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Preface To the Online Edition 

This is an online edition of the book Fast Multipole Boundary Element Method, 
first published by Cambridge University Press in 2009. The purpose of this e-edition is 
to keep the book updated, enhance the content, and improve the presentation (including 
the addition of color and hyperlinks). 

Main additions and improvements in this e-edition include: 
New analytical integration formulas: New Appendices A.4-A.6 now contain 

formulas for kernels in the boundary integral equations (BIE) formulations for 3-D 
potential, elastostatic, and Stokes flow problems. These results are valid for flat-surface 
polygonal constant boundary elements, including triangular and quadrilateral elements. 
Using these formulas instead of numerical integration schemes can significantly 
improve the accuracy and efficiency of the boundary element method (BEM). 

Enhanced illustrations and examples: New figures have been added to Chapters 1, 
2 and 6 to aid in understanding key concepts and derivations. A new example for 
solving potential flow problems has been included in Chapter 2, and the numerical 
results for acoustics in Chapter 6 have been updated. 

It is important to note that nearly 20 years have passed since the work for the first 
edition was prepared. In that time, computing hardware, programming techniques, and 
the fast multipole method itself have advanced dramatically. A comprehensive update 
to reflect all these changes would require writing a completely new volume. 
Consequently, the numerical examples in Chapters 2-5, which were done using PCs 
from that time, have not been updated in this e-edition in terms of reported CPU times. 
These timing data should be considered in the context of the hardware available then 
and may be updated in the future. 

The author would like to thank his postdoctoral researchers and graduate students 
at the Southern University of Science and Technology (SUSTech) for their comments 
and suggestions on this e-edition. 

The BIE/BEM and its fast solution techniques (including the fast multipole method, 
adaptive cross approximation method, and, more recently, fast direct solver method) 
are constantly evolving. As intended with the first edition, this book aims to lay the 
foundations of the BIE/BEM and provide an introduction to the fast solution methods. 
For the latest advances in this field, readers are encouraged to consult the current 
literature on the BIE/BEM. 

The author will welcome any comments and suggestions regarding how to further 
improve the book. The current contact email is listed below. 
 
Yijun Liu 
Shenzhen, China 
liuyj3@sustech.edu.cn  
 

  

https://www.yijunliu.com/Publications/FastBEM_Book.htm
mailto:liuyj3@sustech.edu.cn
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Preface To the First Edition 

This book is an introduction to the fast multipole boundary element method (BEM), 
which has emerged in recent years as a powerful and practical numerical tool for 
solving large-scale engineering problems based on the boundary integral equation (BIE) 
formulations. The book integrates the classical results in BIE formulations, the 
conventional BEM approaches applied in solving these BIEs, and the recent fast 
multipole BEM approaches for solving large-scale BEM models. The topics covered in 
this book include potential, elasticity, Stokes flow, and acoustic wave problems in both 
two-dimensional (2-D) and three-dimensional (3-D) domains. 

The book can be used as a textbook for a graduate course in engineering, and by 
researchers in the field of applied mechanics and engineers from industries who would 
like to further develop or apply the fast multipole BEM to solve large-scale engineering 
problems in their own fields. This book is based on the lecture notes developed by the 
author over the years for a graduate course on the BEM in the Department of 
Mechanical Engineering at the University of Cincinnati. Many of the results are also 
from the research work of the author’s group at Cincinnati and from the collaborative 
research conducted by the author with other researchers during the last 20 years. 

The book is divided into six chapters. Chapter 1 is a brief introduction to the BEM 
and the fast multipole method. Discussions on the advantages of the BEM are 
highlighted. A simple beam problem is used to illustrate the idea of transforming a 
problem cast in a differential equation formulation to a boundary equation formulation. 
The mathematical background needed in this book is also reviewed in this chapter. 

Chapter 2 is on the potential problems governed by the Poisson equation or the 
Laplace equation. This is the most important chapter of this book, which presents the 
procedures in developing the BIE formulations and the conventional BEM to solve 
these BIEs. The fundamental solution and its properties are discussed. Both the 
conventional (singular) and hypersingular BIE formulations are presented, and the 
weakly singular nature of these BIEs is emphasized. Discretization of the BIEs using 
constant and higher-order elements is presented, and the related issues in handling 
multidomain problems, domain integrals, and indirect BIE formulations are also 
reviewed. Finally, programming for the conventional BEM is discussed, followed by 
numerical examples solved by using the conventional BEM. 

Chapter 3 is on the fast multipole BEM for solving potential problems, which lays 
the foundations for all the subsequent chapters. Detailed derivations of the formulations, 
discussions on the algorithms, and computer programming for the fast multipole BEM 
are presented for 2-D potential problems, which will serve as the prototype of the fast 
multipole BEM for all other problems discussed in the subsequent chapters. Then the 
fast multipole formulation for 3-D potential problems is presented. Numerical examples 
of both 2-D and 3-D problems are presented to demonstrate the efficiency and accuracy 
of the fast multipole BEM for solving large-scale problems. This chapter should be 
considered the focus of this book and studied thoroughly if one wishes to develop his 
or her own fast multipole BEM computer codes for solving other problems. 

The approaches and results developed in Chapters 2 and 3 are extended in the 
following three chapters to solve 2-D and 3-D elasticity problems (Chapter 4), Stokes 
flow problems (Chapter 5), and acoustic wave problems (Chapter 6). In each case, the 
related BIE formulations are presented first, and the same systematic fast multipole 
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BEM approaches developed for 2-D and 3-D potential problems are extended to the 
related fast multipole formulations for the subject of the chapter. In all these chapters, 
the use of the dual BIE formulations (a linear combination of the conventional and 
hypersingular BIEs) is emphasized, because of the faster convergence rate they have 
for the fast multipole BEM solutions. 

One important objective of this book is to demonstrate the applications of the fast 
multipole BEM in solving large-scale practical engineering problems. To this end, 
many numerical examples are presented in Chapters 3-6 to demonstrate the relevance 
and usefulness of the fast multipole BEM, not only in academic research, but also in 
real engineering applications. Many of the large-scale models solved by using the fast 
multipole BEM are still beyond the reach of the domain based numerical methods, 
which clearly demonstrates the huge potentials of the fast multipole BEM in many 
emerging areas such as modeling of advanced composites, biomaterials, 
microelectromechanical systems, structural acoustics, and image-based modeling and 
analysis. 

Exercise problems are provided at the end of each chapter for readers to review the 
materials covered in the chapter. More exercise problems or course projects on 
computer code development and software applications can be utilized to help further 
understand the methods and enhance the skills. All the computer programs of the fast 
multipole BEM for potential, elasticity, Stokes flow and acoustic wave problems that 
are discussed in this book are available from the author’s website (updated: 
https://yijunliu.com/Software). 

Analytical integration of the kernel functions for 2-D potential, elasticity, and 
Stokes flow cases and the sample computer source codes for both the 2-D potential 
conventional BEM and the fast multipole BEM are provided in the two appendices. 
Electronic copies of these source codes can be downloaded from this book’s webpage 
at the Cambridge University Press website. References for all the chapters are provided 
at the end of the book. 

The author hopes that this book will help to advance the fast multipole BEM – an 
elegant numerical method that has huge potential in solving many large-scale problems 
in engineering. The author welcomes any comments and suggestions on further 
improving this book in its future editions and also takes full responsibilities for any 
mistakes and typographical errors in this current edition. 
 
Yijun Liu 
Cincinnati, Ohio, USA 
 

https://yijunliu.com/Software
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Chapter 1. Introduction 

1.1. What Is the Boundary Element Method? 
The boundary element method (BEM) is a numerical method for solving boundary-

value or initial-value problems formulated by use of boundary integral equations 
(BIEs). In some literature, it is also called the boundary integral equation method. 
Figure 1.1 shows the relation of the BEM to other numerical methods commonly 
applied in engineering, namely the finite difference method (FDM), finite element 
method (FEM), element-free (or meshfree) method (EFM), and boundary node method 
(BNM). The FDM, FEM, and EFM can be regarded as domain-based methods that use 
ordinary differential equation (ODE) or partial differential equation (PDE) 
formulations, whereas the BEM and BNM are regarded as boundary-based numerical 
methods that use the BIE formulations. It should be noted that the ODE/PDE 
formulation and the BIE formulation for a given problem are equivalent mathematically 
and represent the local and global states of the same problem, respectively. In the BEM, 
only the boundaries, that is, surfaces for three-dimensional (3-D) problems or curves 
for two-dimensional (2-D) problems, of a problem domain need to be discretized. 
However, the BEM does have similarities to the FEM in that it does use elements, nodes, 
and shape functions, but on the boundaries only. This reduction in dimensions brings 
about many advantages for the BEM that are discussed in the following sections and 
throughout this book. 

 

 

Figure 1.1.  Relations of commonly used numerical methods for solving engineering 
problems. 

 

1.2. Why the BEM? 
The BEM offers some unique advantages for solving many engineering problems. 

The following are the main advantages of the BEM: 

Engineering Problems 

Mathematical Models 

Differential Equation 
(ODE/PDE) Formulations 

Boundary Integral Equation 
(BIE) Formulations 

Analytical 
 

Analytical 
 

Numerical 
 

Numerical 
 

FDM FEM EFM Others BEM Others BNM 
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• Accuracy: The BEM is a semi-analytical method and thus is more accurate, 
especially for stress concentration problems such as fracture analysis of 
structures. 

• Efficient in modeling: The BEM mesh (a collection of the elements used to 
discretize a continuum structure) is much easier to generate for 3-D problems 
or infinite domain problems because of the dimension reduction in the BIE 
formulations. 

• An independent numerical method: The BEM can be applied along with the 
other domain-based methods to verify the solutions to a problem for which no 
analytical solution is available. 

 

1.3. A Comparison of the FEM and BEM 
Table 1.1 gives a comparison of the BEM with the FEM regarding their main 

features, as well as advantages and disadvantages. This comparison is by no means 
complete, and certainly will change with the new development in either the FEM and 
BEM. 
 

Table 1.1.  A comparison of the FEM and BEM. 

FEM BEM 

Features 
• Derivative based (local) approach 
• Domain mesh:  2-D or 3-D mesh 
• Symmetrical, sparse matrices 
• Many commercial packages available 
 

• Integral based (global) approach 
• Boundary mesh: 1-D or 2-D mesh 
• Nonsymmetrical, dense matrices 
• Fewer commercial packages available 
 

Advantages 
• Solution is fast 
• Suitable for general structure analysis; 

large mechanical systems 
• Nonlinear problems 
• Composite materials (macroscale 

analysis) 

• Mesh generation is fast 
• Suitable for stress concentration 

problems (e.g., fracture mechanics) 
• Infinite domain problems 
• Composite materials (e.g., microscale 

continuum models) 
 

 

1.4. A Brief History of the BEM and Other References 
The direct BIE formulations and their modern numerical solutions that use 

boundary elements for problems in applied mechanics originated more than 40 years 
ago during the 1960s. The 2-D potential problem was first formulated in terms of a 
direct BIE and solved numerically by Jaswon, et al. [1-3]. This work was later extended 
to the vector case – 2-D elastostatic problem by Rizzo in the early 1960s for his Ph.D. 
dissertation at the University of Illinois at Urbana-Champaign, which was later 
published as a journal article in 1967 [4]. Following these early works, extensive 
research efforts were made in BIE formulations of many problems in applied mechanics 
and in the numerical solutions during the 1960s and 1970s [5-20]. The name boundary 
element method appeared in the middle of the 1970s in an attempt to make an analogy 
with the FEM [21-23]. 
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Some of the important textbooks and research volumes in the 1980s and early 
1990s, which made significant contributions to the research and development of the 
BIE/BEM, can be found in Refs. [24-28]. A few recent research volumes with advanced 
treatment of the topics on BIE and BEM can be found in Refs. [29-32]. Readers may 
consult these publications for more detailed discussions on many of the topics in this 
book or other topics not covered in this book regarding the BIE formulations and the 
related conventional BEM solution techniques. 
 

1.5. Fast Multipole Method 
Although the BEM has enjoyed the reputation of easy meshing in modeling many 

problems with complicated geometries, its efficiency in solutions has been a serious 
problem for analyzing large-scale models. For example, the BEM has been limited to 
solving problems with a few thousand DOFs (degrees of freedom) on a personal 
computer (PC) for many years. This is because the conventional BEM in general 
produces dense and nonsymmetric matrices that, although smaller in size, require 

2( )O N  operations to compute the coefficients and another 3( )O N  operations to solve 
the system by using direct solvers (here N is the number of equations of the linear 
system or DOFs in the BEM model). 

In the mid-1980s, Rokhlin and Greengard [33-35] pioneered the innovative fast 
multipole method (FMM) that can be used to accelerate the solutions of BIEs by 
severalfold, to reduce the CPU time in a FMM accelerated BEM to O(N). However, it 
took almost a decade for the mechanics community to realize the potential of the FMM 
for the BEM. Some of the early research on the fast multipole BEM in applied 
mechanics can be found in Refs. [36-40], which show the great promise of the fast 
multipole BEM for solving large-scale engineering problems. A comprehensive review 
of the fast-multipole-accelerated BIE and BEM and the research work up to 2002 can 
be found in Ref. [41]. 

In this book, we use the FMM to solve the various BEM systems of equations for 
potential, elastostatic, Stokes flow, and acoustic wave problems. The fast multipole 
BEM represents the future of BEM research and applications. However, understanding 
the BIE formulations and the conventional BEM procedures in solving these BIEs is 
still very important. Learning the intricacies of the BIE formulations and the 
conventional BEM while promoting the fast multipole BEM is emphasized in this book. 
 

1.6. Applications of the BEM in Engineering 
Today, the BEM has gained a great deal of attention in the field of computational 

mechanics, especially with the help of the FMM. The applications of the BEM are now 
well beyond the range of classical potential and elasticity theories, extending to many 
engineering fields, including heat transfer, diffusion and convection, fluid flows, 
fracture mechanics, geomechanics, plates and shells, inelastic problems, contact 
problems, wave propagations (acoustic, elastic, and electromagnetic waves), 
electrostatic problems, design sensitivity and optimizations, and inverse problems. 
Examples of the fast multipole BEM applications are given in the following chapters, 
in which applications of the fast multipole BEM for solving large-scale problems in 
many engineering fields are presented. 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 14 

As an example, we use an engine-block model (Figure 1.2) to conduct a thermal 
analysis and compare the results obtained with the FEM and the BEM. With the FEM 
(using ANSYS®), more than 363,000 volume elements are applied with DOFs above 
1.5 million. With the BEM (a fast multipole BEM code discussed in Chapter 3), only 
about 42,000 constant surface elements (triangular constant elements) are applied with 
the same number of DOFs. Furthermore, meshing the volume is considerably more 
difficult and takes longer human time than meshing the surfaces of the engine block. 
On a desktop PC, the FEM solution took 50 min to finish, whereas the BEM solution 
took only about 16 min. The differences in the computed results for the temperature 
fields by the FEM and the BEM (Figure 1.3) are less than 1%. Considering the human 
time saved during the discretization stage, the advantage of the BEM in modeling 3-D 
problems with complicated geometries is most evident. 
 

      
     (a) FEM (363K volume elements/1.5M DOFs)      (b) BEM (42K surface elements/DOFs) 

Figure 1.2.  An engine block discretized using (a) finite elements and (b) boundary 
elements. 

 

      
(a) FEM (CPU time = 50 min.)   (b) BEM (CPU time = 16 min.) 

Figure 1.3.  Temperature field computed using (a) finite elements and (b) boundary 
elements. 

 

1.7. An Example – Bending of a Beam 
We first study a simple beam-bending problem (Figure 1.4) to see that the 

boundary approach is a valid and equivalent approach to solving engineering problems 
that are usually written in ODEs or PDEs. 
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Figure 1.4.  A simple beam-bending problem. 

 
We have the following governing equations based on simple beam theory: 

 
2

2 ( )d vEI M x
dx

= , (1.1) 

 ( )dM Q x
dx

= , (1.2) 

 ( )dQ q x
dx

= , (1.3) 

for (0, )x L∈ , where ( )v x is the deflection of the beam, EI is the bending stiffness, M(x) 
is the bending moment, Q(x) is the shear force, and q(x) is the distributed load in the 
lateral direction (Figure 1.4). Combining Eqs. (1.1)-(1.3), we also have 

 
4

4 ( )d vEI q x
dx

= . (1.4) 

To solve the beam problem, we need to solve either Eq. (1.1) if the bending moment 
M(x) is known or Eq. (1.4) if M(x) is not readily available, under given boundary 
conditions at x = 0 and x = L. In the following discussions, it is shown that solving ODE 
(1.1) is equivalent to solving an integral equation formulation that involves boundary 
values only. 

We first consider the so-called fundamental solution for Eq. (1.1), or the Green’s 
function for an infinitely long beam (Figure 1.5). Consider the load case in which a unit 
concentrated force P = 1 is applied at point x0 of the beam. 
 

 
Figure 1.5.  An infinitely long beam with a point force. 

 

The bending moment *
0( , )M x x  in the beam at x is governed by the following 

equation (see Eqs. (1.2) and (1.3)): 

 

x 

q(x) 

L 

y 

ML 

QL 

M0 

Q0 

 

x 0 

y 

x x0 r 

P = 1 
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2 *

0
0 02

( , ) ( , ), , ( , )d M x x x x x x
dx

δ= ∀ ∈ −∞ +∞ , (1.5) 

where 0( , )x xδ  is the Dirac δ function used to represent the distributed load q(x) in this 
case. An engineering “definition” of the Dirac δ function 0( , )x xδ  can be given as 

 0
0

0

0, if ,
( , )

, if .
x x

x x
x x

δ
≠

= ∞ =
 (1.6) 

An important property of the Dirac δ function 0( , )x xδ , which is a generalized function, 
is the sifting property [42] given by 

 0 0( ) ( , ) ( )f x x x dx f xδ
+∞

−∞
=∫  (1.7) 

for any continuous function ( )f x . 

Solving Eq. (1.5) by using, for example, Fourier transformation (see Problem 1.1), 
or simply from the physical argument, we can show that the bending moment at x that 
is due to the unit point force at x0 is 

 *
0

1( , )
2

M x x r= , (1.8) 

where 0r x x= −  is the distance between the source point x0 and field point x. This is 
the fundamental solution for Eq. (1.1) and is the first ingredient needed in our boundary 
formulation. The second ingredient is the following generalized Green’s identity: 

 
2 2

2 20
0

x L
L

x

d v d u dv duu v dx u v
dx dx dx dx

=

=

   − = −   
  

∫  (1.9) 

for any two functions ( )u x  and ( )v x  with sufficient smoothness (continuity of the 
derivatives). The significance of this identity is that it can transform a one-dimensional 
(1-D) domain integral to evaluations of the functions at the boundaries. 

