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A B S T R A C T   

Peridynamic (PD) is a powerful tool for simulating the large deformation and failure process of many types of 
materials. However, its use in modeling rubber-like materials is limited due to the complex constitutive nature of 
the material, and low efficiency and numerical oscillation caused by PD. To address this issue, a neural network 
(NN) non-ordinary state-based peridynamics (NOSB PD) method is developed to model the large deformation 
and failure behavior of rubber-like materials. This method is free of the zero-energy modes, and can significantly 
improve the computational efficiency. Unlike the traditional NOSB PD method that formulates the force density 
vector based on the deformation gradient, this method uses a deep NN to map the bond related quantities to the 
force density vector. The accuracy and efficiency of the proposed method are demonstrated through a series of 
numerical examples. Additionally, this method can be applied to various hyperelastic materials for which 
analytical constitutive models exist.   

1. Introduction 

Peridynamics (PD) is a non-local theory, that has been extensively 
studied since its inception by Silling [1]. In the PD theory, material 
points can interact with each other within a certain interaction domain, 
known as the horizon, which serves as an internal length parameter. The 
PD equation of motion is an integro-differential equation. The descrip-
tion of damage is straightforward, as it involves removing the interac-
tion of points in the integral [2]. Therefore, the formulation is still valid 
even when there is an invalid spatial derivative or a discontinuity 
occurs. 

Because of the above-mentioned advantages, PD has proven to be an 
effective and efficient method for modeling discontinuous problems. 
Many studies utilized PD techniques to model crack and failure in metal 
materials [3–5], glass plates [6–8], rock-like materials [9–11] and other 
brittle materials [12–15]. However, there are limited studies on 
modeling rubber-like materials using PD methods. One of the reasons for 
this is that current PD methods face difficulties in accurately and effi-
ciently modeling rubber-like materials. 

Bond-based (BB) PD [1–16] theory states that the interaction forces 
between the paired material points act on the same line with the same 
magnitude and opposite directions, similar to a spring. BB PD is the most 
efficient model among the PD frameworks, considering that the bond 
stretch is the only variable of the bond force density. However, there is a 

drawback in the BB PD formulation: the Poisson’s ratio is fixed at 1/3 for 
plane stress analysis and 1/4 for plane strain as well as 3D analysis for 
isotropic linear elastic materials [17]. To simulate the rubber-like ma-
terials by BB PD, Silling and Bobaru [18] developed a nonlinear BB 
model to model hyperelastic membranes. Bang and Madenci [19] 
derived a nonlinear form of BB PD based on three primary loading 
conditions of hyperelastic materials: equibiaxial loading, planar loading 
and uniaxial loading, to predict the nominal stress. Yin et al. developed a 
nonlinear expression of bond force based on the second Piola-Kirchhoff 
stress [20]. However, these formulations of the bond force density are 
associated with a specific loading condition. As a result, it becomes 
challenging to model complex or mixed loading conditions. Moreover, 
Bellido et al. [21] have reported that BB PD does not converge to most 
hyperelastic models when the interaction horizon approaches zero. 

The NOSB PD [21–24] theory is also applied to model rubber-like 
materials. In this theory, the expression of deformation gradient is 
proposed in an integral form [21]. This makes it easy to connect with the 
constitutive functions of hyperelastic materials as expressed in the 
conventional continuum mechanics. It is possible to achieve incom-
pressibility or slight compressibility by restricting the determinant of the 
deformation gradient tensor. However, the conventional NOSB PD 
expression of deformation gradient is proved a non-unique mapping 
between the deformation states of material points and deformation 
gradient, which can lead to the zero-energy modes causing numerical 
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instability and oscillation [25]. To overcome this problem, a few mod-
ifications have been proposed, such as supplemental interconnected 
springs method, average displacement state method and penalty 
approach [23,26]. These modifications are capable of eliminating the 
zero-energy modes, but they introduce stabilizing parameters beyond 
the material parameters in the modification term which may affect the 
numerical results under large deformation. 

