by the FMM has a powerful
advantage in solving large NRPs in the far field and can be used to predict the aerodynamic
noise for a large number of receiver locations.

5. Applications to a UAV Propeller during Forward Flight
5.1. The Aeroacoustic Experiment and Simulation

An aeroacoustic performance test for a UAV propeller was conducted in a
14 m× 5.5 m× 4 m (L×W × H) full anechoic chamber (Figure 15) with a cut-off frequency
of 100 Hz. The diameter of the UAV propeller was 0.206 m. The 3/4 length of the radial
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position chord of the UAV propeller was 0.0163 m and the maximum design speed was
6000 RPM, as shown in Figure 15a. The full-scale UAV propeller model was supported by a
cantilever column in the full anechoic chamber, and one microphone was used to measure
the flow-induced sound pressure, as shown in Figure 15b. The microphone is arranged
0.8 m from the centre of the UAV’s propeller.
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Figure 15. A full-scale UAV propeller in a full anechoic chamber: (a) UAV propeller; (b) anechoic
chamber experiment.

For the computational model, the flow field calculation domain and boundary condi-
tion of the UAV propeller are shown in Figure 16. The fluid space comprises stationary and
rotating computational regions, and the fluid field of the UAV propeller is set as a rotating
computational region, while the fluid fields of the other parts are set as stationary com-
putational regions. The slipping grid technique is used to implement the relative motion
between the stationary and rotating computational regions in a numerical simulation with
one interface between them during forward flight. A spherical computational domain with
a diameter of 3R is adopted in the rotating computational region, and the interface surface
is used for data transfer between the rotating computational region and the stationary com-
putational regions. The rotating speed of the UAV propeller is set as 5000 RPM. The pitch
angle of the propeller is 10◦, according to the anechoic chamber experimental conditions.
The wind velocity is 20 m/s, corresponding to the forward flight speed in this study.
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Figure 16. Calculation domain and boundary condition for modelling a UAV propeller.

A grid dispersion and grid-independent verification of the UAV propeller model were
conducted and the details are not elaborated here. The total number of cells in this UAV
propeller case is approximately 39.2 million. The IDDES, the FW-H and the Fast FW-H
methods are used under the aforementioned conditions to compute the UAV propeller’s
aeroacoustic responses. The interface is selected as the permeable integral surface.

5.2. Sound Characteristics in the Time/Frequency Domain

The time history of the calculated sound pressure at r = 0.8 m is shown in Figure 17.
As can be seen, the sound pressure changes periodically due to the vortex shedding in
the flow passing the UAV propeller. The sound pressure amplitude is approximately
0.17 Pa. The time cycle of the sound pressure is 0.006 s, corresponding to a frequency
of 166.7 Hz. For the UAV propeller composed of two blades, the radiation noise has a
dominant frequency of 333 Hz.
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Figure 17. Time history of sound pressure generated by a UAV propeller.

Figure 18 presents the spectral comparison of the aerodynamic noise obtained via
the simulation and experimental data. The background noise plotted by the dotted line
is at least 10 dB lower than the UAV propeller’s noise. The noise spectra have maximum
values at 1 BPF (BPF is the blade passing frequency, BPF = (2× Rs × B)/60, where Rs is
the UAV propeller rotating speed of 5000 RPM, and B is the number of propeller blades,
which is two in this study), corresponding to a main frequency of approximately 333 Hz.
In addition, the BPF magnitude decreases with higher harmonics.
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Figure 18. Spectral comparison of the simulation result and the experimental result.

In addition, the SPL predictions of the Fast FW-H method correspond fairly well with
the experimental result in the range of 1500 Hz. The high consistencies are mainly reflected
in the following three aspects: the distribution range of the tonal frequency peak, the tone
amplitudes and the shape of the harmonic behaviour [60].

Figure 19 displays the spectra of the monopole and dipole source terms from the total
noise spectrum parts shown in Figure 18. As can be seen from Figure 19, the aerodynamic
noise is mainly the contribution of the dipole noise as the aerodynamic noise radiated by
the UAV propeller is mainly determined by the pressure fluctuations on the surface of the
source of the noise.

Acoustics 2023, 5 4 FOR PEER REVIEW  24 
 

 

 
Figure 18. Spectral comparison of the simulation result and the experimental result. 

In addition, the SPL predictions of the Fast FW-H method correspond fairly well 
with the experimental result in the range of 1500 Hz. The high consistencies are mainly 
reflected in the following three aspects: the distribution range of the tonal frequency 
peak, the tone amplitudes and the shape of the harmonic behaviour [60]. 

Figure 19 displays the spectra of the monopole and dipole source terms from the 
total noise spectrum parts shown in Figure 18. As can be seen from Figure 19, the aero-
dynamic noise is mainly the contribution of the dipole noise as the aerodynamic noise 
radiated by the UAV propeller is mainly determined by the pressure fluctuations on the 
surface of the source of the noise. 

 
(a) 

Figure 19. Cont.



Acoustics 2023, 5 839

Figure 19. The spectra of monopole and dipole noise from the total noise: (a) monopole source;
(b) dipole source.