Now if we select u  to be the fundamental solution *
0( , )M x x  satisfying Eq. (1.5) 

and v  to be the deflection of the beam satisfying Eq. (1.1), we have the following result 
from Eq. (1.9): 

 
2 2 * *

* *
2 20

0

x L
L

x

d v d M dv dMM v dx M v
dx dx dx dx

=

=

   
− = −   

   
∫ . 

Applying Eqs. (1.1) and (1.5), we obtain 

 
*

* *
0 0

0

( )
x L

L

x

M dv dMv x M dx M v
EI dx dx

=

=

  = − −  
   

∫  

or 

 
* * *

0 0 0 0 00

* *
0 0 0 0

( )( ) ( , ) ( , ) ( ,0)

( , ) ( ,0) , (0, ),

L

L

L

M xv x M x x dx Q x L v Q x v
EI

M x L M x x Lθ θ

= + −

− + ∀ ∈

∫  (1.10) 
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in which 0 0, ,Lv v θ , and Lθ  are the deflection and rotation of the beam at the left and 
right ends, respectively, and *Q  is the shear force in the fundamental solution 
corresponding to *M  in (1.8); that is, 

 
* 0

* 0
0

0

1 ,( , ) 2( , ) .
1 ,
2

for x xdM x xQ x x
dx for x x

 >= = 
− <


 (1.11) 

Equation (1.10) is an expression of the solution for deflection at any point inside 
the beam. Once the deflections and rotations at the two ends (boundaries) of the beam 
are obtained, we can use Eq. (1.10) to evaluate the deflection of the beam at any point 
x0. 

To derive a boundary formulation, we first let x0 tend to 0 in Eq. (1.10) to have 

 
0 00

( ) 1 1
2 2 2 2

L

L L
x M x Lv dx v v

EI
θ= + + −∫ , 

and then we let x0 tend to L in Eq. (1.10) to have 

 0 00

( ) 1 1
2 2 2 2

L

L L
L x M x Lv dx v v

EI
θ−

= + + +∫ . 

Writing the two equations in a matrix form, we obtain the following boundary 
formulation: 

 0 0

0

1 1 0 11 1 ( )
1 1 1 02 2 2

L

L L

v xL M x dx
v L xEI

θ
θ

−         
+ =        − − −        

∫ . (1.12) 

This boundary formulation is equivalent to the ODE given in (1.1). If the bending 
moment is known, this equation can be applied to solve for the unknown boundary 
variables 0 0, , , andL Lv v θ θ  first. 

 

 
Figure 1.6.  A cantilever beam. 

 
As an example, we consider the cantilever beam in Figure 1.6 by using our derived 

boundary formulation. In this case, the bending moment is found to be 

 ( ) ( )M x F L x= − , 

and the boundary conditions are 

0 0v = ,       0 0θ = . 

Thus, boundary equation (1.12) yields 

 

x 

F 

L 

y 

EI 
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31 11

1 0 22 12
L

L

vL FL
EIθ

−     
=    

    
. 

Solving this equation, we obtain the deflection and rotation of the beam at the right end 

 
3 2

3 /6
L

L

v FL
LEIθ

   
=   

  
. 

Substituting these results into expression (1.10), we also have 

 

3 2
0 0

0 0

2
0 0 0

( ) 1( )
2 2 3 2 2

(3 ) , (0, );
6

L x x L xF L x FL FLv x dx
EI EI EI

F L x x x L
EI

−    −−
= + −   

   

= − ∀ ∈

∫
 

which agrees with the result from solving Eq. (1.1) directly. Thus boundary formulation 
(1.12) is equivalent to the ODE formulation in Eq. (1.1). 

Note that the simple beam example is used here to illustrate the procedures in 
transforming an ODE or PDE statement of a problem to a boundary formulation and 
the ingredients needed in this process. It does not mean that we will use this boundary 
formulation to solve beam bending problems. In fact, there are no advantages in solving 
1-D problems by using the boundary formulations or the BEM in general. 

The two major ingredients in the boundary formulation are the fundamental 
solution and the generalized Green’s identity. These two topics are expanded in 
following sections. 
 

1.8. Some Mathematical Preliminaries 
Some mathematical results needed in later chapters of this book are reviewed in 

this section. For more detailed coverage of these topics, the reader should consult other 
books on the related topics. Many of the topics are covered in Fung’s outstanding 
textbook [43]. 

1.8.1. Integral Equations 
An integral equation is an equation that contains unknown functions under the 

integral sign. For example, the following equations are two integral equations in one 
dimension: 

 ( , ) ( ) ( )
b

a
K x y y dy f xφ =∫ , (1.13) 

 ( ) ( , ) ( ) ( )
b

a
x K x y y dy g xφ φ= +∫ , (1.14) 

in which φ  is an unknown function, ( , )K x y  is a known kernel function, and f and g 
are two given functions. Equation (1.13) is a linear Fredholm equation of the first kind, 
whereas Eq. (1.14) is a linear Fredholm equation of the second kind. The kernel 
function ( , )K x y  determines the characteristics of the integral equation. For example, 
if 
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 1( , )K x y
x y

=
−

, 

then the integrals in (1.13) and (1.14) are singular when ( , )x a b∈ , and Eqs. (1.13) and 
(1.14) are called singular integral equations. 

1.8.2. Indicial Notation 
Indicial notation is extremely useful in deriving the equations in BIE formulations. 

In indicial notation, coordinates x, y, and z are replaced with 1 2 3, , andx x x , respectively, 
for 3-D problems, or simply as ix , for i = 1, 2 (for two dimensions) or 1, 2, 3 (for three 
dimensions). For example, the equation of a plane in 3-D space, ax by cz p+ + = , can 
be written as 

 
3

1
i i

i
a x p

=

=∑ ,  

if we set 1 2 3, , anda a a b a c= = = . The proceeding expression can be further simplified 
if we apply the Einstein’s summation convention, which says that summation is implied 
if an index is repeated twice in the same term. With this convention, the proceeding 
equation for the plane in 3-D space can be written simply as 

 i ia x p= , 

where i is called a dummy index and can be changed to other symbols. For example, 
the dot product of two vectors a



 and b


 can be expressed as 

 i i k ka b a b a b⋅ = =
 

, 

in indicial notation. A linear system of equations =Ax b  can be written as 

 ij j ia x b= , 

with indices i and j running from 1, 2, …, n (number of the equations). 

Various differentiations of a function ( , , ) ( )if x y z f x=  can be expressed as 

 , , ,i
i

f f f f f
x y z x
∂ ∂ ∂ ∂

⇒ ≡
∂ ∂ ∂ ∂

,  

1 2 3
1 2 3

,i i
f f fdf dx dx dx f dx
x x x
∂ ∂ ∂

= + + =
∂ ∂ ∂

, 

and 

 
2 2 2 2

2
2 2 2

1 2 3

,ii
i i

f f f ff f
x x x x x
∂ ∂ ∂ ∂

∇ = + + = =
∂ ∂ ∂ ∂ ∂

. (1.15) 

The Kronecker delta ijδ  is defined by 

 
1, if

,
0, ifij

i j
i j

δ
=

=  ≠
 (1.16) 
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which is similar to the identity matrix. The Kronecker delta can be used to simplify 
expressions. For example,  

and , ,i j ij i i j j ij jk ika b a b a b f fδ δ= = = . 

Another important symbol in indicial notation is the permutation symbol ijke , 
which is defined as 

 
1, for cyclic suffix order :123,231,312
-1, for cyclic suffix order :132,213,321 .
0, if any two indices are the same

ijke

= 



 (1.17) 

For example, 112 231 213 3330, 1, 1, 0e e e e= = = − = , and so on. The vector product of two 

vectors a


 and b


 is c a b= ×
  

. In indicial notation, the components of c


 are given by 
i ijk j kc e a b=  when the permutation symbol is used. 

A useful relation between the Kronecker delta and the permutation symbol is 

 ijk ilm jl km jm kle e δ δ δ δ= − . (1.18) 

This relation can be verified from the following vector identity: 

( ) ( ) ( )a b c a c b a b c× × = ⋅ − ⋅
        

. 

1.8.3. Gauss Theorem 
The Gauss theorem in calculus is probably the single most important formula we 

need in the development of BIE formulations. For a closed domain V (either in two or 
three dimensions) with boundary S, we have 

 ,i iV S
dV n dSφ φ=∫ ∫  (1.19) 

for any differentiable function ( )ixφ , where in  is the component (direction cosines) of 
the outward normal. The following equations are some of the variations of the Gauss 
theorem: 

  ,i j i jV S
F dV F n dS=∫ ∫ , (1.20) 

 
V S

div dV dS= ⋅∫ ∫F F n , (1.21) 

 
V S

dV dS∇× = ×∫ ∫F n F , (1.22) 

where ( )i jF x=F  is a vector function. 

1.8.4. Green’s Identities 
Using the Gauss theorem, we can establish readily the following Green’s first 

identity: 

 2 , ,i iV S V

vu vdV u dS u v dV
n
∂

∇ = −
∂∫ ∫ ∫ , (1.23) 

and the Green’s second identity: 
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 ( )2 2

V S

v uu v v u dV u v dS
n n
∂ ∂ ∇ − ∇ = − ∂ ∂ ∫ ∫  (1.24) 

for any two continuous functions u and v. Various forms of the Green’s second identity 
are used in the development of the BIEs for different problems. 

1.8.5. Dirac δ Function 

The Dirac δ function ( , )δ x y  in two and three dimensions have the following 
sifting properties [42]: 

 
( ), if

( ) ( , ) ( ) ,
0, ifV

f V
f dV

V S
δ

∈
=  ∉

∫
x x

y x y y
x 

 (1.25) 

 
( ), if

( ) ( , ) ( ) ,
0, if

iV
i

f V
xf dV

x
V S

δ
∂− ∈∂  ∂= ∂  ∉

∫
x x

y x y y
x 

 (1.26) 

in which x and y represent two points in space, and ( ) ( )if f x=x  is a differentiable 
function. In generalized function theory, the Dirac δ function is continuous and 
differentiable [42]. Applications of the Dirac δ function can greatly simplify the 
derivations of the BIEs. 

1.8.6. Fundamental Solutions 
Fundamental solutions are important ingredients in BIE formulations. Without 

these fundamental solutions, we cannot convert the ODEs or PDEs into BIEs in general. 
For different problems, we have different fundamental solutions, which are the 
solutions that are due to a unit source (heat source, point force, unit charge, and so on) 
in an infinite space. These solutions have been found for most linear problems, and we 
do not delve into the derivations of these fundamental solutions. However, 
understanding the behaviors of the fundamental solution for a particular problem at 
hand is very important in developing good strategy to solving the problem with the 
BEM. This point is elaborated on in later chapters. 

For simple problems, a Fourier transform can be applied to obtain the fundamental 
solutions. For example, for beam equation (1.4), the fundamental solution *

0( , )v x x  
satisfies the following equation: 

 
4 *

0
0 04

( , ) ( , ), , ( , )d v x xEI x x x x
dx

δ= ∀ ∈ −∞ +∞ , (1.27) 

in which the Dirac δ function 0( , )x xδ  represents the unit point force at 0x  (Figure 1.5). 
For a function ( )f x , the Fourier transform and its inverse are defined by 

     [ ] 1( ) ( ) ( )
2

i xf x f x e dxλ λ
π

+∞

−∞
= =∫  , (1.28) 

and 
 

 ( )1( )
2

i xf x e dλλ λ
π

+∞ −

−∞
= ∫  , (1.29) 
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respectively. Applying the Fourier transform to Eq. (1.27) and noticing that 

[ ]( ) 1xδ = ,          
*

*dv i v
dx

λ
 

 =   
 

  , 

we obtain from Eq. (1.27) 

 * *
4

11 orEI v v
EI

λ
λ

   = =   
   . 

The inverse transform yields 

 * 3
0

1( , )
12

v x x r
EI

= , with  0r x x= − . (1.30) 

This is the deflection of the beam at x that is due to the point force at 0x . Applying 
Eq. (1.1), we have 

 
2 *

*
0 2

1( , )
2

d vM x x EI r
dx

= = , 

which is the corresponding moment in the fundamental solution as given in Eq. (1.8). 

1.8.7. Singular Integrals 
We encounter various so-called singular integrals in the BIE formulations. In these 

singular integrals, the integrands have singular points at which the integrands tend to 
infinity. Although we can show in later chapters that singular integrals in the BIEs can 
be removed analytically by use of the so-called weakly singular forms of the BIEs, 
understanding the concept of singular integrals is still very important in studying BIEs 
and the BEM. 

We use a few 1-D cases as examples to illustrate the behaviors and results of the 
singular integrals. First, consider the following integral: 

1( ) log , for
b

a
f x x y dy a x b= − < <∫ ,                         (1.31) 

over the interval [a, b] (Figure 1.7).  
 

 
Figure 1.7.  Integral on a 1-D interval [a, b]. 

 
The integrand tends to infinity at y x= , and thus the integral is singular. This is an 
improper integral and is evaluated as follows: 

 [ ] [ ]

[ ] [ ]

1

21 2

1

21 2

1 0 0

0 0

( ) lim log lim log

lim ( ) log( ) lim ( ) log( )

( ) log( ) 1 ( ) log( ) 1 .

x b

a x

y x y b

y a y x

f x x y dy x y dy

x y x y y y x y x y

x a x a b x b x

ε

εε ε

ε

εε ε

−

+→ →

= − =

= = +→ →

= − + −

= − − − − + − − −

= − − − + − − −

∫ ∫
 

x a b y 
(        ) 
ε1 ε2 
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Thus, integral 1( )f x  in (1.31) exists regardless of the values of 1 2andε ε  and is called 
a weakly singular integral. 

Next, consider the following strongly singular integral: 

 2
1( ) , for .

b

a
f x dy a x b

y x
= < <

−∫  (1.32) 

We regard this as an improper integral and evaluate it as follows: 

 

1

21 2

1

21 2

1 2

2 0 0

0 0

1 20 0

1 1( ) lim lim

lim log lim log

log lim log lim log ,

x b

a x

y x y b

y a y x

f x dy dy
y x y x

y x y x

b x
x a

ε

εε ε

ε

εε ε

ε ε
ε ε

−

+→ →

= − =

= = +→ →

→ →

= +
− −

=  −  +  −    

− = + − − 

∫ ∫

 

which does not exist if 1 2andε ε  are kept independent of each other. It is only when 

1 2=ε ε  (Figure 1.7) that the integral has a finite value 

 2 ( ) log b xf x
x a
− =  − 

, (1.33) 

which is called the Cauchy principal value (CPV) of the integral in (1.32). Therefore 
2 ( )f x  is called a CPV integral in that the integral is evaluated with a small “symmetrical” 

region subtracted from the domain of integration ( 1 2=ε ε ) at x. 

Consider the following hypersingular singular integral: 

 
( )3 2

1( ) , for .
b

a
f x dy a x b

y x
= < <

−∫  (1.34) 

We evaluate this integral by using the CPV definition ( 1 2=ε ε ε= ) 

 ( ) ( ) ( ) ( )3 2 20 0

0

1 1 1 1( ) lim lim

1 1 2lim ,

x b
x b

a x
a x

f x dy dy
y x y xy x y x

x a b x

ε
ε

εε ε
ε

ε ε

−
−

+→ →
+

→

  
 = + = − − 

− − − −    
 = − − +  − −  

∫ ∫
 

which does not exist even in the sense of a CPV integral. However, in the BIE 
formulations, we find that an infinite term like 2 / ε  is canceled out by the integral with 
the same integrand on the small region ( , )x xε ε− + . Therefore 3( )f x  is still 
meaningful and called a Hadamard-finite part (HFP) integral [44], with the finite part 
given by [45] 

 3
1 1( ) .f x

x a b x
= − −

− −
 (1.35) 
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1.9. Summary 
In this chapter, a general introduction of the boundary integral equation and the 

boundary element method is provided. A comparison of the BEM with the FEM is 
discussed. A simple beam problem is used as an example to show the procedures in 
formulating and solving a problem by using the boundary formulation. Two important 
ingredients are needed in the BIE formulations. One is the fundamental solution that is 
specific to a given problem and is available for most linear problems. Another 
ingredient is the generalized Green’s identity associated with the differential operator 
for describing the problem. Some mathematical results that are needed in the 
development of the BIE and the BEM are reviewed, especially the index notation and 
the Gauss theorem in various forms. 
 

Problems 
1.1. Using a Fourier transform, solve Eq. (1.5) to obtain the moment in the 

fundamental solution given in (1.8) for the simple beam problem. 
1.2. Derive the generalized Green’s identity given in (1.9). 
1.3. Derive the following generalized Green’s identity corresponding to ODE (1.4): 

                           
4 4 3 3 2 2

4 4 3 3 2 20
0

x L
L

x

d v d u d v d u d u dv du d vu v dx u v
dx dx dx dx dx dx dx dx

=

=

   
− = − + −   

   
∫  (1.36) 

for any two continuous functions u  and v  on the interval (0, L). If u  and v  
represent the deflections of a straight beam with length L, bending stiffness EI, 
and under two different sets of loading conditions, respectively, what is the 
physical meaning of this identity? 

1.4. Give the values of the following expressions, if defined (Assume i = 1, 2, 3): 

?ijδ = ;     ?ij ijδ δ = ;     ?ij ij ijδ δ δ = . 

1.5. Verify the following results (Assume iA  is the component of a vector A


): 

6ijk ijke e = ;     0ijk j ke A A = . 

1.6. Express the triple scalar product ( )u v w⋅ ×
  

 of three vectors u


, v


, and w


 (in three 
dimensions) in the index form. 

1.7. Verify Eq. (1.18) using the vector identity ( ) ( ) ( )a b c a c b a b c× × = ⋅ − ⋅
        

. 

1.8. Write Eqs. (1.21) and (1.22) in index forms. 
1.9. Show that the CPV of the following integral does not exist: 

1( ) , for .
b

a
f x dy a x b

y x
= < <

−∫  
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Chapter 2. Conventional Boundary Element Method 
for Potential Problems 

Many problems in engineering can be described by the Laplace equation or the 
Poisson equation. These problems can be termed potential problems, such as heat 
conduction, potential flows, electrostatic fields, or the mechanics problem of a bar in 
torsion. In this chapter, we study the BIE formulations for solving potential problems 
and learn how to solve these BIEs by using the conventional BEM. In Chapter 3, we 
study the fast multipole BEM that can accelerate the BEM solutions for large-scale 
potential problems. 
 