In contrast, bond-associated (BA) NOSB model is able to eliminate 
the zero-energy modes without requiring extra stabilizing parameters 
[25,27,28]. This is achieved by forming the deformation gradient of a 
bond at the intersection horizon of two end points. Behera et al. [29] and 
Roy et al. [30] analyzed the finite elastic deformation and rupture in 
Neo-Hookean materials as well as polymers predicted by Anand and 
Talamini-Mao-Anand models, respectively, using the weak form of PD 
equilibrium equation [31]. This method permits the direct imposing of 
boundary conditions. Chen et al. studied the fracture of hydrogel with 
Gent model [32] and fatigue characteristics [33]. However, the calcu-
lation of deformation gradient tensor for each bond instead of each 
material point leads to a relatively high computational cost, especially 
for 3D case. Therefore, there is a need for a technique that can accurately 
describe the complex constitutive model of rubber-like materials while 
effectively eliminating the zero-energy modes to promote the applica-
tion of NOSB PD. 

In recent years, artificial neural networks and machine learning 
techniques have been applied to facilitate PD methods. For instance, 
Bekar and Madenci [34] used a sparse linear regression algorithm with 
peridynamic differential operator (PDDO) proposed by Madenci et al. 
[35,36] to learn partial differential equations. Haghighat et al. [37] 
developed a physics-informed deep learning framework with PDDO to 
capture the elastoplastic response. Yu and Zhou [38] used group method 
with genetic algorithm to derive the parameters in the BB PD. Ma and 
Zhou [39] defined the nonlocal influence function (also referred to as 
the weight function in some literature) by using a data-driven method. 
You et al. [40] employed a data-driven learning method to combine 
peridynamics and molecular dynamics to obtain a coarse-grained, ho-
mogenized continuum model. Ning et al. [41] achieved the quasi-static 
BB PD crack simulation using physics-informed neural network frame-
works. Babu et al. [42] captured non-local heat conduction using a PD 
based machine learning model. 

In this article, a technique based on neural network is developed 
within the framework of NOSB PD to simulate the deformation and 
fracture of rubber-like materials. To generate the training data, various 
loading conditions were considered. The stretch and rotation of a bond 
are calculated through the deformation state. Meanwhile, the corre-
sponding force density vector is analytically obtained by using the 
constitutive relation and the conventional NOSB PD theory. With the 
help of deep neural network, a nonlinear mapping from the bond stretch 
and rotation angle to the force density of each bond is achieved. This 
mapping to calculate the force density vectors not only eliminates the 
zero-energy modes but also significantly improves the efficiency. The 
accuracy and high efficiency of the proposed method are demonstrated 

through a series of numerical examples. The proposed method is general 
and can be used for various hyperelastic materials with existing 
analytical constitutive models. 

This paper is organized as follows: A brief review of the NOSB PD 
formulation is presented in Section 2. Section 3 introduces the consti-
tutive model used in this work. Sections 4 and 5 describe the design of 
the neural network and the process of training data generation, 
respectively. In Section 6, numerical examples are presented to 
demonstrate the effectiveness and efficiency of the proposed method. 

2. Formulation of non-ordinary state-based peridynamics 

Peridynamics is formulated based on non-local theory. By using the 
meshless implementation, the considered domain is discretized into 
material points with their own volume and material properties. As 
shown in Fig. 1, the position vector of a material point in the reference 
and current configuration are denoted by xi and yi, respectively. Mate-
rial point xi interacts with each neighborhood points xj within its hori-
zon Hi. The equation of motion for material point xi can be written as: 

ρiẍi =

∫

Hi

(
ti − tj

)
dVj + bi. (1) 

Here ρ is the mass density. ẍ is the acceleration vector, and b is the 
body force vector. Vector ti and tj are the pair-wise force density vectors. 
The force density vector takes the form: 

ti = w(|xij|)PiK− 1
i xij. (2) 

Here and thereafter, no summation is assumed for repeated index. 
Vector xij = xj − xi is the bond vector. w is a scalar-valued weight 
function used for evaluating the contribution of the neighborhood 
points. In this article, w = δ/|xij|with δ being the radius of Hi. For various 
options of weight functions, please refer to Ref. [43]. Tensor P is the first 
Piola-Kirchhoff stress tensor expressed as: 

Pi =
∂Ψ
∂Fi

, (3)  

in which Ψ is the strain energy density function. The point-associated 
deformation gradient tensor F is obtained by: 

Fi =

∫

Hi

w
(
yij ⊗ xij

)
dVj⋅K− 1

i , (4)  

where K is the shape tensor: 

Ki =

∫

Hi

w
(
xij ⊗ xij

)
dVj. (5)  

3. Constitutive model for rubber-like materials 

Rubber-like materials are often described using hyperelastic models. 
The strain energy density function Ψ of the hyperelastic model is usually 
expressed as a function of the invariants (I1,I2,I3) of the right Cauchy- 
Green strain tensor. For example, Neo-Hookean [44] model is 
described by the first term of the series linear in I1. Mooney-Rivlin [45, 
46] model is constituted by the first and second terms linear in I1 and I2. 
Some other models use the combinations of higher order invariants to 
capture the large-stretch response [49,52]. In the presented study, the 
Neo-Hookean model is taken as an example in the analysis. 