5.3. Computation of Sound in the Far Field

In this subsection, the far-field sound propagation features of the UAV during forward
flight in a moving medium which contains numerous receiver points are computed using
the FW-H and Fast FW-H methods, respectively. The primary aim of this subsection is to
investigate the computational efficiency of the Fast FW-H and to validate the numerical
simulation results of the above-mentioned methods in a moving medium. Figure 20 gives
the far-field sound receiver points in which a receiver point is an annulus with inner
and outer radii of 10R (1 m) and 30R (3 m), respectively. The RPN in the sound field is
156 (circumferential direction) × 40 (radial direction) = 6240. The sound pressure of the
far-field sound field is computed in the time domain.

Figure 20. A mesh of the far-field receiver points.
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Figure 21 displays the sound pressure field around the UAV propeller during forward
flight, as obtained via the FW-H and Fast FW-H methods. This figure shows that the
horizontal dipole patterns of the sound radiating from the rotating UAV propeller are
dominant. The maximum sound pressure appears on the windward or leeward side of
the UAV propeller during forward flight. All the aforementioned results indicate that the
results obtained from the Fast FW-H method are consistent with those obtained from the
FW-H method, further validating the proposed Fast FW-H method. In addition, the fast
FW-H method is found to be approximately 48% faster than the FW-H method for solving
the UAV propeller model with 6240 RPN and 36,510 cells. Therefore, it can be seen that
for multiple RPNs, the computational efficiency advantage of the Fast FW-H method is
more obvious. Compared with the FW-H method, the computational time taken to solve
the far-field sound field is reduced by about half.

Figure 21. The sound pressure field around the UVA propeller: (a) FW-H method; (b) Fast FW-H method.
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6. Conclusions

A new method for calculating the monopole and dipole source terms appearing in the
FW-H formulation accelerated via the FMM in the time domain is presented in this paper;
this method has not been reported in the literature.

The performance and efficiency of the proposed method with respect to calculating the
monopole source terms in FW-H formulation accelerated via the FMM in the time domain
are demonstrated by studying sound predictions for a stationary and moving acoustic
monopole in a uniform flow. The test case of the stationary acoustic monopole indicates that
the sound directivity pattern is biased towards the upstream position, and the amplitude
of the sound pressure is larger than the amplitude of the sound pressure downstream due
to the convection effect. The predictions match very well with the analytical solution in
general, with a relative error of less than 0.4%.

The correctness of the aeroacoustic equation for a rotating acoustic monopole in a
uniform flow is verified for the monopole source terms in FW-H formulation accelerated
via the FMM in the time domain. The results show that the sound pressure predictions
made using the above methods have high levels of consistency with the data using the
analytical solution in the time domain.

A stationary point dipole source in a moving medium is verified using the dipole
source terms in a FW-H formulation accelerated via the FMM in the time domain. The
sound directivity pattern is biased towards the upstream position, and the amplitude of the
sound pressure of the upstream location is larger than the amplitude of the sound pressure
of the downstream location due to the convection effect. The predictions match very well
with the analytical solution in general, with a relative error of less than 0.3%.

Next, the application of the developed approach to aeroacoustic problems include the
generation of noise by a finite-length circular cylinder. The time history curves of the sound
pressure generated by the finite-length circular cylinder obtained via the FW-H and Fast
FW-H methods exhibit negligible differences within the range of 0.7 s, and the maximum
relative error is 0.35%. Good agreements are observed in terms of the frequencies of the
primary tone and its harmonics, the tonal noise amplitude and the shape of the spectral
distribution.

Then, the method’s application the aeroacoustic problems includes the noise generated
by a UAV propeller during forward flight. The high consistencies are mainly reflected in the
following three aspects: the tonal frequency peak distribution range, the tone amplitudes
and the shape of the harmonic behaviour.

Additionally, the fast FW-H method is found to be approximately 50% faster than the
FW-H method in solving the circular cylinder model (with 16,003 RPN and 11.8 million
cells) and the UAV propeller model (with 6240 RPN and 39.2 million cells), respectively.

The proposed method of accelerating monopole source and dipole source terms via the
FMM can also be extended to accelerate volume quadrupole source terms. The acceleration
of the remaining noise source terms in the FW-H formulation will be the focus of future
work to improve the Fast FW-H method.
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Nomenclature

c0 speed of sound
u flow velocity
v surface velocity
n̂ unit external normal vector
t receiver point time
τ location integral surface retarded time
x location of the receiver points
y location of the integral surface
yc expansion centre close to the node y
r distance between the source and the receiver, r = |x− y|
[· · · ]ret evaluated at the retarded time τ

() complex conjugate
M Mach number, M = v/c0
Tij Lighthill stress tensor
δij Kronecker delta symbol
τij viscous stress tensor
δ( f ) Dirac delta function
H( f ) Heaviside function
p′ sound pressure
p static fluid pressure
ρ static fluid density
h number of expansion terms
Mn,m multipole moments centred at yc
Subscripts
0 initial number
i, j index number in three-dimensional space
n normal direction
x observer quantity
y source quantity
r vector quantity
T thickness (monopole) source quantity
L loading (dipole) source quantity
Abbreviations
FMM fast multipole method
CFD computational fluid dynamics
FW-H Ffowcs Williams–Hawkings
MSFW-H monopole source terms of FW-H
DSFW-H dipole source terms of FW-H
CBIE conventional boundary integral equation
M2M moment-to-moment
M2L moment-to-local
L2L local-to-local
PSD power spectral density
RPN number of receiver point
IDDES improved delayed, detached eddy simulation
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