2.1. The Boundary-Value Problem 

We consider the following Poisson equation governing the potential field φ  in 
domain V (either a 2-D or 3-D, finite or infinite domain): 

 2 0, inf Vφ∇ + = , (2.1) 

where f is a known function in domain V. When f = 0, Eq. (2.1) is a Laplace equation. 
The boundary conditions (BCs) to be considered are 

 , on Sφφ φ=    (Dirichlet BC), (2.2) 

 , on qq q S
n
φ∂

≡ =
∂

  (Neumann BC), (2.3) 

in which the overbar indicates the prescribed value for the function, qS S Sφ =  is the 
boundary of the domain, and n is the outward normal of the boundary S (Figure 2.1). 
Note that the normal derivative of φ  (corresponding to heat flux in thermal analysis) 
can be expressed as ,k kq nφ=  in index notation with kn  being the components or 
direction cosines of normal n. 

 
Figure 2.1.  A 3-D finite domain V with boundary S. 

 

r 

S x 

y  n 

V 

1 

2 

3 
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With the fundamental solution and the second Green’s identity, we can convert the 
preceding boundary-value problem given in Eqs. (2.1)-(2.3) into BIE formulations. 
 

2.2. Fundamental Solution for Potential Problems 

The fundamental solution ( , )G x y  for potential problems satisfies 

 2 2 3( , ) ( , ) 0, , /G R Rδ∇ + = ∀ ∈x y x y x y , (2.4) 

in which the derivatives are taken at point y, that is, ( )2 2 / i iy y∇ = ∂ ∂ ∂ , and 2 3andR R  
indicate the full 2-D and 3-D spaces, respectively. The Dirac δ function ( , )δ x y  in 
Eq. (2.4) represents a unit source (e.g., heat source) at the source point x, and ( , )G x y  
represents the response (e.g., temperature) at the field point y that is due to that source.  

The fundamental solution ( , )G x y  is given by 

 

1 1log , in 2-D,
2( , )

1 , in 3-D,
4

rG

r

π

π

  
   = 




x y  (2.5) 

where r is the distance between the source point x and field point y, and log refers to 
the natural log function in this book. The normal derivative of ( , )G x y  is 

2

1 , ( ), in 2-D,
( , ) 2( , )

1( ) , ( ), in 3-D,
4

k k

k k

r n
G rF

n r n
r

π

π

−∂ ≡ = ∂ −


y
x yx y
y y

                    (2.6) 

with , / ( ) /k k k kr r y y x r= ∂ ∂ = − . The fundamental solution satisfies the following 
integral identities [46-48]: 
First identity: 

 
1, ,

( , ) ( )
0, ,S

V
F dS

E
− ∀ ∈

=  ∀ ∈
∫

x
x y y

x
 (2.7) 

Second identity: 

 
( , ) ( ) 0, ,
( )S

F dS V E
n

∂
∂

= ∀ ∈∫
x y y x
x

    (2.8) 

Third identity: 

( ), ,( , ) ( , )( ) ( ) ( ) ( )
0, ,( ) ( )

k
k k kS S

n VG Fn dS y x dS
En n

∂ ∂
∂ ∂

∀ ∈
− − =  ∀ ∈

∫ ∫
x xx y x yy y y

xx x
    (2.9) 

Fourth identity: 

 ( , )( ) ( ) ( , ) ( ) ( ) 0, ,k k kS S
F y x dS G n dS V E− − = ∀ ∈∫ ∫x y y x y y y x       (2.10) 

in which S is an arbitrary closed contour (for two dimensions) or surface (for three 
dimensions), V is the domain enclosed by S, and E is the infinite domain outside S. 
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These identities have clear physical meanings and will be very convenient in deriving 
various weakly singular or nonsingular forms of the BIEs for potential problems [46-
48]. We can obtain these identities readily by integrating governing equation (2.4) over 
the domain V and invoking the Gauss theorem [46-48]. 
 

2.3. BIE Formulations 
To derive the direct BIE corresponding to PDE (2.1), we apply the second Green’s 

identity given in Eq. (1.24) 

 2 2

V S

v uu v v u dV u v dS
n n
∂ ∂  ∇ − ∇ = −   ∂ ∂ ∫ ∫ . (2.11) 

Let ( ) ( )v φ=y y , which satisfies Eq. (2.1), and ( ) ( , )u G=y x y , which satisfies Eq. (2.4). 
We have, from identity (2.11), 

 2 2 ( ) ( , )( , ) ( ) ( ) ( , ) ( ) ( , ) ( ) ( )
( ) ( )V S

GG G dV G dS
n n
φφ φ φ

 ∂ ∂ ∇ − ∇ = −   ∂ ∂ 
∫ ∫

y x yx y y y x y y x y y y
y y

. 

Applying Eqs. (2.1), (2.4), and (1.25), we obtain 

[ ]( ) ( , ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( ), ,
S

V

G q F dS

G f dV V

φ φ

φ∞

= −

+ + ∀ ∈

∫
∫

x x y y x y y y

x y y y x x
                    (2.12) 

where /q nφ= ∂ ∂  and ( )φ∞ x  represents a possible potential field in the full space. 

Equation (2.12) is the representation integral of the solution φ  inside the domain 
V for Eq. (2.1). Once the boundary values of both φ  and q are known on S, Eq. (2.12) 
can be applied to calculate φ  everywhere in V, if needed. 

To solve the unknown boundary values of φ  and q on S, we let x tend to S to obtain 
a BIE from Eq. (2.12). To do this, we consider the following limit: 

[ ]{
}

lim ( ) lim ( , ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( ) .

SS S

V

G q F dS

G f dV

φ φ

φ

→ →

∞

= −

+ +

∫
∫

x x
x x y y x y y y

x y y y x
                     (2.13) 

The kernel ( , )G x y  is weakly singular at r = 0 (of (log )O r  in two dimensions and 
(1/ )O r  in three dimensions) and ( , )F x y  is strongly singular (of (1/ )O r  in two 

dimensions and 2(1/ )O r  in three dimensions). Therefore, we cannot place x on 
boundary S directly in Eq. (2.13). Careful consideration of the limit process is necessary 
for each integral on the right-hand side of Eq. (2.13). 

We now proceed to use the 2-D case as an example to see how to evaluate the 
limits in (2.13). We first divide the boundary S into two parts: S Sε−  and Sε , where 
Sε  is a small segment with length 2ε  centered around the point to which x will 
approach (Figure 2.2). 

The first integral on the right-hand side of (2.13) is evaluated as 
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0 0
0

lim ( , ) ( ) ( ) lim ( , ) ( ) ( ) lim ( , ) ( ) ( )
S S S SS d
G q dS G q dS G dS q

ε ε
ξε

ε
−→ → →

→

= +∫ ∫ ∫x
x y y y x y y y x y y y , 

where ξy  is a point on Sε . When ε  is small, Sε  can be regarded as a straight-line 
segment (assuming S is smooth); the analytical integration of G kernel on this line 
segment is given in Appendix A.1, Eq. (A.5). When Eq. (A.5) is used, the limit of this 
integral turns out to be 

 
Figure 2.2.  Limits as x approaches boundary S. 

 

 
0
0

lim ( , ) ( ) ( ) 0
Sd

G dS q
ε

ξ
ε
→
→

=∫ x y y y . 

Therefore 

0
lim ( , ) ( ) ( ) lim ( , ) ( ) ( ) ( , ) ( ) ( )

S S S SS
G q dS G q dS G q dS

εε −→ →
= =∫ ∫ ∫x

x y y y x y y y x y y y ,  (2.14) 

where the last integral is evaluated with the definition of a CPV integral (For simplicity 
of notation, no special symbol is used, here and thereafter, to indicate this fact). 

Similarly, the second integral on the right-hand side of (2.13) is evaluated as 

 
0 0

0

lim ( , ) ( ) ( ) lim ( , ) ( ) ( ) lim ( , ) ( ) ( )
S S S SS d

F dS F dS F dS
ε ε

ξε
ε

φ φ φ
−→ → →

→

= +∫ ∫ ∫x
x y y y x y y y x y y y . 

Applying the result in Eq. (A.6) of Appendix A.1, we obtain 

 
0
0

1lim ( , ) ( ) ( ) ( ),
2Sd

F dS S
ε

ξ
ε

φ φ
→
→

= − ∈∫ x y y y x x , 

and 

0

1lim ( , ) ( ) ( ) lim ( , ) ( ) ( ) ( )
2

1( , ) ( ) ( ) ( ), ,
2

S S SS

S

F dS F dS

F dS S

εε
φ φ φ

φ φ

−→ →
= −

= − ∈

∫ ∫

∫

x
x y y y x y y y x

x y y y x x
      (2.15) 

where the last integral is understood as a CPV integral that is evaluated on S Sε−  with 
0ε → . We see that there is a jump term associated with the integral with the F kernel 

 
x 

1 

2 

 

V 
d 
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as x approaches S. The third integral on the right-hand side of (2.13) has no jump term, 
that is 

 lim ( , ) ( ) ( ) ( , ) ( ) ( )
V VS

G f dV G f dV
→

=∫ ∫x
x y y y x y y y . (2.16) 

Substituting Eqs. (2.14)-(2.16) into (2.13) and combining the free terms, we arrive at 
the following conventional BIE (CBIE): 

[ ]( ) ( ) ( , ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( ), ,
S

V

c G q F dS

G f dV S

φ φ

φ∞

= −

+ + ∀ ∈

∫
∫

x x x y y x y y y

x y y y x x
              (2.17) 

in which ( )c x  is a coefficient and ( ) 1/ 2c =x  if S is smooth around x. The same result 
can be derived for the 3-D case. In this equation, both variables φ  and q  are now on 
the boundary S. Later we will see that we can write CBIE (2.17) in a weakly singular 
form by using the integral identities for the fundamental solution, so that we do not 
need to evaluate the CPV integral (with the F kernel) and the constant ( )c x  explicitly 
in the solutions of the BIE. 

Treatment of the domain integral in CBIE (2.17) is discussed in Section 2.9 for the 
case in which ( )f y  is nonzero over a finite area or volume within the domain V. When 

( )f y  is due to a concentrated or point source within V, we can write ( )f y  as 

 ( ) ( , )Qf Qδ=y x y , (2.18) 

where Qx  is the location of the source and Q represents the intensity of the source. 
Using the sifting property of the Dirac δ function (Eq. (1.25)), we can evaluate the 
domain integral in CBIE (2.17) for this case as follows:  

( , ) ( ) ( ) ( , ) ( , ) ( ) ( , )Q QV V
G f dV Q G dV QGδ= =∫ ∫x y y y x y x y y x x .       (2.19) 

This contribution is added to the right-hand-side vector b of the BEM system of 
equations based on the CBIE (to be discussed in Section 2.5). 

Once we obtain the unknown variables φ  and q  on S from solving CBIE (2.17), 
we can evaluate the potential inside the domain V by using the representation integral 
(2.12), if needed. To evaluate the derivatives of the potential in V, we take the derivative 
of (2.12) to obtain 

( , ) ( , )( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ), .

S
i i i

V
i i

G Fq dS
x x x

G f dV V
x x

φ φ

φ∞

 ∂ ∂ ∂
= − ∂ ∂ ∂ 

∂ ∂
+ + ∀ ∈

∂ ∂

∫

∫

x y x yx y y y

x y y y x x
            (2.20) 

Letting the source point x tend to boundary S and multiplying both sides of (2.20) with 
the normal at x, we obtain the so called hypersingular BIE (HBIE): 

[ ]( ) ( ) ( , ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( ), ,
S

V

c q K q H dS

K f dV q S

φ
∞

= −

+ + ∀ ∈

∫
∫

x x x y y x y y y

x y y y x x
                (2.21) 

where /q nφ∞ ∞= ∂ ∂  and the two new kernels are 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 30 

2

1 , ( ), in 2-D,
( , ) 2( , )

1( ) , ( ), in 3-D,
4

k k

k k

r n
G rK

n r n
r

π

π


∂ ≡ = ∂ 


x
x yx y
x x

             (2.22) 

and 

[ ]

[ ]

2

3

1 ( ) ( ) 2 , ( ) , ( ) , in 2-D,
( , ) 2( , )

1( ) ( ) ( ) 3 , ( ) , ( ) , in 3-D.
4

k k k k l l

k k k k l l

n n r n r n
F rH

n n n r n r n
r

π

π

 −∂ ≡ = ∂  −


x y x y
x yx y
x x y x y

    (2.23) 

( , )K x y  kernel is strongly singular, and the first integral in HBIE (2.21) is a CPV 
integral. The ( , )H x y  kernel is hypersingular, and the second integral in (2.21) is a HFP 
integral. HBIE (2.21) can also be written in a weakly singular form, and we do not need 
to evaluate these singular or hypersingular integrals in the BEM, unless they can be 
evaluated readily (as in the constant element case that we discuss in next section). 

To see the variations of the 3-D kernel functions for potential BIEs, we plot in 
Figure 2.3 the G, F, K, and H kernels with x being placed at (0, 0, 0) and y changing on 
the O12 plane. We can see sharp rises of all four kernel functions near r = 0, which are 
the sources of so-called singularities in the BEM. 
 

 
          (a) G kernel           (b) F kernel          (c) K kernel        (d) H kernel 

Figure 2.3.  Variations of the four kernel functions for 3-D potential problems. 
 
 

The CBIE degenerates when it is applied to solve crack problems or thin inclusion 
problems [49]. In these cases, the HBIE can be applied alone or in combination with 
the CBIE to have a nondegenerate dual BIE formulation for crack problems and thin-
shape problems. We will see some examples later in this and subsequent chapters. 

CBIE (2.17) and HBIE (2.21) are also valid for an infinite domain problem, where 
the domain is outside a closed boundary S and extends to infinity. We can show that 
contributions of integrals on the boundaries at infinity vanish if we assume that

( ) (1/ )R O Rαφ   and 1( ) (1/ )q R O R α+
 , as R →∞ , where R is the radius of a large 

circle (2-D) or sphere (3-D) and the real number 0α > . 

 

2.4. Weakly Singular Forms of the BIEs 
CBIE (2.17) and HBIE (2.21) can be recast into forms that involve only weakly 

singular integrals [46-48] or even nonsingular forms without any singular integrals [47]. 
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For example, using the first identity in (2.7) for the fundamental solution ( , )G x y , we 
can show that the coefficient ( )c x  in CBIE (2.17) can be written as 

 
0 0
0

( ) 1 lim ( , ) ( ) lim ( , ) ( )

( , ) ( ), (a CPV integral),

S S Sd

S

c F dS F dS

F dS S

ε εε
ε

γ

γ

−→ →
→

= + = −

= − ∀ ∈

∫ ∫

∫

x x y y x y y

x y y x
 (2.24) 

in which 0γ =  for finite domain and 1γ =  for infinite domain problems. Substituting 
the preceding expression for ( )c x  in CBIE (2.17), we obtain the following weakly 
singular form of the CBIE: 

 
[ ]( ) ( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( , ) ( ) ( ) ( ), ,
S

S V

F dS

G q dS G f dV S

γφ φ φ

φ∞

+ −

= + + ∀ ∈

∫
∫ ∫

x x y y x y

x y y y x y y y x x
 (2.25) 

in which the integral with the F kernel is now weakly singular, because 

 [ ]
( ) ( )

( )2

1 1 , in 2-D,
( , ) ( ) ( )

1 1 , in 3-D,

O O r O
r

F
O O r O

r r

φ φ

   =   − 
    =       

x y y x   

as 0r → , if φ  is continuous. Similarly, using the first three identities for the 
fundamental solution, we can derive the following weakly singular form of the 
HBIE (see Refs. [50, 51] for the results for the Helmholtz equation with the Laplace 
equation as a special case) : 

 [ ]

[ ] [ ]

( ) ( , ) ( ) ( ) ( )( ) ( )

( ) ( , ) ( ) ( , ) ( ) ( )

( , ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( ), ,

oS

k k kS

S S

V

q H dS

e K n F n dS

K F q dS F q q dS

K f dV q S

α α
α

α
α

∂ φγ φ φ ξ ξ
∂ ξ

∂ φ
∂ ξ

∞

 
+ − − − 

 

+ +

= + − −

+ + ∀ ∈

∫

∫

∫ ∫
∫

x x y y x x y

x x y y x y x y

x y x y y y x y y x y

x y y y x x

 (2.26) 

in which αξ  and oαξ  are the coordinates of y and x, respectively, in tangential 
directions ( 1α =  for two dimensions, and 1, 2α =  for three dimensions) in the local 
(natural) coordinate system on an element and /k ke xα α∂ ξ ∂=  [51]. All the integrals 
in (2.26) are now at most weakly singular if φ  has continuous first derivatives. 

Weakly singular forms of the BIEs, or regularized BIEs, which do not contain any 
strongly singular and hypersingular integrals, are useful in cases in which higher-order 
boundary elements are applied to solve the BIEs. In these cases, analytical evaluations 
of the singular integrals are difficult or impossible to obtain and the use of numerical 
integrations is troublesome. When constant elements are used, all the singular and 
hypersingular integrals can be evaluated analytically (see Appendix A.1 for 2-D cases, 
and Appendix A.4 for 3-D cases), and therefore the original singular forms of CBIE 
(2.17) and HBIE (2.21) can be applied directly. 
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2.5. Discretization of the BIEs for 2-D Problems Using Constant Elements 
We now apply the boundary elements to discretize the BIEs in order to solve them 

numerically for the unknown boundary variables. As an example, we discretize the 
CBIE (assuming 0f = ) in (2.17) for 2-D problems by using constant elements.  

First, we divide the boundary S into line segments (elements) jS∆  and place one 
node on each element (Figure 2.4). The total number of elements is M, and the total 
number of nodes is N. In the case of using constant elements, we have N = M. Next, we 
place the source point x at node i and notice that 

( ) , ( ) , on elementj j jq q Sφ φ= = ∆y y , 

where and ( 1,2,..., )j jq j Nφ =  are the nodal values of and qφ , respectively, on 
element jS∆  for constant elements. CBIE (2.17) becomes 

 
1 1

1
2 j j j

N N

i i j i j i j i jS S S
j j

G q F dS G dSq F dSφ φ φ
∆ ∆ ∆

= =

  = − = −    ∑ ∑∫ ∫ ∫ , (2.27) 

where andi iG F  are the kernels with the source point x placed at node i. We obtain the 
following discretized equation of CBIE (2.17) for node i: 

 
Figure 2.4.  Discretization of boundary S using constant elements. 

 

 

1

1 , for 1,2,...,
2

N

i ij j jij
j

g q f i Nφ φ
=

 = − = ∑  (2.28) 

where the coefficients are given by 

 , , for , 1, 2,...,
j j

ij i iijS S
g G dS f F dS i j N

∆ ∆
= = =∫ ∫ . (2.29) 

The preceding integrals can be evaluated analytically for all singular ( i j= ) or 
nonsingular ( i j≠ ) cases with the constant elements (see Appendix A.1). 