In Neo-Hooken model, the strain energy density function is expressed 
as [44]: 

Ψ =
μ
2
(I1 − 3) +

K
8
(
J − J− 1)2

, (6)  

where μ is the shear modulus, I1 the normalized first invariant of right 
Cauchy-Green strain tensor which is written as I1 = trCJ− 2/3, with C =
FTF and J = detF. Parameter K represents the bulk modulus. The slightly 

Fig. 1. Peridynamic diagram and notations.  
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compressible model leads to a relatively large K compared to shear 
modulus. In this article, K is set as 100 times the shear modulus. The first 
Piola–Kirchhoff stress tensor can be expressed as: 

P =
∂Ψ
∂F

= μ
(

F −
1
3

trCF− T
)

J− 2/3 +
K
4
(
J2 − J− 2)F− T . (7) 

In the presented work, the plane stress assumption is considered. 
Then, the expression of the first Piola–Kirchhoff stress tensor is given in 
Ref. [29]: 

P = μ
(
F̃ − C33F̃

− T)
C− 1/3

33 J̃
− 2/3

, (8)  

where J̃ = detF̃ with F̃ being the in-plane deformation gradient tensor. 
C33 is a component of the right Cauchy-Green strain tensor C, which can 
be obtained numerically through the equation [29]: 

μ
(

2
3
C− 2/3

33 −
1
3
C− 1/3

33 trC̃
)

J̃
− 2/3

+
K
4
(
C33J̃

2
− C− 1

33 J̃
− 2)

= 0. (9)  

4. Stretch-related force density and the desired mapping 

For a given loading condition, the force density vector in the con-
ventional NOSB PD is totally determined by the deformation gradient 
tensor (see Eqs. (2) and (3)). However, this framework suffers from zero- 
energy modes. This means that different displacement states of material 
points can be mapped into the same deformation gradient tensor. For 
instance, consider a 2D regular uniform discretization with a circle ho-
rizon, as shown in Fig. 2. A single point movement is applied at point xi. 
The deformation gradient of the source point xi at the new state is 
calculated as: 

Fi,new =

∫

Hi

w⋅
[(

yij,new
)
⊗
(
xij
)]

dVj⋅K− 1
i

=

∫

Hi

w⋅
[(

yij,old − ui
)
⊗ xij

]
dVj⋅K− 1

i

= Fi,old − ui ⊗

∫

Hi

w⋅
(
xij
)
dVj⋅K− 1

i

. (10) 

The integral term on the right-hand side of Eq. (10) becomes zero due 

to the symmetry of the horizon. As a result, this form of deformation 
cannot cause a change in deformation gradient. The strain energy den-
sity also remains unaltered since the deformation gradient is the only 
variable in its expression. Consequently, zero-energy modes occur. 
Ref. [25] provides a similar example that illustrates the zero-energy 
modes. One of the solutions is to introduce a complementary force 
density, and regard the bonds as fictitious springs. The stretch of these 
fictitious springs can change the strain energy density. Thus, the 
zero-energy modes are avoided. However, the complementary part 
needs a stabilizing parameter or a penalty factor, which can significantly 
affect the numerical results under large deformation. 

Bond-associated (BA) NOSB model is another solution that can 
eliminate the zero-energy modes without requiring extra stabilizing 
parameters [25,27,28]. This is achieved by forming the deformation 
gradient of a bond at the intersection horizon of two endpoints. There-
fore, the formulation of the BA NOSB PD is briefly recalled here. The 
subscript “ξ” means the quantity is bond-associated. For a bond pointing 
from material point i to material point j, the deformation gradient 
associated with the bond is formed considering the information of Hi and 
Hj expressed as [28,53]: 

Fξ =

[∫

Hi∩Hj

w(yk − yi) ⊗ (xk − xi)dVk

]

K− 1
ξ , (11)  

where the shape tensor associated with the bond is expressed as: 