In matrix form, Eq. (2.28) can be written as 

i 

ΔSj 

r 

 

y n 

V 

1 

2 
ξ ξ = 0 ξ = 1 

element 
node 
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11 12 1 1 11 12 1 1

21 22 2 2 21 22 2 2

1 2 1 2

N N

N N

N N NN N N N NN N

f f f g g g q
f f f g g g q

f f f g g g q

φ
φ

φ

       
       

      =                      

 

 

         

 

, (2.30) 

where  1
2ij ijijf f δ= + . In the conventional BEM approach, we form a standard linear 

system of equations as follows by applying the boundary condition at each node and 
switching the columns in the two matrices in Eq. (2.30): 

 

11 12 1 1 1

21 22 2 2 2

1 2

, or

N

N

N N NN N N

a a a b
a a a b

a a a b

λ
λ

λ

     
     

     = =                  

Aλ b





     



, (2.31) 

where A is the coefficient matrix, λ  is the unknown vector (with unknown φ  or q at 
each node), and b is the known right-hand-side vector. Obviously, the construction of 
matrix A requires 2( )O N  operations using Eqs. (2.29), and the size of the required 
memory for storing A is also 2( )O N  because A is in general a nonsymmetrical and 
dense matrix. The solution of the system in Eq. (2.31) using direct solvers such as Gauss 
elimination requires 3( )O N  operations because of this general matrix. Thus the 
conventional BEM approach by solving Eq. (2.31) directly can handle only BEM 
models with a few thousands equations on a desktop computer with 1-GB RAM (Here 
GB is gigabyte, and RAM is random-access memory). 

By solving Eq. (2.31), we can obtain all the unknown boundary variables on each 
element. If the fields inside the domain are demanded, we can compute φ  by using 
integral representation (2.12) and the derivatives of φ  by using (2.20) in similar 
discretized forms. Discretization of the BIEs using constant elements is straightforward, 
and all the integrals of the kernels on the elements can be evaluated analytically. 
However, the accuracy of the constant elements is not very good, and usually more 
constant elements are needed to obtain reasonably accurate BEM results as compared 
with those obtained with high-order elements. 
 

2.6. Using Higher-Order Elements 
Higher-order boundary elements are needed to improve the accuracy and efficiency 

of the BEM solutions in situations in which accuracy and efficiency are critical, such 
as stress concentration problems. For curved boundaries, higher-order elements, such 
as quadratic elements, are also beneficial because of the more accurate representation 
of the geometry. However, the use of higher-order elements also presents some 
challenges. Analytical integrations of the coefficients are no longer available in general, 
and numerical integrations will need to be used. In the following subsections, we 
discuss the linear and quadratic elements for 2-D problems. 

2.6.1. Linear Elements 
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Figure 2.5.  Discretization of boundary S using linear elements. 

 
For discretization using linear elements (Figure 2.5), each element is associated 

with two nodes placed at the ends of the element. The element is assumed to be straight, 
and the fields are assumed to vary linearly over the element. Two shape functions are 
introduced to represent the function on an element. For example, on element kS∆  (k = 1, 
2, 3, …, M, with M being the total number of elements), we have 

 
2

1
( ) ( ) ( )N α

α
α

φ φ ξ ξ φ
=

= =∑y , (2.32) 

and 

 
2

1
( ) ( ) ( )q q N qα

α
α

ξ ξ
=

= =∑y , (2.33) 

where 1 2,φ φ  and 1 2,q q  are the nodal values of φ  and q at local nodes 1 and 2, 
respectively, ξ  is the local (natural) coordinate defined on the element, and 

1 2( ) and ( )N Nξ ξ  are the linear shape functions given by 

 1 2( ) 1 , and ( )N Nξ ξ ξ ξ= − = . (2.34) 

Placing source point x at node i (i = 1, 2, 3, …, N), we have the following 
discretized equation for CBIE (2.17) (with f = 0) 

 
[ ]

2 2

1 1 1 1 1

2 2

1 1 1 1
,

k k k

k k

M M M

i i i i i iS S S
k k k

M M

i iS S
k k

c G q F dS G N q dS F N dS

G N dS q F N dS

α α
α α

α α

α α
α α

α α

φ φ φ

φ

∆ ∆ ∆
= = = = =

∆ ∆
= = = =

   = − = −      

   = −      

∑ ∑ ∑ ∑ ∑∫ ∫ ∫

∑∑ ∑∑∫ ∫
, (2.35) 

that is, 

 

2 2

1 1 1 1
,

M M

i i ik ik
k k

c g q f
αα α α

α α

φ φ
= = = =

= −∑∑ ∑∑  (2.36) 

where 

i 

ΔSk 

r 

 

y n 

V 

1 

2 
ξ ξ = 0 ξ = 1 

1 2 

n 

ΔSk 
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

,

,

k

k

ik iS

iik S

g G N dS

f F N dS

α
α

α

α

∆

∆

=

=

∫

∫
 (2.37) 

with i = 1, 2, 3, …, N (number of nodes), k = 1, 2, 3, …, M (number of elements), and 
α = 1 and 2 (number of local nodes on each element). Rearranging the terms according 
to the global nodes (instead of elements), we obtain from Eq. (2.36) 

 

1 1
,

N N

i i ij j jij
j j

c g q fφ φ
= =

= −∑ ∑  (2.38) 

where andij ijg f  are sums of the integrals 

ik ikg and f
αα  on elements around node j, 

respectively (Preparing an element connectivity table, similar to the ones used in the 
FEM, will be convenient for this purpose). Thus, we have a linear system of equation 
similar to Eq. (2.28) and the matrix form is identical to Eq. (2.30), where 

 (no sum over )ij i ijijf f c iδ= + .  

In general, numerical integration schemes need to be used to evaluate the 
coefficients in (2.30) using formulas (2.37). For example, for nondiagonal terms ( i j≠ ), 
we have 

 
1

0
[ , ( )] ( )

k
ik i iS

g G N dS G N J dα
α αξ ξ ξ

∆
= =∫ ∫ x y , (2.39) 

where the global coordinate y is related to the local coordinate by 

 
2

1
( ) ( ) , for 1, 2l ly N y lα

α
α

ξ ξ
=

= =∑ , 

with lyα  being the nodal values of ly , and 

2 2
1 2dy dydS d J d

d d
ξ ξ

ξ ξ
   

= + =   
   

,    where     
2 2

1 2dy dyJ
d dξ ξ

   
= +   

   
 

is the Jacobian of the coordinate transformation. The integral on the right-hand side of 
Eq. (2.39) can be evaluated by standard Gaussian quadrature. In most cases, a four-
point quadrature should be sufficient. The second integral in (2.37) is handled in a 
similar way. 

For the diagonal terms, we can evaluate the coefficients analytically by using the 
definition of CPV integrals. The results are 

 


1 13 2log 3 2log ,
8 8

0, 1, 2, 3, ..., ,

a b
ii

a b

ii

L Lg
L L

f i N

π π
      

= + + +      
      

= =

 (2.40) 

in which anda bL L  are the lengths of the two elements before and after node i. For 
coefficient iif , there is an easy way to calculate their values. Suppose we have a 
uniform potential field, with 1and 0qφ = =  everywhere. Then, from Eq. (2.30), we 
obtain 
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N

ii ij
j i

f f
≠

= −∑ , (2.41) 

for finite domain problems, which avoids calculation of ic  at each node. For infinite 
domain problems, the contributions from integrals at infinity do not vanish for uniform 
potentials. Thus, the relation in (2.41) is changed to 

 1
N

ii ij
j i

f f
≠

= −∑ . (2.42) 

Results in (2.41) and (2.42) are exact, meaning that there is no additional error 
introduced. We can derive these results analytically by using identity (2.7) for the 
fundamental solution [46]. 

2.6.2. Quadratic Elements 
 

 
Figure 2.6.  Discretization of boundary S using quadratic elements. 

 
Quadratic elements can be used for problems demanding even higher accuracy, 

such as problems with singular fields caused by crack-like objects, problems with 
curved boundaries, and so on. There are three nodes on a quadratic element (Figure 2.6). 
The element can be a quadratic curve, which is a more accurate representation for 
domain with curved boundaries. The three quadratic shape functions are given as 
follows in the local coordinate ξ : 

 1 2 3
1 1( ) ( 1), ( ) (1 )(1 ), ( ) ( 1).
2 2

N N Nξ ξ ξ ξ ξ ξ ξ ξ ξ= − = − + = +  (2.43) 

On each element, we have 

 
3

1
( ) ( ) ( )N α

α
α

φ φ ξ ξ φ
=

= =∑y , (2.44) 

 
3

1
( ) ( ) ( )q q N qα

α
α

ξ ξ
=

= =∑y , (2.45) 

n 

1 

2 
ξ ξ = -1 ξ = 1 

1 3 

ξ = 0 

2 
i 

ΔSk 

r 

 

y 

V 

n 

ΔSk 
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and for the geometry, 

 
3

1
( ) ( ) , for 1, 2l ly N y lα

α
α

ξ ξ
=

= =∑ . (2.46) 

Using quadratic elements, we can write the discretized form of CBIE (2.17) (with f = 0) 
as 

 

3 3

1 1 1 1
,

M M

i i ik ik
k k

c g q f
αα α α

α α

φ φ
= = = =

= −∑∑ ∑∑  (2.47) 

in which 

 


,

,

k

k

ik iS

iik S

g G N dS

f F N dS

α
α

α

α

∆

∆

=

=

∫

∫
 (2.48) 

with i = 1, 2, 3, …, N, k = 1, 2, 3, …, M, and α = 1, 2, and 3. Rearranging the terms 
according to the global nodes (based on the element connectivity information), we 
obtain a system of equations similar to that given in (2.30). In this case, all the 
coefficients ijg  and ijf  in (2.30) need to be calculated numerically by Gaussian 
quadrature, except for iif , which can still be determined by Eq. (2.41) for a finite 
domain or Eq. (2.42) for an infinite domain, without introducing any additional errors. 
 

2.7. Discretization of the BIEs for 3-D Problems 
 

 

  

 

  

 

 
(a) Constant   (b) Linear   (c) Quadratic 

Figure 2.7.  Surface elements for 3-D problems. 
 

For 3-D problems, surfaces of a domain will be discretized using surface elements, 
which can be constant, linear, or quadratic ones (Figure 2.7). The shape of an element 
can be triangular or quadrilateral. For a constant element, there is only one node located 
at the center of the element. For a linear element, there is one node at each vertex of the 
element. For a quadratic element, there is one node at each vertex and on each edge of 
the element. Implementation of the constant elements is straightforward, and analytical 
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integrations of the kernels are possible. However, using linear and quadratic elements 
is more accurate and efficient in some situations. 

We use the quadrilateral four-node (Q4) linear elements (Figure 2.8) as an example 
to see how to discretize the CBIE for 3-D problems. 

In the natural coordinate system ( , )ξ η , the four shape functions are 

 

1

2

3

4

1( , ) (1 )(1 ),
4
1( , ) (1 )(1 ),
4
1( , ) (1 )(1 ),
4
1( , ) (1 )(1 ).
4

N

N

N

N

ξ η ξ η

ξ η ξ η

ξ η ξ η

ξ η ξ η

= − −

= + −

= + +

= − +

 (2.49) 

Note that 4

1
1Nαα=

=∑  at any point inside the element, as expected. 

For a 3-D problem, the discretized form of CBIE (2.17) (with f = 0) can still be 
written as follows with the Q4 elements: 

 

4 4

1 1 1 1
,

M M

i i ik ik
k k

c g q f
αα α α

α α

φ φ
= = = =

= −∑∑ ∑∑  (2.50) 

where 

 


,

,

k

k

ik iS

iik S

g G N dS

f F N dS

α
α

α

α

∆

∆

=

=

∫

∫
 (2.51) 

with i = 1, 2, 3, …, N (total number of nodes on the surface), k = 1, 2, 3, …, M (total 
number of elements), and α = 1, 2, 3 and 4 (for Q4 elements). Information about the 
element connectivity is needed to assemble the system of equations as given in 
Eq. (2.30). For example, if the global node number of local node α of element k is j, 
then coefficient ikgα  should go to the ith row and jth column of the g matrix on the right-
hand side of  Eq. (2.30). 
 

 

1 

2 
1 

3 

2 

4 ξ  

η  

ξ = −1 ξ =1 

η = −1 

η =1 

3  
Figure 2.8.  A Q4 linear element for 3-D problems. 
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In 3-D cases, all the coefficients ijg  and ijf  we determine by using (2.51) are 

surface integrals that we can calculate numerically using Gaussian quadrature, except 
for iif , which we can still determine by Eq. (2.41) for a finite domain or Eq. (2.42) for 
an infinite domain. For example, to compute ijg , we proceed as follows: 

 
1 1

1 1
[ , ( , )] ( , )

k
ik i iS

g G N dS G N d dα
α αξ η ξ η ξ η

∆ − −
= =∫ ∫ ∫ x y J , (2.52) 

where dS d dξ η= J  with J  being the determinant of the Jacobian matrix, that is, 

 

1 2 3

31 2

31 2

det

i i i
yy y

yy y
ξ ξ ξ

η η η

 
 

∂∂ ∂ 
 = ∂ ∂ ∂
 

∂∂ ∂ 
 ∂ ∂ ∂ 

J

  

, (2.53) 

and ki  is the unit vector along the ky  axis, and 
4

1
( ) ( ) ,l ly N yα

α
α

ξ ξ
=

=∑ for l = 1, 2, 3. 

Quadrilateral eight-node (Q8) quadratic elements (Figure 2.9) have also been used 
widely in the BEM for 3-D problems, because of their accuracy and flexibility in 
modeling curved surfaces. Using quadratic elements is even more beneficial for the 
conventional BEM, because they can deliver more accurate results with fewer elements 
when the number of elements is limited by the method or the computer. 
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2 
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ξ  

η  
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8 
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Figure 2.9.  A Q8 quadratic element for 3-D problems. 

 
In the natural coordinate system ( , )ξ η , the eight shape functions for Q8 elements 

are: 
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1

2

3

4

2
5

2
6

2
7

2
8

1( , ) (1 )( 1)( 1),
4
1( , ) (1 )( 1)( 1),
4
1( , ) (1 )(1 )( 1),
4
1( , ) ( 1)( 1)( 1),
4
1( , ) (1 )(1 ),
2
1( , ) (1 )(1 ),
2
1( , ) (1 )(1 ),
2
1( , ) (1 )(1 ).
2

N

N

N

N

N

N

N

N

ξ η ξ η ξ η

ξ η ξ η η ξ

ξ η ξ η ξ η

ξ η ξ η ξ η

ξ η η ξ

ξ η ξ η

ξ η η ξ

ξ η ξ η

= − − + +

= + − − +

= + + + −

= − + − +

= − −

= + −

= + −

= − −

 (2.54) 

Again, we have the relation 8

1
1Nαα=

=∑  at any point ( , )ξ η  inside the element. Both 
the physical fields and the geometry (coordinates) are interpolated using these shape 
functions in a manner similar to that previously discussed for Q4 elements. 

It is difficult to evaluate analytically the singular (CPV) and hypersingular (HFP) 
integrals on 3-D curved elements. Therefore, the weakly singular forms of the BIEs can 
be applied to avoid direct evaluation of such singular integrals, especially using any 
numerical integration scheme. Treatment of various singular integrals using the weakly 
singular forms of the BIEs and quadratic surface elements can be found in Refs. [18, 
46, 50-54]. 
 

2.8. Multidomain Problems 
For multidomain problems, regions of different materials can be treated separately 

first by the BEM, and then assembled together using the interface conditions. For 
example, suppose that we need to solve the potential problem in a multiple domain 
comprising two material domains V1 and V2 with the interface SI (Figure 2.10). 

 
Figure 2.10.  A multidomain problem. 

S1 

S2 SI 

V2 V1 

  

n 

n 
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For region 1, we have the following BEM equations from Eq. (2.30): 

 1 1
1 1 1 1

1 1

I I
I I

   
   =      

   

q
F F G G

q
φ
φ

, (2.55) 

and for region 2: 

 2 2
2 2 2 2

2 2

I I
I I

   
   =      

   

q
F F G G

q
φ
φ

, (2.56) 

where andm mqφ  are the nodal values of and qφ , respectively, on the boundary Sm of 
domain m; and andI I

m mqφ  are the nodal values of and qφ , respectively, on interface SI 
from domain m (here m = 1 or 2). Applying the interface conditions (assuming perfect 
bonding): 

 1 2

1 2

,
,

I I I

I I I

 = ≡


= − ≡q q q
φ φ φ  (2.57) 

we can write Eqs. (2.55) and (2.56) in a single matrix equation as 

 
1 1

1 1 1 1

2 2 2 2
2 2

I I
I I

I I

   
      =      −      

   

q
F F 0 G G 0

q
0 F F 0 G G

q

φ
φ
φ

. (2.58) 

Moving the unknown term Iq  to the left-hand side, we obtain: 

 

1

1 121 1 1

2 22 2 2

I I

II I

I

 
  −      =      

      
  

G 0 qF 0 F G
0 G q0 F F G

q

φ
φ
φ

. (2.59) 

It is noticed that, for multidomain problems, the matrices of the BEM system of 
equations become banded, which will be more obvious when more subdomains are 
involved. This is an advantage for solving the system of equations because of the 
improved conditioning of the system matrix. For problems with slender domains, even 
if they are not multidomain problems, we can apply the multidomain technique to 
reduce the bandwidth of the equations. 
 

2.9. Treatment of the Domain Integrals 

If the function ( )f x  in CBIE (2.17) is not zero over a finite area or volume, we 
will need to deal with this domain integral which contains no unknown variables. There 
are several options in evaluations of the domain integrals. Some basic approaches are 
reviewed briefly in the following. More advanced techniques for dealing with various 
domain integrals in the BEM can be found in the literature, such as the dual reciprocal 
methods (see, e.g., Ref. [55]) and the radial integration method [56]. 
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2.9.1. Numerical Integration Using Internal Cells 

In this approach, we simply divide the domain V into L cells ( 1, 2,..., )kV k L= , and 
proceed as follows, with the source point x placed at node i on the boundary: 

 
1

( , ) ( ) ( )
k

L

i i iV V V
k

b G f dV G fdV G fdV
=

= = =∑∫ ∫ ∫x y y y , (2.60) 

where the integral on each cell can be evaluated numerically with a Gaussian quadrature. 
The contribution ib  is added to the right-hand-side vector in Eq. (2.31). The internal 
cells can be coarser and do not need to match the mesh on the boundary. This is the 
easiest and earliest approach for dealing with the domain integrals in the BEM. 
However, it is no longer used widely because of the need to use the domain cells, which 
is not consistent with the boundary approach. 