Kξ =

∫

Hi∩Hj

w(xk − xi) ⊗ (xk − xi)dVk. (12) 

The force density vector of the bond takes the form [54]: 

tξ =
1
2

ϕξ
(
xi, xj

)

ϕ
(
xi, xj

) wPξK− 1
ξ xij, (13)  

with 

ϕ
(
xi, xj

)
=

∫

Hi
dVk

∫

Hi
dVk +

∫

Hj
dVk

(14)  

and 

ϕξ
(
xi, xj

)
=

∫

Hi∩Hj
dVk

∫

Hi
dVk

. (15) 

In this article, a new method to avoid the zero-energy modes is 
proposed. As is performed by the fictitious spring modification, if the 
force density vector is partially determined by the bond stretch instead 
of solely relying on the deformation gradient, the zero-energy modes can 
be overcome. Inspired by this, a direct mapping from the bond stretch 
and bond rotation (along with a few other variables) to the force density 
vector is constructed. 

Fig. 2. Illustration of zero-energy modes.  

Fig. 3. (a) Notations of bond related quantities during deformation. (b) Illustration of the desired mapping.  
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The in-plane deformation gradient tensor takes the form: 

Fplane =

[
λ1 0
0 λ2

]

, (16)  

where λ1 and λ2 represent the in-plane principal stretches. For a given 
deformation gradient F, various bond lengths and orientations are 
considered. With the information of deformation gradient F and a 
particular bond vector, the corresponding bond length |xij|, the bond 
stretch λb and the bond rotation dθb can be obtained through the geo-
metric relation. The bond stretch is expressed as: 

λb =
|yij|

|xij|
, (17)  

where yij = Fixij. The rotation angle is calculated as: 

dθb = arcsin

(
xij × yij

|xij|⋅|yij|

)

. (18) 

Meanwhile, the corresponding force density t of this bond can be 
calculated by the NOSB PD formulation (Eq. (2)). Then, the force density 
vector is decomposed into tn and tτ, which are along the direction of the 
deformed bond and tangent to the deformed bond respectively, as 
shown in Fig. 3(a). Note that the positive direction of tn is pointing form 
yi to yj, and counter-clockwise direction is defined as the positive di-
rection of θ and tτ. 

To find the mapping from the bond related variables to the force 
density vector, a deep neural network with λb, dθb, bond length lb (lb = | 
xij|), C33 and detF as the input, tn and tτ as the output is constructed. The 
process is illustrated in Fig. 3(b). For simplicity, the spatial discretiza-
tion size dx and its horizon radius δ are fixed at 0.02 cm and δ = 3.15 dx 
for this study. 

5. Generation of training data 

The pseudocode for generating training data is shown in Algorithm 
1. Various loading conditions including but not limited to uniaxial 
tension, pure shear test or biaxial tension are considered. Parameters λ1 

and λ2 are set from 0.8 to 4.0 respectively, which covers standard 
deformation states of rubber-like materials in plane stress case. The 
shear modulus and bulk modulus are set 1 and 100 respectively. The 
neural network structure is illustrated in Fig. 4, with five neurons as the 
input and two neurons as the output. Note that the tensors in the algo-
rithm are all for 2D case. 

Considering a wide range of deformation stated and bond vector, 
around 10,000 samples are generated in the training data. The training 
process is carried out using the Neural Net Fitting tool on Matlab 
(R2023b, MathWorks, USA). The number of hidden layers and output 
layers are set to 20 and 2, respectively. The Sigmoid function is applied 
to each hidden layer as the activation function. The Levenberg- 
Marquardt algorithm [50,51] is the training function. 70% of the data-
set is used to train the model, while15% is reserved for both validation 
and prediction. There is no noise in the process of generating training 
data, since all the quantities are obtained from pure mathematical for-
mulas. Therefore, the trained NN achieves a high accuracy of around 
99%. 

The method used to construct the training data and select input 
neurons is not restricted. For instance, the horizon radius δ can be set to 
1 in the training data. The bond length lb of the input neurons can be non 
dimensionalized as lb/δ. Then in the actual numerical implementation, 
the force density predicted by the NN needs to be multiplied by a factor 
to satisfy different horizon sizes. And one can deduce that the factor is 
related to the value of the shape tensor and the actual bond length (Eq. 
(2)). Additionally, if the weight function is adjusted to eliminate the 
bond force density’s dependence on the bond length, the neuron lb can 
be removed, resulting in improved efficacy of the trained NN. There are 
many other forms of construction of the NN that need to be explored 
further. 