2.9.2. Transformation to Boundary Integrals 
A more elegant approach to deal with domain integrals is to transform them into 

boundary integrals and use the same boundary mesh to evaluate them as that used to 
solve the boundary variables. There were many methods developed in the past 40 years 
or so in this regard, including the dual reciprocal methods. A very basic method is given 
here as an example. 

Suppose that ( )f x  is a harmonic function (for example, f is constant or linear over 
the domain V); we have 2 0f∇ = . Next, we write the fundamental solution as 

 2 *( , ) ( , )G G= ∇x y x y . (2.61) 

This is possible, because for two-dimensions, we have 

 * 21 1( , ) log 1
8

G r
rπ

  = +    
x y , (2.62) 

and for three-dimensions, we have 

 * 1( , )
8

G r
π

=x y . (2.63) 

Applying the Green’s second identity (2.11), we evaluate: 

 
( )

( )

2 *

*
* 2 *

( , ) ( ) ( )

,

V V

V S

G f dV G fdV

G fG f dV f G dS
n n

= ∇

 ∂ ∂
= ∇ + − ∂ ∂ 

∫ ∫

∫ ∫

x y y y
 

that is, 

 
*

*( , ) ( ) ( )
V S

G fG f dV f G dS
n n

 ∂ ∂
= − ∂ ∂ 

∫ ∫x y y y , (2.64) 

which transforms the domain integral into a boundary integral. 

2.9.3. Use of Particular Solutions 

In this approach, we simply seek to find a particular solution pφ  of Eq. (2.1), such 
that c pφ φ φ= +  and 
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 2 20, 0p cfφ φ∇ + = ∇ = . (2.65) 

Thus, the free term f is taken care of by the particular solution pφ . The problem is 
reduced to solving a Laplace equation for cφ  under modified boundary conditions. 

 

2.10. Indirect BIE Formulations 
We can use the fundamental solutions to construct BIEs directly, without using the 

Green’s identities. The BIEs constructed in this way often contain density functions 
that do not have direct physical meanings. Thus these BIEs are called indirect BIE 
formulations. For example,  consider the following integral representation: 

 ( ) ( , ) ( ) ( ),
S
G dS Vφ σ= ∀ ∈∫x x y y y x , (2.66) 

which is called a single-layer potential [57]. It can be shown that ( )φ x  given by (2.66) 
satisfies the Laplace equation (Eq. (2.1) with f = 0). The density function ( )σ y  has no 
clear physical meaning in this case. Field ( )φ x  can be determined by Eq. (2.66) after 
the density function ( )σ y  is found on the boundary. Taking the derivative of (2.66) and 
letting x approach boundary S, we can obtain the following two BIEs: 

 ( ) ( , ) ( ) ( ),
S
G dS Sφ σ= ∀ ∈∫x x y y y x , (2.67) 

and 

 ( , ) 1( ) ( ) ( ) ( ),
( ) 2S

G dS S
n n
φ σ σ∂ ∂

= + ∀ ∈
∂ ∂∫

x yx y y x x
x

. (2.68) 

If we use (2.67) on Sφ  where φ  is given (Dirichlet BC), we obtain from (2.67) 

 ( ) ( , ) ( ) ( ),
S
G dS Sφ σ= ∀ ∈∫x x y y y x , (2.69) 

which is an integral equation of the first kind. If we use (2.68) on qS  where q is given 
(Neumann BC), we obtain from (2.68) 

 ( , ) 1( ) ( ) ( ) ( ),
( ) 2S

Gq dS S
n

σ σ∂
= + ∀ ∈

∂∫
x yx y y x x
x

, (2.70) 

which is an integral equation of the second kind. BEM equations based on Eqs. (2.67) 
and (2.68) can be applied to solve for unknown density ( )σ y  over the entire boundary 
S. Then, going back to the single-layer potential representation of ( )φ x  in Eq. (2.66), 
we can evaluate ( )φ x  everywhere inside the domain V. This is one of the indirect BIE 
formulations in the BEM.  

Starting with the following double-layer potential [57] representation 

 ( , )( ) ( ) ( ),
( )S

G dS V
n

φ µ∂
= ∀ ∈

∂∫
x yx y y x
y

, (2.71) 

we can formulate another indirect BIE formulation for potential problems. 
The advantages of using indirect BIE formulations are that fewer integrals need to 

be computed to form the BEM system of equations, and better conditioning of the BEM 
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equations can be achieved by selecting integral equations of the second kind based on 
the boundary conditions. The disadvantage of using indirect BIEs is obvious, in that the 
density functions ( )σ y  and ( )µ y  are not the physical quantities directly, and a post-
processing step is needed to obtain the field ( )φ x , which can offset the savings in 
forming the BIE equations. In addition, better conditioning can always be achieved by 
with a combination of the CBIE and HBIE (direct BIEs), as will be discussed later. 
 

2.11. Programming for the Conventional BEM 
A sample program written in Fortran for solving general 2-D potential problems is 

provided in Appendix B.1. In the conventional BEM approach, we need to first form 
the BEM system of equations, as shown in Eq. (2.31), then employ a direct solver (e.g., 
using Gauss elimination) or an iterative solver (e.g., the generalized minimal residual 
method or GMRES) to solve the linear systems, and finally evaluate the field inside the 
domain if needed. 

 
Figure 2.11.  Flowchart for a conventional BEM program for solving 2-D potential 

problems. 
 

The flowchart as shown in Figure 2.11 is typical for conventional BEM programs 

Start  
Initiate parameters  

Read in the BEM model 
(prep_model.f) 

Compute the right-hand side vector in Ax = b 
(bvector.f) 

 Form the coefficient matrix in Ax = b 
(coefficient.f) 

 
Call LAPACK direct solver 

(dgesv.f) 

Evaluate fields inside the domain 
(domain_field.f) 

 

 

 

 

Stop 
 

Output the results 
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using the Fortran language. The main components of a BEM program are subroutines 
for reading the model data (nodes, elements, BCs, and field points inside the domain), 
computing the right-hand-side vector b, computing the coefficients to form the system 
matrix A, solving the system of equations (in this case, using the direct solver from 
LAPACK), evaluating the field values inside the domain when needed, and writing the 
output files. The subroutines indicated in the flowchart in Figure 2.11 are those given 
in Appendix B.1 for the program for solving general 2-D potential problems with the 
CBIE and using constant elements. Programs for other problems or using other types 
of elements may need a few additional subroutines, such as those for numerical 
integration of singular and nonsingular integrals. 

For a beginner in BEM research and development, it is very important and 
beneficial if one can write a 2-D BEM code using the conventional BEM approach first, 
so that one can understand the structure of a BEM program and implementation of its 
major components. The program provided in Appendix B.1 can serve as a starting point. 
Explanations of the main program, subroutines, and main variables are provided within 
the code. A sample input file is also provided in Appendix B.3, which can be used as a 
template to prepare input files for other 2-D potential problems. In this program, all the 
integrals, including the singular ones, are computed with the analytical results given in 
Appendix A.1, which is possible with constant elements. 
 

2.12. Numerical Examples 
A few examples are given in this section to show the accuracy of the BEM for 

solving potential problems, including 2-D and 3-D heat conduction, potential flow, and 
electrostatic problems. More examples, especially those involving large-scale problems, 
are given in the next chapter related to the fast multipole BEM. 

2.12.1. Heat Conduction in An Annular Region 
We first consider a simple potential (heat conduction) problem in a 2-D annular 

region, as shown in Figure 2.12, for which the analytical solution can be used to verify 
the BEM results. The potential field φ  is given on the inner boundary aS , and the 
normal derivative q is given on the outer boundary bS . The analytical solution for this 
problem is given by 

 ( ) loga b
rr q b
a

φ φ  = +  
 

, (2.72) 

where aφ  and bq  are the given values of φ  and q  on boundaries aS  and bS , 
respectively, and r is the radial coordinate in a polar-coordinate system centered at O. 
This gives 

 ( ) log , ( )b a b a b
b bb q b q a q
a n a

φφ φ φ ∂ = = + = = −  ∂ 
. (2.73) 
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Figure 2.12.  A simple potential problem in an annular region V. 

 

For this problem, we choose 1, 2, 100, and 200a ba b qφ= = = = . This gives  

377.258872bφ = ,   400.0aq = − . 

We discretize the inner and outer boundaries with the same number of elements. 
Table 2.1 shows the results of bφ  and aq  for this problem as the total number of 
elements increases from 36 to 9600. As we can see, the results for the BEM converge 
quickly to the exact solution for the mesh with only 72 constant elements with a relative 
error of 0.1%. The results continue to improve until reaching the mesh with 4800 
elements. For the two larger meshes (with 7200 and 9600 elements), the results for aq  
deviate slightly from the exact solution, which may be caused by numerical errors that 
are due to the extremely small elements in the mesh.  

Fields inside the annular region V are also computed using the integral 
representations (2.12) and (2.20) for the potential (temperature) and derivatives of the 
potential (heat flux) in the x and y directions. The contour plots are shown in Figure 2.13, 
in which the results are based on the model with 360 boundary elements. 
 

Table 2.1.  Results of the potential and normal derivative for the annular region. 

N aq  bφ  

36 -401.7715 376.7236 
72 -400.4007 377.1410 

360 -400.0148 377.2548 
720 -400.0036 377.2579 

1440 -400.0005 377.2586 
2400 -400.0006 377.2588 
4800 -400.0006 377.2589 
7200 -399.9982 377.2589 
9600 -399.9969 377.2589 

Analytical Solution -400.0000 377.2589 

 

 

a b 

O 

V 

Sb 

Sa 
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                 (a) Potential         (b) Flux in the x direction     (c) Flux in the y direction 

Figure 2.13.  Contour plots of potential and flux in the x and y directions inside V. 
 

2.12.2. Potential Flow Past A Cylinder 
Next, we consider a potential flow problem. That is, the flow past a circular 

cylinder, as shown in Figure 2.14. The uniform flow along the x direction has a constant 
velocity 0U  and the normal velocity of the flow on the cylinder surface is zero. The 
analytical solution for the potential φ  is given by 

 
2

0 2( , ) 1 cos , forar U r r a
r

φ θ θ
 

= + ≥ 
 

,  (2.74) 

and the velocity components in the Oxy coordinates are 

 

2 2 2

0 2 4

2

0 4

( , ) 1 2 ,

( , ) 2 , for .

a a xu x y U
x r r

a xyv x y U r a
y r

φ

φ

 ∂
= = + − ∂  
∂

= = − ≥
∂

  (2.75) 

 
Figure 2.14.  Uniform potential flow past a cylinder. 

 
This is an exterior (infinite) domain problem. We use 360 elements on the 

boundary of the cylinder, and the zero normal velocity condition (q = 0) is applied on 
S. The far field flow potential 0U xφ =  is added to the right-hand side of the CBIE 
(2.17). Field points outside the cylinder (in V) are used to calculate the potential and 
velocity, once the boundary potentials on all elements are obtained. Table 2.2 shows 
the computed maximum values of the boundary solutions using the BEM model. Very 
good results are obtained using the model with 360 boundary elements. 

 
a 
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Figure 2.15 shows the contour plots of the flow velocity components and the 
streamline pattern computed at the field points inside domain V. 
 

Table 2.2.  Results of maximum potential and velocity values on boundary S. 

 φ  (x 0U a ) u (x 0U ) v (x 0U ) 

BEM Solution 1.99992 1.99977 0.99981 

Analytical Solution 2.00000 2.00000 1.00000 

 

   
          (a) Velocity component u         (b) Velocity component v           (c) Streamlines 

Figure 2.15.  Plots of flow velocity components and streamlines in V. 
 

2.12.3. Electrostatic Fields Outside Two Conducting Beams 
Next, we consider the electrostatic field surrounding two thin beams that are 

applied with opposite voltages (Figure 2.16. This is an exterior problem that is also 
governed by Laplace equation. However, for this problem a dual BIE formulation that 
is a linear combination of CBIE (2.17) and HBIE (2.21) is used to overcome the 
difficulties associated with thin shapes if the CBIE is applied alone [49, 58]. 

 
Figure 2.16.  Electrostatic field around two parallel beams. 

 
In Figure 2.16, the length of the beam is L, the thickness is h, and the gap between 

the two beams is g. An offset d in the x direction may also be introduced between the 
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two beams. A potential (voltage) V is applied to the top beam, and the negative potential 
(-V) is applied to the bottom beam. For this problem, the analytical solution for the 
charge density σ −  on the lower surface of the top beam is given by (see, e.g., Ref. [59]) 

 2V V
n n g
φσ ε ε ε− ∂ ∆

= = =
∂ ∆

 (2.76) 

for the region away from the edges of the beams. This formula is used to verify the 
BEM results. 

The parameters used here are 1ε = , L = 0.01 m, h = 0.0001 m, g = 0.0011 m, d = 
0, and V = 1. Constant elements are used. The number of elements along the beam-
length direction is increased from 10, 20, 50, to 100, and 5 elements are used on each 
edge (side) of the beams, corresponding to BEM models with 30, 50, 110, and 210 
elements per beam, respectively. The BEM results obtained with the dual BIE 
formulations converge very quickly. Figure 2.17 shows the convergence of the BEM 
results for the charge densities on the lower and upper surfaces of the top beam. In fact, 
the model with just 10 elements along the beam-length direction yields a value of σ −  
at the middle of the lower surface of the top beam that agrees with the analytical solution 
( 1818σ − =  in this case) within the first four digits. 

Figure 2.18 shows the charge density on the top beam in the same parallel beam 
model, but with an offset d = g = 0.0011 m and using 210 elements per beam. The 
charge densities in the middle of the beam remain the same ( 1818σ − = ), whereas the 
fields near the edges have marked changes. The charge densities on the bottom beam 
have negative values and are “antisymmetric” relative to the results on the top beam 
and thus are not plotted. 
 

 
Figure 2.17.  Convergence of the BEM results obtained using a dual BIE on the top 
beam in the parallel beam model ( 1ε = , L = 0.01 m, h = 0.0001 m, g = 0.0011 m, d = 0, 

and V = 1). 
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Figure 2.18.  Charge density on the top beam in the parallel beam model with offset 
( 1ε = , L = 0.01 m, h = 0.0001 m, g = 0.0011 m, d = g, V = 1, and 210 elements per beam). 

 

2.12.3. Potential Field in a Cube 
Two 3-D examples are given next using a BEM program with constant surface 

elements. A cube is shown in Figure 2.19 (a), which is a simple interior problem used 
to show the accuracy of the 3-D code with constant elements. The cube has an edge 
length = 1. First, mixed boundary conditions that ( , , ) 0.5, at 0.5x y z xφ = ± = ± , and 
q = 0 on all other surfaces, are applied. The unknown boundary values are computed 
using the BEM with the mesh of 300 elements. A contour plot of the potential 
distribution is shown in Figure 2.19 (b). 
 

     
(a) Mesh for the cube                (b) Potential distribution 

Figure 2.19.  A cube with 300 elements and linear potential in the x-direction. 
 

Next, the cube is applied with a linear potential ( , , )x y z xφ =  on all surfaces and 
the normal derivative q is computed on the surface. The normal derivative q for this 
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problem should be 1 on the surface at x = 0.5 and -1 on the surface at x = -0.5.  Table 2.3 
shows the results obtained with the conventional BEM and by using the CBIE, HBIE, 
and dual BIE for BEM meshes with an increasing number of elements. One can 
conclude from these results that the HBIE and the dual BIE are as accurate as the CBIE. 
Notice that constant triangular elements are used in this study. If linear or quadratic 
elements were applied, a few elements should have been sufficient for obtaining results 
with a similar level of accuracy. 
 

Table 2.3.  Results for the cube with a linear potential in the x-direction. 

Model Normal Derivative at (0.5, 0, 0) 

Elem/edge Total DOFs CBIE HBIE  Dual BIE 
2 48 1.08953 1.07225 1.06800 
4 192 0.99124 1.00624 0.99754 
8 768 0.99825 1.00438 0.99894 

12 1,728 0.99908 1.00327 0.99934 
16 3,072 0.99942 1.00260 0.99953 
20 4,800 0.99959 1.00216 0.99963 
24 6,912 0.99969 1.00185 0.99970 

Exact Value 1.00000 

 

2.12.4. Electrostatic Field Outside a Conducting Sphere 
A single conducting sphere model is studied next. This is a simple exterior problem 

with curved boundaries. The conducting sphere has a radius a = 1, and a constant 
electric potential 0 1φ =  is applied on its surface. The analytical solution of the electric 
field outside the sphere is 0( ) ( / )r a rφ φ= , with r being the distance from the center of 
the sphere, which gives a charge density on the surface equal to 1, assuming the 
dielectric constant ε  = 1. A mesh for the sphere model with 1280 elements using the 
icosahedron concept and the computed surface charge density using this mesh are 
shown in Figure 2.20 (a) and (b), respectively. 
 

 
 (a) A mesh for the sphere             (b) Computed charge density 

Figure 2.20.  A spherical conductor with 1280 elements (mesh based on icosahedron). 
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Table 2.4 gives the BEM results of the charge density at the point (1, 0, 0) on the 
surface of the sphere using a sequence of meshes for the model with the number of 
elements increasing from 768 to 6,912. From the results for this problem, it is noticed 
that the dual BIE is slightly less accurate than the CBIE because of the curved surface 
that cannot be represented accurately by constant elements and can cause the 
evaluations of hypersingular integrals to be less accurate [60]. 

 
Table 2.4.  Results for the single perfect conducting sphere. 

Model Charge Density at (1, 0, 0) 

DOFs CBIE Dual BIE 
768 0.98749 0.95086 

1,728 0.99377 0.96609 
3,072 0.99634 0.97431 
4,800 0.99761 0.97937 
6,912 0.99832 0.98278 

Exact Value 1.00000 

 
Several numerical examples of solving both 2-D and 3-D potential problems are 

presented in this subsection. Constant elements are used for all the examples, and 
reasonably accurate BEM solutions are obtained. Linear or quadratic elements can be 
applied to improve the accuracy of the BEM solutions (see the Chapter Problems). 
These examples are used again in the next chapter on the fast multipole solution 
techniques to demonstrate the computational efficiencies of the fast multipole BEM for 
solving large-scale problems. 
 

2.13. Summary 
In this chapter, the BIE formulations for solving potential problems are presented. 

It is shown that the partial differential equation (Poisson equation or Laplace equation) 
can be transformed into BIEs with the help of the fundamental solution and the Green’s 
identity. Both the conventional BIE and the hypersingular BIE formulations are 
discussed. Weakly singular forms of these BIEs are also presented to show that singular 
integrals in the BIE formulations and therefore their BEM solutions can be avoided 
altogether if the integral terms are arranged properly. The discretization procedures are 
discussed with constant, linear, and quadratic line elements for 2-D problems and with 
linear surface elements for 3-D problems. Programming for the BEM using the 
conventional approach is discussed, and several numerical examples are presented. 