6. Numerical examples 

6.1. Procedure and implementation 

In the PD implementation, the considered domain is discretized 
uniformly into material points. The equation of motion is rewritten as: 

Algorithm 1 
Pserudocode for generating training data.  

for various λ1 and λ2 

build the in-plane deformation gradient tensor F 
for various bond length lb ∈ (0, δ] 

for various bond orientation θb ∈ (0, 2π] 
bond vector is (lbcosθb,lbsinθb)T 

calculate C33 by Eq. (9) 
calculate stress tensor P by Eq. (8) 
calculate force density vector t by Eq. (2) 
decompose t into tn and tr 

calculate bond stretch λb and rotation angle dθb 

write input data: Xb, dθb, lb, C33, dctF 
write output data: |tn |, |tr | 

end 
end 

end  

Fig. 4. Illustration of the neural networks.  
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ρiüi =
∑

j∈Hi

(
ti − tj

)
Vj + bi. (19) 

Eq. (4) is rewritten as 

Fi =
∑

j∈Hi

w
(
yij ⊗ xij

)
Vj⋅K− 1

i , (20)  

with shape tensor Ki being 

Ki =
∑

j∈Hi

w
(
xij ⊗ xij

)
Vj. (21) 

The detailed implementation procedures are shown in Algorithm 2. 
To optimize performance, the input data for each bond is consolidated 
into an input matrix. The input matrix is then fed into the trained NN 
model at each time step. It is not recommended to call the trained NN 
model for each bond individually as this could significantly increase 
processing time. 

It should be noticed that, the C33 and detF in the input matrix are set 
as C33 = (C33(i) + C33(j))/2 and detF = (detFi + detFj)/2. The term dθ is 
modified as dθ = dθb − (dθHi + dθHj )/2. Here, dθH is the rotation angle of 
the horizon which can be obtained from the deformation gradient tensor 
as: 

dθHi = 0.5
[
arcsin

(
G(1)1g(1)2 − G(1)2g(1)1

)
+ arcsin

(
G(2)1g(2)2 − G(2)2g(2)1

)]
,

(22)  

with 

G(1) =
[
G(1)1G(1)2

]T
= [ 1 0 ]T

G(2) =
[
G(2)1G(2)2

]T
= [ 0 1 ]T

g(1) =

[
g(1)1

g(1)2

]

=

⎡

⎢
⎢
⎣

F11

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

F2
11 + F2

21

√

F21

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

F2
11 + F2

21

√

⎤

⎥
⎥
⎦

g(2) =

[
g(2)1

g(2)2

]

=

⎡

⎢
⎢
⎣

F12

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

F2
12 + F2

22

√

F22

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

F2
12 + F2

22

√

⎤

⎥
⎥
⎦

. (23) 

It is important to note that bond rotation is relative to its horizon and 
is not affected by rigid body rotation. Therefore, dθH should be calcu-
lated. The vectors G and g refer to the convected basis vectors, which are 
also used in Refs. [47,48]. When generating training data, the shape 
tensor K is theoretically calculated on a circular horizon. However, in PD 
implementation, the discretization brings some error when calculating 
the shape tensor. Furthermore, the material points located on the edge 
or at the corner do not have a complete circular horizon. Therefore, 
some modifications should be made. The force density vector is modified 
as: 

tmodified =
faci + facj

2
tnn, (24)  

where tnn is the output of the trained neural network. The factor fac is 
formed based on the value of the shape tensor, expressed as: 

faci =
2
∫

circularhorizonw(|xij|)x2
ij,1dVj

∑

j∈Hi

w(|xij|)x2
ij,1Vj +

∑

j∈Hi

w(|xij|)x2
ij,2Vj

, (25)  

with xij,1 and xij,2 representing the components of the bond vector xij. 
In this section, some numerical examples are analyzed to illustrate 

the accuracy and efficiency of the present algorithm. For all the nu-
merical examples, uniform discretization is used with a fixed horizon 
size of 3.15dx, where the spatial discretization size dx is fixed at 0.02 cm. 
The equation of motion is solved using the explicit central difference 
method. The quasi-static solutions are achieved by introducing a nu-
merical damping term into the equation of motion. 