This chapter is the basis for all other chapters dealing with fast multipole solution 
techniques for potential, elasticity, Stokes flow, and acoustic wave problems. The basic 
ideas, BIE formulations, BEM discretization procedures, programming, and solutions 
for those problems are similar to these discussed in this chapter. Therefore it is very 
important to understand all the material covered in this chapter before moving on to the 
following chapters. 
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Problems 

2.1. Show that ( , )G x y  given by (2.5) does satisfy Eq. (2.4), that is 
2 ( , ) 0, for 0G r∇ = ≠x y ;  and near 0r = , 2 ( , )G−∇ x y  behaves like a ( , )δ x y  

function. For example, 2 ( , ) ( ) 1
V

G dV
ε

− ∇ =∫ x y y , where Vε  is a circular region 

centered at x with radius ε . 

2.2. Verify that φ  given by integral representation (2.12) does satisfy the Poisson 
equation (2.1). 

2.3. Show that 

 ( )1, , ,ij ij i jr r r
r
δ= −  (2.77) 

where ( )( )i i i ir y x y x= − −  is the distance between the source point x and field 
point y. 

2.4. Verify the second integral identity for the fundamental solution ( , )G x y  given in 
(2.8). 

2.5. Show that CBIE (2.17) and HBIE (2.21) are also valid for infinite domain 
problems, that is, contributions of integrals on boundaries at infinity should 
vanish. 

2.6. Verify the weakly singular form of the CBIE in (2.25) using integral identity (2.7). 
2.7. Verify formula in Eq. (2.40) for linear elements. 
2.8. Show that the result in Eq. (2.42) is true for infinite domain problems regardless 

of which type of elements is used. 
2.9. Applying the program in Appendix B.1, solve the cylinder problem shown in 

Figure 2.11 by using a quarter-symmetry model and compare your results with 
those presented in Table 2.1. 

2.10. Develop a program (in Fortran, C/C++, or Matlab) using linear line elements for 
solving general 2-D potential problems. You can start with the program using 
constant elements given in Appendix B.1. 

2.11. Develop a program (in Fortran, C/C++, or Matlab) using quadratic line elements 
for solving general 2-D potential problems. You can start with the program using 
constant elements given in Appendix B.1. 
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Chapter 3. Fast Multipole Boundary Element Method 
for Potential Problems 

Although the BEM has enjoyed the reputation of ease in modeling or meshing for 
problems with complicated geometries or in infinite domains, its efficiency in solutions 
has been a serious drawback for analyzing large-scale models. For example, the BEM 
has been limited to solving problems with only a few thousand DOFs on a PC for many 
years. This is because the conventional BEM, as described in the previous chapter, 
produces dense and nonsymmetric matrices that, although smaller in sizes, require 

2( )O N  operations for computing the coefficients and 3( )O N  operations for solving the 
system by using direct solvers (N is the number of equations of the linear system or 
DOFs). 

In the mid-1980s, Rokhlin and Greengard [33-35] pioneered the innovative fast 
multipole method (FMM) that can be used to accelerate the solutions of BEM by several 
fold, promising to reduce the CPU time in FMM-accelerated BEM to O(N). With the 
help of the FMM, the BEM can now solve large-scale problems that are beyond the 
reach of other methods. We call the fast multipole accelerated BEM fast multipole BEM 
or simply fast BEM from now on, to distinguish it from the conventional BEM 
described in the previous chapter. Some of the early work on the fast multipole BEM 
in mechanics can be found in Refs. [36-40], which show the great promise of the fast 
multipole BEM for solving large-scale problems. A comprehensive review of the fast 
multipole BIE/BEM research up to 2002 can be found in Ref. [41]. 

In this chapter, the FMM for solving the BEM systems of equations for potential 
problems is introduced. First, the fast multipole BEM for 2-D potential problems is 
discussed in detail. Then, the fast multipole BEM for 3-D potential problems is 
introduced. Several examples of modeling large-scale potential problems are provided. 
This chapter forms the basis for all the subsequent chapters on the fast multipole BEM 
approaches for elasticity, Stokes flow, and acoustic wave problems. 
 

3.1. Basic Ideas in the Fast Multipole Method 
To facilitate the discussion, BEM system of equations (2.30) is repeated here: 

 

11 12 1 1 11 12 1 1
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. (3.1) 

After the boundary conditions are applied, a standard linear system of equations 
[Eq. (2.31)] is formed as follows by switching the columns in the two matrices in 
Eq. (3.1): 

 

11 12 1 1 1

21 22 2 2 2

1 2

, or

N

N

N N NN N N

a a a b
a a a b

a a a b

λ
λ

λ

     
     

     = =                  

Aλ b





     



, (3.2) 
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where A is the coefficient matrix, λ  is the unknown vector, and b is the known right-
hand-side vector. Obviously, the construction of matrix A requires 2( )O N  operations 
and the size of the required memory for storing A is also 2( )O N  because A is in general 
a nonsymmetric and dense matrix. The solution of the system in Eq. (3.2) by use of 
direct solvers such as Gauss elimination is even worse, requiring 3( )O N  operations 
because of this general matrix. Even with iterative solvers, the solution time is still 

2( )O N . That is why the conventional BEM approach for solving BIEs is in general 
slow and inefficient for large-scale problems, despite its robustness in the meshing stage 
as compared with other domain-based methods. 

The main idea of the fast multipole BEM is to apply iterative solvers (such as 
GMRES) to solve Eq. (3.2) and use the FMM to accelerate the matrix-vector 
multiplication (Aλ) in each iteration, without ever forming the entire matrix A explicitly. 
Direct integrations are still needed when the elements are close to the source point, 
whereas fast multipole expansions are used for elements that are far away from the 
source point. Figure 3.1 is a graphical illustration of the fast multipole BEM compared with 
the conventional BEM. For the far-field calculations, the node-to-node (or element-to-
element) interactions in the conventional BEM [Figure 3.1(a)] are replaced with cell-to-
cell interactions [Figure 3.1(b)] by use of a hierarchical tree structure of cells containing 
groups of elements (in Figure 3.1, the dots indicate nodes or cells and the lines indicate 
the interactions needed). This is possible by use of the multipole and local expansions 
of the integrals and some translations that are discussed in the following section. The 
numbers of lines represent the computational complexities of the two approaches, and 
a dramatic decrease of operations in the fast multipole BEM is obvious from this 
illustration. 
 

 
Figure 3.1. A graphical illustration of the conventional BEM and fast multipole BEM. 
 

A fundamental reason for the reduction in operations in the fast multipole BEM, 
as shown in Figure 3.1(b), is due to the fact that the Green’s functions or the kernels in 
the BIEs can be expanded in the following form: 

 ( , ) ( , ) ( , )x y
i c i c

i
G G G=∑x y x y y y , (3.3) 

where cy  is an expansion point. This can be achieved by use of various forms of 
expansions, including but not limited to Taylor series expansions. By using an 
expansion as in Eq. (3.3), we can write the original integral, such as the one with the G 
kernel in CBIE (2.17), as 

(a) Conventional BEM approach [O(N2)] (b) Fast multipole BEM approach [O(N) for large N] 
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 ( , ) ( ) ( ) ( , ) ( , ) ( ) ( )
c c

x y
i c i cS S

i
G q dS G G q dS=∑∫ ∫x y y y x y y y y y , (3.4) 

where cS  is a subset of S away from x. In the conventional BEM, the integral is 
computed with the expression on the left-hand side of Eq. (3.4) directly. Any changes 
in the location of the source point x will require reevaluation of the entire integral. In 
the fast multipole BEM, when the source point x is far away from cS , the original 
integral is computed with the expression on the right-hand side of Eq. (3.4), in which 
the new integrals need to be evaluated only once, independent of the locations of the 
source point x. That is, the direct relation between x and y is cut off by use of the 
expansion and introduction of the new “middle” point cy . Additional expansions and 
translations, as well as the hierarchical tree structure of the elements, are introduced in 
the fast multipole BEM to further reduce the computational costs. 

Using the FMM for the BEM, we can reduce the solution time to O(N) for large-
scale problems [41]. We can also reduce the memory requirement to O(N) because with 
iterative solvers, the entire matrix does not need to be stored in the memory. This drastic 
improvement in computing efficiency has presented many opportunities for the BEM. 
Large BEM models with a couple million DOFs that cannot be solved by the 
conventional BEM before can now be solved readily by using the fast multipole BEM 
within hours on a PC or BEM models with tens of millions of DOFs on a supercomputer. 
 

3.2. Fast Multipole BEM for 2-D Potential Problems 
In this section, we first discuss the expansions that are used in the FMM for 2-D 

potential problems. Then the main procedures and algorithms in the fast multipole BEM 
are described. 

We first consider the following integral with the G kernel in CBIE (2.17): 

 ( , ) ( ) ( )
cS
G q dS∫ x y y y , (3.5) 

in which cS  is a subset of boundary S and away from the source point x. 

For convenience, we introduce complex notation in 2-D, that is, we replace the 
source point 

0 1 2z x ix⇒ = +x  

and the field point 

1 2z y iy⇒ = +y  

in the complex plane, where 1i = −  (Figure 3.2). Using the complex notation, we can 
write 

 0( , ) Re{ ( , )}G G z z=x y , (3.6) 

where 

 0 0
1( , ) log( )

2
G z z z z

π
= − −  (3.7) 

is the fundamental solution in complex notation and Re{} indicates the real part of the 
variable or function. Thus, the integral in (3.5) is equivalent to the real part of the 
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following integral: 

 0( , ) ( ) ( )
cS
G z z q z dS z∫ , (3.8) 

where q(z) is still a real-valued function of complex variable z. 
 

 
Figure 3.2.  Complex notation and the related points for fast multipole expansions. 

 
We now introduce several important concepts in the FMM that form the building 

blocks for the fast multipole BEM. 

3.2.1. Multipole Expansion (Moments) 
The first idea is to expand the kernel function to see if we can separate the source 

point 0z  (x) and field point z (y). To do this, we introduce an expansion point cz  that 
is close to the field point z (Figure 3.2), that is, 0c cz z z z− << − . We can write 

 0 0 0
0

1 1( , ) log( ) log( ) log 1
2 2

c
c

c

z zG z z z z z z
z zπ π

  −
= − − = − − + −  −  

. (3.9) 

Applying the following Taylor series expansion, 

 
1

log(1 ) , for 1
k

k k
ξξ ξ

∞

=

− = − <∑ , (3.10) 

to the second logarithmic term on the right-hand side of Eq. (3.9), we obtain 

 0 0
0

1( , ) ( ) ( )
2 k c k c

k
G z z O z z I z z

π

∞

=

= − −∑ . (3.11) 

We previously introduced two auxiliary functions ( )kI z  and ( )kO z  defined by 

1 

2 

r 

 

 

z 
n 

  

 
 

0 
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0

( ) , for 0;
!

( 1)!( ) , for 1; and ( ) log( ).

k

k

k k

zI z k
k
kO z k O z z

z

= ≥

−
= ≥ = −

 (3.12) 

The derivatives of functions ( )kI z  and ( )kO z  satisfy 

 1 0

1

( ) ( ), for 1; and ( ) 0;
( ) ( ), for 0.

k k

k k

I z I z k I z
O z O z k

−

+

′ ′= ≥ =
′ = − ≥

 (3.13) 

In addition, we have the following two results: 

 
1 2 1 2 1 2

0 0

1 2 1 2 2 1
0

( ) ( ) ( ) ( ) ( );

( ) ( 1) ( ) ( ), for .

k k

k k l l l k l
l l

l
k k l l

l

I z z I z I z I z I z

O z z O z I z z z

− −
= =

∞

+
=

+ = =

+ = − <

∑ ∑

∑
 (3.14) 

The first equation is simply the binomial formula and the second simply a Taylor series 
expansion of kO  about point 1z . 

Note that, in the G kernel given in Eq. (3.11), 0 andz z  are now separated 
because of the introduction of the “middle point” cz , which is a key in the FMM. The 
integral in (3.8) is now evaluated as follows: 

 0 0
0

1( , ) ( ) ( ) ( ) ( ) ( ) ( ),
2c c

k c k cS S
k

G z z q z dS z O z z I z z q z dS z
π

∞

=

 = − −  
∑∫ ∫  

that is, the multipole expansion 

 0 0
0

1( , ) ( ) ( ) ( ) ( )
2c

k c k cS
k

G z z q z dS z O z z M z
π

∞

=

= −∑∫ , (3.15) 

where 

 ( ) ( ) ( ) ( ), 0,1, 2,...
c

k c k cS
M z I z z q z dS z k= − =∫ , (3.16) 

are called moments about cz , which are independent of the collocation point 0z  and 
need to be computed only once. After these moments are obtained, the G kernel integral 
can be evaluated readily by using Eq. (3.15) for any collocation point 0z  away from 

cS  (which will be within a cell centered at cz ). 

We can evaluate the moments analytically by using the complex notation on 
constant elements. Suppose we have a line element starting at point az  and ending at 

bz . From Eq. (3.16), the contribution to the moment from this element can be evaluated 
as 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
!

b b b

a a a

kz z ze c
k c k c e k c ez z z

z zM z I z z q z dS z q I z z dS z q dS z
k
−

= − = − =∫ ∫ ∫ , (3.17) 

in which eq  is the nodal value of q on this element. Notice the relation 
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 1 2
1 2

dy dydz dy idy i dS dS
dS dS

ω    = + = + =        
, (3.18) 

where ω  is the complex (unit) tangential vector along the boundary S. Using this 
relation, we can evaluate the preceding moment contribution as 

 [ ]( )
1 1

( )( ) ( ) ( )
!

b

a

kze c
k c e e k b c k a cz

z zM z q dz q I z z I z z
k

ω ω + +

−
= = − − −∫ , (3.19) 

where ω  is the complex conjugate of ω . This analytical result can facilitate very 
efficient and accurate evaluations of the moments defined in Eq. (3.16) for constant 
elements. 

3.2.2. Error Estimate for the Multipole Expansion 
Errors in the multipole expansion are controlled by the number of terms used in 

the expansion in (3.11). An error bound can be derived readily for this multipole 
expansion (cf. results in Ref. [35]). If we apply a multipole expansion with p terms in 
Eq. (3.15), we have, for the error bound 

0 0 0
0 1

0 0
1 1

0 0
1

1 1( , ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

1 1( ) ( ) ( ) ( ) ( ) ( )
2 2

1 ( ) ( ) ( ) ( ) ( )
2 2 !

c

c

c

p
p

M k c k c k c k cS
k k p

k c k c k c k cS
k p k p

k

k c k c k cS
k p k p

E G z z q z dS z O z z M z O z z M z

O z z M z O z z I z z q z dS z

A RO z z I z z q z dS z O z z
k

π π

π π

π π

∞

= = +

∞ ∞

= + = +

∞

= + = +

≡ − − = −

≤ − = − −

≤ − − ≤ −

∑ ∑∫

∑ ∑ ∫

∑ ∫
1

1

1
1 1 00 0 0

( 1)! 1 ,
2 ! 2 2 1

k k p

k k p
k p k p cc c c

A k R A R A R
k R z zz z z z z zπ π π

∞

+∞ ∞

+
= + = +

−
= ≤ =

− −− − −

∑

∑ ∑

 

in which R is the radius of a region centered at cz  such that 

 and ( ) ( )
c

c S
z z R A q z dS z− < ≡ ∫ . (3.20) 

Let 0 cz z Rρ = − ; the preceding estimate of the error bound can be written as 

 
1 1

2 ( 1)

p
p

M
AE
π ρ ρ

 
≤  −  

. (3.21) 

We notice from estimate (3.21) that the larger the value of ρ , the smaller the value of 
this estimate of the error bound. If 2ρ ≥ , that is, when 0 2cz z R− ≥ , we have the 
following estimate: 

 1
2 2

p
p

M
AE
π
 ≤  
 

. (3.22) 

An error bound can be used to estimate the number (p) of the expansion terms so that 
it can be determined automatically by the computer program. 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 60 

3.2.3. Moment-to-Moment Translation  

If the expansion point cz  is moved to a new location 'cz  (Figure 3.2), we can apply 
a translation to obtain the moment at the new location without recomputing the moment 
by using Eq. (3.16). We obtain this translation by considering the following for the 
moments: 

[ ]
' '

'

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).
c

c

k c k cS

k c c cS

M z I z z q z dS z

I z z z z q z dS z

= −

= − + −

∫
∫

 

Applying the binomial formula or the first equation in Eqs. (3.14), we obtain 

 ' '
0

( ) ( ) ( )
k

k c k l c c l c
l

M z I z z M z−
=

= −∑ . (3.23) 

This is the moment-to-moment (M2M) translation for the moments in which cz  is 
moved to 'cz . Note that there are only a finite number of terms needed in this translation, 
that is, no additional truncation error is introduced in M2M translations. 

3.2.4. Local Expansion and Moment-to-Local Translation 
Next, we introduce another expansion, the so-called local expansion about the 

source point 0z  (x). Suppose Lz  is a point close to the source point 0z  (Figure 3.2), 
that is, 0 L L cz z z z− << − . From the multipole expansion in Eq. (3.15), we have 

[ ]

0 0
0

0
0

1( , ) ( ) ( ) ( ) ( )
2
1 ( ) ( ) ( ).

2

c
k c k cS

k

k L c L k c
k

G z z q z dS z O z z M z

O z z z z M z

π

π

∞

=

∞

=

= −

= − + −

∑∫

∑
 

Applying the second equation in Eqs. (3.14) with 1 L cz z z= −  and 2 0 Lz z z= − , we 
obtain the following local expansion: 

 0 0
0

1( , ) ( ) ( ) ( ) ( )
2c

l L l LS
l

G z z q z dS z L z I z z
π

∞

=

= −∑∫ , (3.24) 

where the local expansion coefficients ( )l LL z  are given by the following moment-to-
local (M2L) translation: 

 
0

( ) ( 1) ( ) ( )l
l L l k L c k c

k
L z O z z M z

∞

+
=

= − −∑ . (3.25) 

Similar to the multipole expansion, an estimate of the error bound for a local 
expansion with p terms from Eq. (3.24) can be found as follows [35]: 

 
0 0

0

12

0
1

1( , ) ( ) ( ) ( ) ( )
2

4 ( )( 1)1 1( ) ( )
2 2 ( 1)

c

p
p
L l L l LS

l

p

l L l L
l p

E G z z q z dS z L z I z z

A e p
L z I z z

π

ρ ρ ρ

π πρ ρ ρ

=

+∞

= +

≡ − −

 + + +   = − ≤  −  

∑∫

∑
 (3.26) 

for any max{2, 2 / ( 1)}p ρ ρ≥ − , where e is the base of the natural logarithm, and A 
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and ρ  are as defined for estimate (3.21). 