6.2. Uniaxial tension 

As shown in Fig. 5, there is a Neo-Hookean sheet with dimension of 3 
cm × 1 cm. A displacement is applied on the right edge. The left edge is 
not allowed to move along the x1 direction and its midpoint is fixed to 
prevent the rigid motion. The shear modulus is 1.0 kPa with bulk 
modulus being 100.0 kPa. The sheet is stretched at three different 

Algorithm 2 
Pseudocode for PD implementation.  

Preparation: Discrete the model and create arrays to store the initial position vector x, deformed position vector y, displacement vector u. 
Search and store the neighborhood points for each material point. 
Build an input matrix in dimension n_total_bond × 5 (λb,dθ, lb C33, detF), and an output matrix in dimension n_total_bond × 2 (|tn |, |tr |). 
for tt = 1: max_time_step 

apply the boundary conditions 
calculate the deformation gradient for each node (Eq. (15)) 
calculate C33(i), detFi and dθHi for each node 
for i = 1: total_node 

for j = l: n_neighbor 
calculate λb, dθb and lb for the bond 
write the λb, dθ, lb,C33 and detF to the certain row of input matrix 

end 
end 
use the neural network to map the input matrix to the output matrix 
assemble the tn and tr to each material point 
update the position of material points by kinetic equation 

end  

Fig. 5. Geometry and boundary conditions of the uniaxial test.  
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stretch ratio, λ = 1.5, 2.0 and 2.5, where λ is the ratio of the current 
length to the initial length along the loading direction. The simulations 
are carried out using the proposed NN NOSB PD and the BA NOSB PD 
respectively. The contours of the vertical displacement are plotted in 
Fig. 6. 

For uniaxial tension, the principal stretches are λ, λ− 1/2 and λ− 1/2. 
Thus, the strain energy density can be expressed as 

Ψuniaxial =
μ
2
(
λ2 + 2λ− 1 − 3

)
. (26) 

The nominal stress along the loading direction is expressed as [55]: 

s =
∂Ψuniaxial

∂λ
= μ
(
λ − λ− 2). (27) 

The theoretical prediction of u2 can be obtained setting the vertical 
stretch as λ− 1/2, where u2 is the displacement of the bottom edge along 
x2 direction. The comparisons of the PD predictions and theoretical 
predictions are presented in Table 1. The error is defined as: 

error =
|valuetheory − valuePD|

valuetheory
× 100%. (28) 

The results show that all errors are within 3.5%, which demonstrates 
the capability of the model to accurately capture the stress and slight 
compressibility under uniaxial loading. The main source of the error is 

Fig. 6. Vertical displacement contours of the deformed sheet for λ=1.5, 2.0 and 2.5 respectively. (a)-(c): NN NOSB PD results. (d)-(e): BA NOSB PD results. The unit 
is centimeter. 

Table 1 
The comparison of the vertical displacement and nominal stress between theo-
retical prediction and NN NOSB PD prediction.  

stretch u2_PD 
(cm) 

u2_theory 
(cm) 

Error 
(%) 

stress_PD 
(kPa) 

stress_theory 
(kPa) 

Error 
(%) 

1.5 0.0915 0.0918 0.33 1.09 1.06 3.26 
2.0 0.145 0.146 0.68 1.80 1.75 2.86 
2.5 0.182 0.184 1.09 2.40 2.34 2.56  

Table 2 
Comparisons of time consumed by NN NOSB PD and BA NOSB PD.  

λ=1.5 (1000 steps) λ=2.0 (1500 steps) λ=2.5 (2000 steps) 

time_NN time_BA ratio time_NN time_BA ratio Time_NN time_BA ratio 

359s 4456s 12.4 535s 6825s 12.8 708s 9173s 13.0  

Fig. 7. Geometry and boundary conditions of the pure shear test.  

Fig. 8. Comparison of the nominal stress predicted by PD model and measured 
by experiment. 
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due to the boundary effect of PD. The vertical displacements predicted 
by BA NOSB PD is 0.091 cm, 0.145 cm, 0.181 cm under λ = 1.5, 2.0 and 
2.5, respectively. The corresponding nominal stress are 1.06 kPa, 1.75 
kPa and 2.32 kPa. 

Matlab (R2023b, MathWorks, USA) programs are developed to run 
the simulations. The quasi-static solutions are obtained under λ = 1.5, 
2.0, and 2.5 by performing 1000, 1500, and 2000 time steps, respec-
tively. Table 2 lists the time taken by both schemes. In all examples, NN 

NOSB PD consumed less than one-tenth of the time taken by BA NOSB 
PD. This suggests that the efficiency disparity can be more significant in 
3D cases. 

6.3. Pure shear test 

A commonly used test for rubber-like materials is the pure shear test. 
In this section, a Neo-Hookean sheet measuring 5 cm × 1 cm is tested, as 
described in Ref. [55]. As shown in Fig. 7, the top edge of the sheet is 
gradually loaded upward while the bottom edge is fixed. The shear 
modulus is 3.06 kPa and the bulk modulus is 306.0 kPa. The sheet is 
loaded to stretch gradually, and the horizontal shrink of the sheet can be 
neglected. Due to the slight compressibility, the stretch along the 
thickness direction is around 1/ λ. This deformation state can be ach-
ieved by shear stress solely, as shown in a Mohr’s circle. This type of 
experiment is called a pure shear test and is widely performed on 
rubber-like materials [56–58]. 

Fig. 8 shows the of the nominal stress measured in experiment 
(Ref. [55]) is compared the stress predicted by the proposed PD model. 
Using a time step number of 1500, the time consumed by BA NOSB PD is 
11,215 s, while NN NOSB PD took 850 s. The ratio is around 13.2. In 
Fig. 9, the horizontal displacement contours at λ = 2.5 are predicted by 
NN NOSB PD, BA NOSB PD and FEM, respectively. The FEM analysis is 
performed on ANSYS with 12,500 quadratic quadrilateral elements. The 
maximum horizontal displacement predicted by NN NOSB PD is around 
0.211 cm. This is compared with 0.218 cm calculated by FEM. The de-
viation is 3.2%. 

6.4. Tension of a sheet with a hole 

As is shown in Fig. 10, the Neo-Hookean sheet is measured to be 4 cm 
× 3 cm in size. Tensile displacement is applied to the top and bottom in 
opposite directions, both with a magnitude of 0.4 cm (λ = 1.2). There is a 
hole in the center of the sheet with a diameter of 0.8 cm. The shear 
modulus and bulk modulus are 1.0 kPa and 100.0 kPa, respectively. The 
vertical displacement contours predicted by NN OSB PD and FEM are 
shown in Fig. 11. The FEM simulation is performed on ANSYS, using 
4662 quadratic quadrilateral elements. The comparison of the hori-
zontal displacement on the left edge, as predicted by the proposed 
method and FEM, can be seen in Fig. 12. The maximum horizontal 
displacement is found to be 0.16 cm, with a deviation of 2.5% compared 
to the FEM prediction. 

6.5. Pure shear with a precut 

This numerical example is compared to the pure shear tear test that 
was conducted in Ref. [59]. The geometry and boundary conditions are 
shown in Fig. 13. The length and width of the sheet are 11 cm and 3 cm, 
respectively, and its thickness is 2.5 mm. The top edge is gradually 
displaced while the bottom edge is fixed. The material parameter is 
calibrated by comparing the elastic response of the sample without 
cracks, as was done in Ref. [59]. The material is described as a nearly 
incompressible Neo-Hookean model with a shear modulus of 0.72 MPa. 

A history-dependent function is introduced in the force density 
vector to record the failure of the bonds as: 

ti = γ(λb, t)w
( ⃒
⃒xij
⃒
⃒
)
PiK− 1

i xij, (29)  

and the history-dependent function is defined as: 

γ(λb, t) =
{

1, ifλb < λcforall0 ≤ t′ ≤ t
0, otherwise

, (30)  

where t is time. If the bond stretch exceeds the critical value λc, it will 
break irreversibly. The damage of a material point is defined as: 

Fig. 9. Horizontal displacement contours of the deformed sheet predicted by 
(a) NN NOSB PD, (b) BA NOSB PD, (c) FEM. The stretch is 2.5. The unit 
is centimeter. 