It is interesting to note that we can also derive the preceding results in Eqs. (3.24) 
and (3.25) for the local expansion by starting from the following expression: 

 0 0 0
0

1 1( , ) log( ) ( ) ( )
2 2 k L k L

k
G z z z z O z z I z z

π π

∞

=

= − − = − −∑ , (3.27) 

which is a Taylor series expansion of 0( , )G z z  about the point 0 Lz z=  that we can 
establish readily by using the Taylor series expansion as in Eq. (3.10). This expansion 
is symmetrical to the one in Eq. (3.11), which is an expansion of 0( , )G z z  about the 
point cz z= . 

We start with the expansion in (3.27) and evaluate 

( )

0 0
0

0
0

0
0 0

1( , ) ( ) ( ) ( ) ( ) ( ) ( )
2

1 ( ) ( ) ( ) ( ) ( )
2
1 ( 1) ( ) ( ) ( ) ( ) ( ),

2

c c

c

c

k L k LS S
k

k c c L k LS
k

l
k l c L l c k LS

k l

G z z q z dS z O z z q z dS z I z z

O z z z z q z dS z I z z

O z z I z z q z dS z I z z

π

π

π

∞

=

∞

=

∞ ∞

+
= =

 = − −  

 = − + − −  

 = − − − −  

∑∫ ∫

∑ ∫

∑ ∑∫

 

where cz  is an expansion point near z with c L cz z z z− << −  and the second relation 
in Eqs. (3.14) has been applied. That is,  

 
0

0
0 0

( , ) ( ) ( )

1 ( 1) ( ) ( ) ( ) ( ) ( ).
2

c

c

S

l
k l c L l c k LS

k l

G z z q z dS z

O z z I z z q z dS z I z z
π

∞ ∞

+
= =

 = − − − −  

∫

∑ ∑ ∫
 (3.28) 

Invoking the definition of the moment in Eq. (3.16), we can obtain Eqs. (3.24) and 
(3.25) for the local expansion from Eq. (3.28). This suggests that we can also establish 
the local expansion directly by simply defining the moment by using Eq. (3.16), without 
introducing the multipole expansion as given in Eq. (3.15). 

3.2.5. Local-to-Local Translation  

If the point for local expansion is moved from Lz  to 'Lz  (Figure 3.2), we have the 
following expression by using a local expansion with p terms from Eq. (3.24): 

[ ]0 0 0 ' '
0 0

1 1( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2c

p p

l L l L l L l L L LS
l l

G z z q z dS z L z I z z L z I z z z z
π π= =

≅ − = − + −∑ ∑∫ . 

Applying the first result in Eqs. (3.14) and the relation 
0 0 0

p p pl

l m m l m= = = =

=∑∑ ∑∑ , we obtain 

 0 ' 0 '
0

1( , ) ( ) ( ) ( ) ( )
2c

p

l L l LS
l

G z z q z dS z L z I z z
π =

≅ −∑∫ , (3.29) 

where the new coefficients are given by the following local-to-local (L2L) translation: 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 62 

 ' '( ) ( ) ( )
p

l L m l L L m L
m l

L z I z z L z−
=

= −∑ . (3.30) 

Replacing m-l with m, we can also write (3.30) in an alternative form: 

 ' '
0

( ) ( ) ( )
p l

l L m L L l m L
m

L z I z z L z
−

+
=

= −∑ . (3.31) 

Note again that L2L translations involve only finite sums and do not introduce any new 
source of errors once the number of the local expansion terms p is fixed. 

3.2.6. Expansions for the Integral With the F Kernel 
We now consider the integral with the F kernel in CBIE (2.17) in complex notation: 

 0( , ) ( ) ( )
cS
F z z z dS zφ∫ , (3.32) 

where ( )zφ  is still a real-valued function of complex variable z, and 0( , )F z z  is the F 
kernel in complex notation and can be written as: 

 0 1 2( , ) ( ) ' ( ) ', with 'G GF z z n in G n z G G
n z

∂ ∂
= = + = ≡
∂ ∂

. (3.33) 

Thus the F kernel in real variables can be expressed as 

 0 1 2( , ) Re{ ( , )} Re ' Im '.F F z z n G n G= = −x y  (3.34) 

 From Eq. (3.11), we have 

 0 1
1

1' ( ) ( )
2 k c k c

k
G O z z I z z

π

∞

−
=

= − −∑ , (3.35) 

and the integral in (3.32) becomes 

 

0 0
1

1( , ) ( ) ( ) ( ) ( )
2c

kk c cS
k

F z z z dS z O z z M zφ
π

∞

=

= −∑∫ , (3.36) 

in which 

 

1( ) ( ) ( ) ( ) ( ), 1, 2,3,...
c

k c k cS
M z n z I z z z dS z kφ−= − =∫ , (3.37) 

are the moments for the F kernel integral, similar to those in Eq. (3.16) for the G kernel 
integral.  

Again, on a constant element starting at point az  and ending at bz , we can evaluate 
the contribution to this moment analytically by using the relation in Eq. (3.18): 

  [ ]( )

1( ) ( ) ( ) ( ) ( ) ( ) ( )b

a

ze
k c k c e k b c k a cz

M z n z I z z z dS z n I z z I z zφ φ ω−= − = − − −∫ , (3.38) 

where eφ  is the nodal value of φ  on this element. 

The M2M, M2L, and L2L translations remain the same for the F kernel integral, 
except that  0 0.M =  Therefore, all the translations used for kM  are applied for  kM  
directly. 
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3.2.7. Multipole Expansions for the HBIE 
For the two integrals in HBIE (2.21), we can obtain the multipole expansions by 

directly taking derivatives of the related integrals in the CBIE. For example, for the K 
kernel integral, we have the following relation: 

 0 0
0 0

( , ) ( )
( )
G GK z z n z

n z z
∂ ∂

= =
∂ ∂

, (3.39) 

and the result 

 
0 0 0
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0 1 0
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1 ( ) ( ) ( ),
2

c cS S

l L l L
l

K z z q z dS z n z G z z q z dS z
z

n z L z I z z
π

∞

−
=

∂
=

∂

= −

∫ ∫

∑
 

by using Eq. (3.24) for the G kernel integral. That is, the local expansion for the K 
kernel integral in the HBIE is given by 

 0 0 1 0
0

1( , ) ( ) ( ) ( ) ( ) ( )
2c

l L l LS
l

K z z q z dS z n z L z I z z
π

∞

+
=

= −∑∫ , (3.40) 

in which the same moments, M2M, M2L, and L2L translations for the G kernel integral 
in the CBIE can be applied directly. The same relation exists between the H kernel 
integral in the HBIE and the F kernel integral in the CBIE. 

3.2.8. Fast Multipole BEM Algorithms and Procedures 
We are now ready to discuss the algorithms in the FMM for solving 2-D potential 

problems by using the BEM. These fast multipole algorithms are the basic ones that 
can be extended readily to solve 3-D potential problems and other 2-D and 3-D 
problems. Advanced algorithms, such as the adaptive algorithms, that can further speed 
up the solutions of the BEM equations also exist in the literature [61, 62]. 

An iterative solver, such as GMRES, is used to solve BEM equation (3.2). Each 
equation in this system of equations represents the sum of the integrals on all the 
elements when the source point is placed at one node. The FMM is used to evaluate the 
integrals on those elements that are far away from the source point, whereas the 
conventional approach is applied to evaluate the integrals on the remaining elements 
that are close to the source point. The detailed algorithms or procedures in the fast 
multipole BEM can be described as follows. 
Step 1.  Discretization. For a given problem, discretize the boundary S in the same way 

as in the conventional BEM approach. For example, we can apply constant 
elements to discretize the boundary S of a 2-D domain, as shown in Figure 3.3. 

Step 2. Set up the tree structure. Determine a tree structure of the boundary element 
mesh. For a 2-D problem, we first consider a square that covers the entire 
boundary S and call this square the cell of level 0 (see Figure 3.4). Then, we 
start dividing this parent cell into four equal child cells of level 1. Continue 
dividing in this way the cells that contain elements. For example, take a parent 
cell of level l and divide it into four child cells of level l+1. Stop dividing a cell 
if the number of elements in that cell is fewer than a pre-specified number (for 
illustration only, this number is taken as 1 in the example shown in Figure 3.4). 
A cell having no child cells is called a leaf (e.g., the shaded cells in Figure 3.4). 
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Note that the edge length of a cell at level l is given by / 2lL , with L being the 
length of the edge of the largest cell at level 0. In this process, an element is 
considered to be within a cell if the center of the element is inside that cell. A 
quad-tree structure of the cells covering all the elements is thus formed after 
this procedure is completed (Figure 3.5). 

 

 
Figure 3.3. Discretization of the boundary S by use of constant elements. 

 

 
Figure 3.4.  A hierarchical cell structure covering all the boundary elements (the small 
square on the right-hand side shows the numbering scheme for the child cells of any 

given cell). 
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Figure 3.5.  A hierarchical quad-tree structure for the 2-D boundary element mesh. 

 

 
Figure 3.6.  Upward pass: Multipole expansions and M2M translations (Step 3). 

 

Step 3. Upward pass. Compute the moments on all cells at all levels with 2l ≥ , with 
up to p terms, and trace the tree structure upward (Figure 3.6). For a leaf, 
Eq. (3.16) is applied directly (with cS  being the set of the elements contained 
in the leaf and cz  the centroid of the leaf). For a parent cell, calculate the 
moment by summing the moments on its four child cells using the M2M 
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translation, that is, Eq. (3.23), in which 'cz  is the centroid of the parent cell and 

cz  is the centroid of a child cell. Note that the moments need to be computed 
again for each new iteration of the solution because these moments involve the 
integration of the kernels and estimated boundary solutions from the previous 
iteration. 

Step 4. Downward pass. Let us first define a few terms used in describing the 
downward pass (Figure 3.7). Two cells are said to be adjacent cells at level l if 
they have at least one common vertex. (For two leaf cells at different levels, if 
the parent cell of one of the leaf cells shares at least a common vertex with the 
other leaf cell, they are also said to be adjacent cells.) Two cells are said to be 
well separated at level l if they are not adjacent at level l but their parent cells 
are adjacent at level l-1. The list of all the well-separated cells from a level l cell 
C is called the interaction list of C. Cells are called to be far cells of C if their 
parent cells are not adjacent to the parent cell of C.  
In the downward pass, we compute the local expansion coefficients on all cells 
starting from level 2 and tracing the tree structure downward to all the leaves 
(Figure 3.8). The local expansion associated with a cell C is the sum of the 
contributions from the cells in the interaction list of cell C and from all  the far 
cells. The former is calculated by use of the M2L translation, Eq. (3.25), with 
moments associated with cells in the interaction list, and the latter is calculated 
by use of the L2L translation, Eq. (3.30) or (3.31), for the parent cell of C with 
the expansion point being shifted from the centroid of C’s parent cell to that of 
C. For a cell C at level 2, we use only the M2L translation to compute the 
coefficients of the local expansion. Figure 3.8 shows how the local expansion 
coefficient is calculated through this downward pass for cell C where node 29 
is located in our example model (Figure 3.4). 

 

 
Figure 3.7.  Grouping of the cells for cell C at level l. 

Cell C (direct) 

Adjacent cells 
(direct) 

Cells in 
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Figure 3.8.  Downward pass: M2L and L2L translations (Step 4). 

 
Step 5. Evaluation of the integrals. We use the G kernel integral in (3.8) as an example. 

Suppose the collocation point 0z  is on an element in leaf C (Figure 3.7). We 
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compute the contributions from elements in leaf C and its adjacent cells directly 
as in the conventional BEM. We compute the contributions from all other cells 
(cells in the interaction list of C and far cells) by using the local expansion, that 
is, Eq. (3.24). We do this by using the local expansion coefficients for cell C, 
which were computed in Step 4, and shifting the expansion point from the 
centroid of C to the collocation point 0z  (Figure 3.6). That is, the integral is 
decomposed as follows: 

 0 _ _
( , ) ( ) ( )

S S Near S Far
G z z q z dS z GqdS GqdS= +∫ ∫ ∫ , (3.41) 

where the integral on _S Near  (cell C and its adjacent cells) is done by direct 
integration as in the conventional BEM, and the integral on _S Far  (cells in 
the interaction list and far cells for cell C) is done by the FMM (M2L and L2L 
translations, respectively). Figure 3.9 shows how the evaluation of all the 
integrals is done for node 29 in our example model (Figure 3.4). 

Step 6. Iterations of the solution. The iterative solver updates the unknown solution 
vector λ  in the system =Aλ b  and continues at Step 3 to evaluate the next 
matrix and vector multiplication ( Aλ ) until the solution of λ  converges within 
the given tolerance. 

 

 
Figure 3.9.  Evaluation of all the integrals for a collocation point (Step 5). 

 
The fast multipole algorithm discussed in this section is the original algorithm, 

which is efficient for BEM models in which the elements are about the same size and 
distributed uniformly in a bulky domain. For BEM models with nonuniform element 
distributions and especially with large elements adjacent to smaller elements, the so-
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called adaptive FMMs are more efficient, in which the definitions of the adjacent cells 
and cells in the interaction list are further refined. Discussions on the adaptive 
algorithms can be found in Refs. [61, 62]. 

3.2.9. Preconditioning 
Applying a good preconditioner for the iterative solver is very beneficial, if not 

crucial, for the convergence of the iterative solutions and the computational efficiency. 
Unlike that of the direct solver, the CPU time used by an iterative solver in solving a 
linear system of equations is unpredictable. The solution can converge within a few 
iterations for some cases, whereas it can take a few hundred iterations in other cases, 
depending on the conditioning of the system. It has been found that the number of 
iterations is directly related to the condition number of the system of equations to be 
solved with iterative solvers. To accelerate the iterative solution process, that is, to 
reduce the number of iterations for a given tolerance, a preconditioning matrix can be 
introduced to improve the conditioning of the BEM system matrix.  

A simple and effective choice is to use a block diagonal preconditioner in the form 

 

1

2

3

n

 
 
 
 =
 
 
  

A 0 0 0
0 A 0 0

M 0 0 A 0
0

0 0 0 0 A







   

, (3.42) 

in which iA  is a submatrix of A with the coefficient formed on a leaf by direct 
evaluation of the integrals within that leaf. Using the preconditioner matrix M, we 
change the original system 

 =Aλ b , (3.43) 

to  

 ( )1 1− −=M A λ M b , (3.44) 

for left preconditioning, or to 

 ( )( )1− =AM Mλ b , (3.45) 

for right preconditioning, both of which can potentially yield better conditioned systems. 
Other forms of the preconditioners are also available, and it is still an important research 
topic to find a better preconditioner for the fast multipole BEM in many applications. 
Further discussion on the preconditioners for multidomain and elasticity problems is 
provided in the next chapter after the discussion of the fast multipole BEM for elasticity 
problems. 

3.2.10. Estimate of the Computational Complexity 
When the size of a BEM model is large, the estimated cost of the entire process just 

described for the fast multipole BEM is ( )O N , with N being the number of elements 
or nodes, if the number of terms p in the multipole and local expansions and the 
maximum number of elements maxl  allowed in a leaf are kept constant [41]. This 
claim on the ( )O N  complexity of the fast multipole BEM is based on the following 
observations: 
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• leafN  = number of leaves in the mesh / ( )N maxl O N≅ =  

• cellN  = number of cells 2 3(1 1/ 4 1/ 4 1/ 4 ) (4 / 3) ( )leaf leafN N O N≅ × + + + + ≤ × =  

• Number of adjacent cells = 9; number of cells in the interaction list = 27 (for 2-D 
models) 

• Number of operations in computing multipole moments = ( )leafp maxl N O N× × =  

• Number of operations in upward pass = 24 ( )cellN p O N× × =  

• Number of operations in downward pass = 2 2(L2L) 27 (M2L) ( )cellN p p O N × + × =   

• Number of operations in local expansions = ( )N p O N× =  

• Number of operations in direct evaluation of the integrals = 9 ( )N maxl O N× × =  

All the preceding estimates are at most ( )O N , and therefore the total computational 
cost is also ( )O N . These estimates will be slightly different for 3-D cases and for 
dynamic problems. This ( )O N  efficiency in computing for the fast multipole BEM is 
very significant when we solve large-scale problems, as will be demonstrated later 
through the numerical examples. 
 

3.3. Programming for the Fast Multipole BEM 
We now discuss the main structure of a fast multipole BEM code for solving 

general 2-D potential problems. This code, written in Fortran, is discussed in Ref. [63] 
and is provided in Appendix B.2. This fast multipole BEM code for general 2-D 
potential problems can be used as the basis to develop fast multipole BEM programs 
for 3-D potential, as well as 2-D and 3-D elasticity, Stokes flow, and acoustic wave 
problems, using constant or higher-order elements. 

The flowchart of this fast multipole BEM code for the 2-D potential code is given 
in Figure 3.10. The chart shows the main tasks for the program and the related 
subroutines (functions). The source code (dgmres.f) for the iterative solver GMRES 
(SLATEC GMRES package) can be downloaded from the netlib website 
(https://www.netlib.org/). 

The program for the fast multipole BEM is much more involved than the program 
for the conventional BEM because of the tree structure of the cells and various 
expansions. Because of the restrictions of the SLATEC GMRES solver, a large array is 
needed in the program to pass the variables to the GMRES solver. Therefore, the main 
purpose of the main program is to allocate all the variables in this large array by calling 
the lpointer subroutine. Then the subroutine for the fast multipole BEM, fmmmain, is 
invoked, which can be regarded as the starting point for the fast multipole BEM code. 
Explanations of all the main variables used in the program are given at the end of the 
main program (see Appendix B.2). A few important subroutines in the program are 
discussed in the following subsections, and other subroutines can be understood readily 
by reading the source code directly. 
 

https://www.netlib.org/
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Figure 3.10.  Flowchart for a fast multipole BEM program. 

 

3.3.1. Subroutine fmmmain 
The fmmmain subroutine starts with calling subroutine prep_model, which reads 

in the data for the boundary nodes, elements, boundary conditions, and field (interior) 
points from file input.dat (which is identical to the one used for the conventional BEM 
code in Appendix B.1), and the additional parameters used in the fast multipole 
expansions and solver GMRES from file input.fmm (A sample file is given in Appendix 
B.3). It then generates the tree structure, computes the right-hand-side b vector, solves 
the system of equations =Aλ b  using the GMRES solver, computes values at interior 
points, and finally outputs the results. 