Fig. 10. Geometry and boundary conditions of a sheet with a hole.  
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dmgi = 1 −

∫

Hi
w
( ⃒
⃒xij
⃒
⃒
)
γ(λb, t)dVj

∫

Hi
w
( ⃒
⃒xij
⃒
⃒
)
dVj

. (31) 

There are various criteria to determine the bond breakage, including 
using criteria based on fracture energy [60–62], J-integral based 
criteria, and stress tensor based criteria [63,64]. For the Mode-I crack of 
rubber-like materials, the crack tip can be observed as a circular arc and 
the material near the crack tip is under uniaxial tension [65,66]. 
Therefore, the failure at the crack tip of hyperplastic material is assumed 

to occur when bond stretch λb exceeds λc, which is called the effective 
stretch criterion for rubber-like material [65]. The value of λb can be 
calibrated by comparing it with the experimental loading curve until 
rupture [29]. In this particular example, λc is set 3.5. 

Some crack propagation processes are illustrated in Fig. 14. The 
crack continues to propagate along a straight line until the sheet is 
divided into two parts. The predicted loading curve is depicted in 
Fig. 15, which is very close to the experiment data provided in Ref. [59]. 
Thus, the proposed NN NOSB PD is validated to model the crack 
propagation. 

6.6. Tension of a sheet with voids and precuts 

The Fig. 16 shows the geometry of a Neo-Hookean sheet that has five 
circular voids with the same diameters, one at the center and the others 
located symmetrically. The sheet is 4.5 cm × 3.0 cm in size, and there 
are two precuts on its left and right edges. Displacements are applied to 
the top and bottom edges to stretch the sheet gradually. For this 
particular example, λc is set 2.0. The crack propagation process is 
illustrated in Fig. 17. The precuts initially propagate to the voids, and 
then new cracks develop on the boundary of the central void. 

6.7. Modeling Gent material 

The proposed method is capable of modeling other hyperelastic 
models. Except for the Neo-Hooken model, the Gent model is also 
studied in this work. The strain energy density function of Gent model is 
written as [52]: 

ΨGent = −
μJm

2
ln
(

1 −
I1 − 3

Jm

)

+
1
D

(
J2 − 1

2
− lnJ

)

. (32) 

The stretch limit parameter Jm defines the stiffer response under 
large tensile stretch. For slight compressibility, parameter D should be 
set relatively small. The same NN strategy can learn different non-linear 
behavior automatically. In this example, uniaxial tension is performed 
on a sheet with the same geometry as in Section 6.2. The shear modulus 
is 1.0 kPa. Parameter D is 0.01 (kPa)− 1 and Jm is 120. 

For uniaxial tension, the principal stretches are λ, λ− 1/2 and λ− 1/2. 
Thus, the strain energy density can be expressed as: 

Ψuniaxia = −
μJm

2
ln
(

1 −
λ2 + 2λ− 1 − 3

Jm

)

. (33) 

Fig. 11. Vertical displacement of the sheet at λ = 1.2 predicted by (a) NN NOSBPD, (b) FEM. The unit is centimeter.  

Fig. 12. Comparison of the horizontal displacement on the left edge.  

Fig. 13. Geometry and boundary conditions of pure shear test with a precut.  
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The nominal stress along the loading direction is written as [32]: 

s =
∂Ψuniaxial

∂λ
=

μJm
(
λ − λ− 2)

Jm − λ2 − 2λ− 1 + 3
. (34) 

As Jm increases to infinity, this expression recovers that of the Neo- 
Hookean model (Eq. (27)). 

The Fig. 18 shows the vertical displacement contour provided by the 
NN NOSB PD at λ = 2.0. By setting the vertical stretch, the calculated 
vertical displacement on the bottom edge is 0.146 cm. The average 
vertical displacement on the bottom edge, as predicted by PD is 0.145 
cm. The deviation from the theoretical value is only 0.7%. According to 
PD prediction, the nominal stress along the loading direction is 1.83 kPa, 
whereas the theoretical value is 1.78 kPa. The error from the theoretical 
value is 2.8%. 

7. Conclusions 

In this paper, a new algorithm for modeling the large deformation 
and failure of rubber-like materials is proposed. The algorithm is based 
on a neural network and NOSB PD. The constitutive function of rubber- 
like materials can be directly introduced in the governing equation of 
NOSB PD by the first Piola-Kirchhoff stress. A deep neural network 
technique is used to achieve a novel mapping between the deformation 
state and the force density vector in the PD framework. This technique 
can avoid the zero-energy modes and greatly improve the efficiency. The 
accuracy of the proposed method is validated through comparisons with 
FEM results and experiment data. The proposed NN NOSB PD is general 
enough for various hyperelastic models. Extending it to model 3D 
problems would be interesting and demonstrate more advantages of the 
proposed NN NOSB PD. 
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