3.3.2. Subroutine tree 
We create the quad-tree structure for the elements by calling the subroutine tree, 

which is an essential piece of the entire code. The information of the tree structure is 
stored in several arrays in the code. To understand how this subroutine is used to create 
the tree structure, let us use the BEM model shown in Figure 3.4 as the example. 

Cells in the tree structure are numbered in the following way: The largest cell at 
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level 0 is called Cell 1, the four cells at level 1 are numbered 2, 3, 4, and 5, respectively, 
according to the order 0, 1, 2, 3, as shown in the side box in Figure 3.4. We continue in 
this way to level 2 cells and so on until we reach all the leaves. Empty cells (without 
any elements) are ignored. Cell numbers for the cells at levels 0, 1, and 2 for the model 
in Figure 3.4 are shown in Figure 3.11. 

There are 30 elements in the model in Figure 3.4. The tree code sorts the elements 
in each cell (using the nodes, which are at the centers of the elements), first in the y 
direction, and then in the x direction (twice) by dividing the elements into two groups 
according to the centerline in the related direction. This is done by invoking the 
subroutine bisec. Four child cells are formed after this process, which continues until a 
leaf is reached (in this example, each leaf contains only one element). The process can 
be illustrated as in Table 3.1, which produces a tree structure with four levels, 53 cells, 
and 30 leaves, as shown in Figure 3.5. The elements in the tree structure are rearranged 
(from left to right as shown in Table 3.1 and Figure 3.5), and this information is stored 
in array ielem(k), which gives the original element number for the kth element in the 
tree structure. 
 

 
Figure 3.11.  Cell numbers for cells at levels 0, 1, and 2 for the model in Figure 3.4. 

 
Five other arrays are used in the subroutine itree to store the additional information 

for the tree structure: itree, loct, numt, ifath, and level.  
Array itree(i) gives the cell location of the ith cell within its corresponding tree 

level. At level l, the bounding square for the domain (Cell 0) is divided by 2 2l l×  grids. 
The numbering of the 2 2l l×  small squares starts from the lower-left corner with 
numbers 0, 1, 2, 3, …, and so on, first in the x direction, then in the y direction. For 
example, for Cell 5 in Figure 3.11, itree(5) = 3, and for Cell 12, itree(12) = 8. Values 
of itree can be used to determine the locations (coordinates) of the cells at all tree levels. 
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Array loct(i) indicates the starting place of the elements included in the ith cell in 
the array ielem. For example, for Cell 15 in Figure 3.11, loct(15) = 23. 
 
Table 3.1.  Regrouping the elements using the tree code for the model in Figure 3.4. 

Tree 
level Sequences of the elements in the tree structure 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

1 1 2 3 26 27 28 29 30   4 5 6 7 8 9 10    19 20 21 22 23 24 25    11 12 13 14 15 16 17 18 

2 29 30  1 2 3  26 27 28    4 5  6  7 8 9 10    22 23 24 25  21  19 20    11 12 13 14  17 18  15 16 

3 29 30  1  2 3  27 28  26    4  5  6  7  8  9 10    25  23 24  22  21  20  19    11 12  13 14  18  17  15 16 

4 30  29  1  2  3  28  27  26    4  5  6  7  8  9  10    25  24  23  22  21  20  19    11  12  13  14  18  17  16  15 

ielem(k) 30 29 1 2 3 28 27 26 4 5 6 7 8 9 10 25 24 23 22 21 20 19 11 12 13 14 18 17 16 15 

 
Array numt(i) gives the number of elements included in the ith cell. For example, 

numt(3) = 7, for Cell 3 in Figure 3.11. 
Array ifath(i) gives the cell number of the parent cell of the ith cell. For example, 

ifath(1) = 0 for Cell 1 and ifath(11) = 3 for Cell 11 in Figure 3.11. 
The values of the arrays itree, loct, numt, and ifath for cells at levels 0, 1, and 2 for 

the model in Figure 3.11 are listed in Table 3.2, which we can use to understand the 
meanings of these arrays and the tree structure generated by the subroutine tree. 

Finally, array level(l) is used to indicate the starting cell number of all level l cells 
in the tree structure. For the model in Figure 3.11, level(1) = 2, level(2) = 6, and 
level(3) = 18. 
 

Table 3.2.  Values of arrays defining the tree structure for cells at levels 0, 1, and 2. 

Cell no. i itree(i) loct(i) numt(i) ifath(i) 
1 0 1 30 0 
2 0 1 8 1 
3 1 9 7 1 
4 2 16 7 1 
5 3 23 8 1 
6 0 1 2 2 
7 1 3 3 2 
8 4 6 3 2 
9 2 9 2 3 

10 6 11 1 3 
11 7 12 4 3 
12 8 16 4 4 
13 12 20 1 4 
14 13 21 2 4 
15 11 23 4 5 
16 14 27 2 5 
17 15 29 2 5 

          
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3.3.3. Subroutine fmmbvector 
After the tree structure is formed, we compute the right-hand-side b vector by using 

the fast multipole algorithms using the subroutine fmmbvector. We do this only once 
by calling the subroutines upward and dwnwrd. For large-scale models, using the FMM 
in computing the right-hand-side b vector can also save significant CPU time as 
compared with using the conventional direct method, which is also O(N2). 

3.3.4. Subroutine dgmres 
The dgmres subroutine is the GMRES solver in the SLATEC package from 

https://www.netlib.org/. One does not need to understand the inner workings of this 
GMRES iterative solver to apply this subroutine. To use this GMRES solver, one needs 
to prepare only two subroutines: msolve and matvec, which are two external subroutines 
for dgmres. 

The msolve subroutine prepares a preconditioning matrix for the iterative solver 
GMRES. In this program, the preconditioning matrix is formed by the block diagonal 
matrices based on the elements on the leaves. This preconditioning matrix is computed 
only once in the first iteration with the direct method and stored for use in all other 
iterations. This matrix is stored in the array rwork, and the related information (location 
and dimensions of each diagonal block matrix) is stored in array iwork. 

The matvec subroutine provides the algorithm for the matrix-vector multiplication 
( Aλ ) using the fast multipole algorithms by simply calling the upward and dwnwrd 
subroutines using the values for the solution vector from the previous iteration. 

3.3.5. Subroutine upward 
The upward subroutine calculates the multipole moments for all cells from leaves 

up to cells at level 2, climbing the tree structure upward and using the boundary values 
from the previous iteration. For leaves, the moments are computed directly by the 
definition by calling the subroutine moment. For parent cells, M2M translations are 
applied to form the moments from the moments on their child cells. 

3.3.6. Subroutine dwnwrd 
The dwnwrd subroutine calculates the local expansions of the two integrals with G 

and F kernels at each source point. For far cells, the contributions are calculated with 
L2L translations. For cells in the interaction list, the contributions are calculated with 
M2L translations. For neighboring cells, direct integrations are applied by calling the 
direct subroutine, which is a variation of the coefficient subroutine used in the 
conventional BEM code (see Appendix B.1). 

The 2-D program just discussed can be extended readily to develop fast multipole 
BEM programs for 3-D potential problems, and 2-D or 3-D elasticity, Stokes flow, and 
acoustic wave problems. For 3-D problems, the major changes will be in the tree 
structure, in which the quad-tree structure for 2-D problems is changed to an oct-tree 
structure. 
 

3.4. Fast Multipole Formulation for 3-D Potential Problems 
In this section, the basic fast multipole expansions for 3-D potential problems are 

discussed. We can implement the 3-D fast multipole BEM by extending many of the 
results discussed in the previous sections for 2-D potential problems. For example, the 

https://www.netlib.org/
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quad-tree structure for the elements in 2-D problems is extended to an oct-tree structure 
of elements in 3-D problems, in which the cells will be boxes and each parent cell will 
have eight child cells. The main structure of a computer program for 3-D problems 
remains the same as the one discussed in the previous section for 2-D problems. 

First, we note that the kernel ( , )G x y  in Eq. (2.5) for 3-D potential problems can 
be expanded as follows (see, e.g., Refs. [41, 62, 64]): 

 , ,
0

1 1( , ) ( ) ( ),
4 4

n

n m c n m c c c
n m n

G S R
rπ π

∞

= =−

= = − − − < −∑ ∑x y x y y y y y x y , (3.46) 

where cy  is the expansion center close to the field point y, and the overbar indicates 
the complex conjugate. The two functions ,n mR  and ,n mS  are called solid harmonic 
functions, given by 

 ,
1( ) (cos )

( )!
m im n

n m nR P e
n m

φθ ρ=
+

x , (3.47) 

 , 1

1( ) ( )! (cos )m im
n m n nS n m P e φθ

ρ += −x , (3.48) 

where ( , , )ρ θ φ  are the coordinates of x used here in a spherical coordinate system 
(specifically, 1 2 3sin cos , sin sin , cosx x xρ θ φ ρ θ φ ρ θ= = = ) and m

nP  is the 
associated Legendre function. In this book, the following definition of the associated 
Legendre function is applied [65]: 

 2 /2( ) (1 ) ( )
m

m m
n nm

dP x x P x
dx

= − , (3.49) 

where ( )nP x  is the Legendre polynomials of degree n [65]. In the literature, a slightly 
different definition exists for the associate Legendre function, where a factor ( 1)m−  is 
added to the left-hand side of Eq. (3.49). 

The kernel ( , )F x y  for 3-D potential problems can also be expanded as follows: 

 ,
,

0

( )( , ) 1( , ) ( ) ,
( ) 4 ( )

n
n m c

n m c c c
n m n

RGF S
n nπ

∞

= =−

∂ −∂
= = − − < −

∂ ∂∑ ∑
y yx yx y x y y y x y

y y
. (3.50) 

Applying expansions in Eqs. (3.46) and (3.50), we can evaluate the G and F 
integrals in CBIE (2.17) on cS  (a subset of S that is away from source point x) as 
follows: 

 , ,
0

1( , ) ( ) ( ) ( ) ( ),
4c

n

n m c n m c c cS
n m n

G q dS S M
π

∞

= =−

= − − < −∑ ∑∫ x y y y x y y y y x y , (3.51) 

  ,,
0

1( , ) ( ) ( ) ( ) ( ),
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n

n mn m c c c cS
n m n

F dS S Mφ
π

∞

= =−

= − − < −∑ ∑∫ x y y y x y y y y x y , (3.52) 

where ,n mM  and  ,n mM  are the multipole moments centered at cy  and defined as 

 , ,( ) ( ) ( ) ( )
c

n m c n m cS
M R q dS= −∫y y y y y , (3.53) 
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 
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When the multipole expansion center is moved from cy  to c'y , we apply the 
following M2M translation: 

 , , , ,
0

( ) ( ) ( ) ( ) ( ) ( )
c

n n

n m c' n m c' n m c c' n n m m cS
n m n

M R q dS R M
′

′ ′ ′ ′− −
′ ′ ′= =−

= − = −∑ ∑∫y y y y y y y y , (3.55) 

which is also valid for  ,n mM . 

The local expansion for the G kernel integral on cS  is given as  

 , ,
0

1( , ) ( ) ( ) ( ) ( )
4c

n

n m L n m LS
n m n

G q dS R L
π

∞

= =−

= −∑ ∑∫ x y y y x x x , (3.56) 

where the local expansion coefficients , ( )n m LL x  are given by the following M2L 
translation: 

 , , ,
0

( ) ( 1) ( ) ( ),
n

n
n m L n n m m L c n m c L c L

n m n
L S M

′∞

′ ′ ′ ′+ +
′ ′ ′= =−

= − − − < −∑ ∑x x y y x x y x , (3.57) 

in which Lx  is the local expansion center.  

The local expansion center can be shifted from Lx  to 'Lx  by the following L2L 
translation: 

 , , ,( ) ( ) ( )
n

n m L' n n m m L' L n m L
n n m n

L R L
′∞

′ ′ ′ ′− −
′ ′ ′= =−

= −∑ ∑x x x x . (3.58) 

A similar local expansion and the same M2L and L2L translations are also valid 
for the F kernel integral with the moment  ,n mM . 

For HBIE (2.21) in three dimensions, we can obtain the local expansions for the K 
and H integrals by taking the normal derivatives of the local expansions for the G and 
F integrals, respectively. For example, we have for the K kernel integral 
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nπ

∞

= =−
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=
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x x

x y y y x
x

, (3.59) 

with ,n mM  in M2L translation (3.57). A similar local expansion exists for the H kernel 
integral in the HBIE. Therefore, the same moments, M2M, M2L, and L2L translations 
used for the G and F integrals in the CBIE can be used directly for the K and H integrals 
in the HBIE. 

As mentioned earlier, the implementation of the fast multipole BEM for 3-D 
problems can be done readily by extending the results from the 2-D case. First, the 
quad-tree structure used for 2-D domains is replaced with an oct-tree structure, in which 
each cell in the oct-tree structure is a cube or box. A parent cell will contain eight child 
cells for 3-D problems. Other data structures are similar to those in the 2-D case, and 
the 2-D fast multipole BEM code discussed in the previous section can be modified 
readily to develop a code for solving 3-D potential problems. 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 77 

However, the fast multipole BEM for 3-D problems is much more computing 
intensive than that for 2-D problems because of the complexities of the expansions and 
translations required in the formulation. Careful considerations are needed in the 
computation of these expansions and translations, for example, using various recursive 
relations in evaluating the solid harmonic functions [64]. Adaptive algorithms [61, 62] 
based on further refined tree structures and a new version of the FMM using diagonal 
translations [62, 66, 67] have also been developed that can significantly improve the 
computational efficiencies for solving large-scale 3-D potential problems. 

An adaptive FMM BEM code for solving 3-D potential problems based on the 
work in Ref. [62] can be found at the author’s website (https://yijunliu.com/Software), 
where the program and sample input files can be downloaded. This adaptive FMM 
BEM code is used in solving all the 3-D examples in the following section. 
 

3.5. Numerical Examples 
The same examples used in the previous chapter (Section 2.12) with the 

conventional BEM approach are solved again with the fast multipole BEM programs. 
The accuracy and efficiency of the fast multipole BEM are compared with those of the 
conventional BEM. 

3.5.1. An Annular Region 
We first solve the same 2-D potential problem as described in Section 2.12.1 and 

shown in Figure 2.11. For the fast multipole BEM, the numbers of terms for both 
moments and local expansions were set to 15, the maximum number of elements in a 
leaf to 20, and the tolerance for convergence of the solution to 10-8. The fast multipole 
BEM results converged in 11 iterations for the smallest model (with 36 elements) and 
in 43 iterations for the largest model (with 9600 elements). These numbers can be 
reduced to 9 and 28 iterations, respectively, if the tolerance for convergence is increased 
to 10-6.  
 

Table 3.3.  Results of the potential and normal derivative for the annular region. 

N aq  bϕ  
 Fast multipole BEM Conventional BEM Fast multipole BEM Conventional BEM 
     

36 -401.7716 -401.7715 376.7237 376.7236 

72 -400.4006 -400.4007 377.1410 377.1410 

360 -400.0149 -400.0148 377.2548 377.2548 

720 -400.0035 -400.0036 377.2579 377.2579 

1440 -400.0007 -400.0005 377.2586 377.2586 

2400 -400.0019 -400.0006 377.2588 377.2588 

4800 -400.0016 -400.0006 377.2589 377.2589 

7200 -399.9973 -399.9982 377.2588 377.2589 

9600 -399.9977 -399.9969 377.2589 377.2589 
     

Analytical 
solution -400.0000 377.2589 

https://yijunliu.com/Software
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Table 3.3 shows the results of bφ  and aq  obtained for this problem by use of the 
fast multipole BEM and compared with the conventional BEM as the total number of 
elements increases from 36 to 9600. As we can see, the fast multipole BEM is found to 
be equally as accurate as the conventional BEM with moderate values for the 
parameters in the fast multipole BEM. The CPU times used for both approaches in these 
calculations are plotted in Figure 3.12, which shows the significant advantage of the 
fast multipole BEM in savings compared with these of the conventional BEM. For 
example, for the largest model with 9600 elements, the fast multipole BEM used fewer 
than 17 s, whereas the conventional BEM used about 1420 s of CPU time on a laptop 
PC with a Pentium IV 2.4-GHz CPU. 
 

 
Figure 3.12.  Comparison of the CPU times used by the conventional BEM and the 

FMM BEM. 
 

3.5.2. Electrostatic Fields Outside Conducting Beams 
We next study the simplified 2-D models of comb drives used in 

microelectromechanical systems (MEMSs) by using the developed fast multipole BEM 
and comparing it with the conventional BEM. Both the CBIE and the dual BIE (CHBIE) 
formulations are used for this study. For the fast multipole BEM, the numbers of terms 
for both moments and local expansions are set to 15, the maximum number of elements 
in a leaf to 100, and the tolerance for convergence of the solutions to 10-6. 

The comb-drive models are built with the basic two-parallel-beam model used in 
Chapter 2 and shown in Figure 2.12. The parameters used are 1ε = , L = 0.01 m, h = 
0.0002 m, g = 0.0003 m, d = 0.0005 m, and V = 1. Figure 3.13 shows a model with 17 
beams. The two support beams on the left-hand and right-hand sides are not modeled 
in the BEM discretization. Two hundred elements are used along the beam length and 
5 elements on each edge (with a total of elements equal to 410 for each beam). When 
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more beams are added into the model, the number of elements along the beam length 
is increased to 400.  

Figure 3.14 shows the computed charge densities on the center beam (beam 1) with 
positive voltage and the beam just below the center beam (beam 2) with negative 
voltage for the model with 17 beams shown in Figure 3.13. Because of the symmetry 
of the fields above and below each beam, the charge densities on the top and bottom 
surfaces of each beam are identical and thus only one field is plotted for each beam. 
The charge densities on the two beams are also of opposite sign and “antisymmetric,” 
as expected. It should be noted that the fields in MEMS are more complicated than 
those that the simple parallel-beam models can represent, especially near the edges of 
the beams, because of the simplified geometries used. 

Figure 3.15 shows the CPU time comparison in which the conventional BEM and 
the fast multipole BEM are used in solving these simple comb-drive models on the 2.4-
GHz Pentium IV laptop PC. Again, the conventional BEM can solve models only with 
up to 10,000 DOFs. On the other hand, the fast multipole BEM with the dual BIE 
converges faster than the one with the regular BIE (CBIE alone) because of the better 
conditioning of the dual BIE formulation. The fast multipole BEM results converge in 
about 30 to 70 iterations when the dual BIE is used and in about 50 to more than 100 
iterations when the regular BIE is used. It is evident from these studies that the dual 
BIE is very effective in solving MEMS problems with thin beams and the fast multipole 
BEM using the dual BIE is very efficient in solving large-scale 2-D models. 
 

 
Figure 3.13.  A 2-D comb-drive model with 17 beams. 
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Figure 3.14.  Charge densities on center beam 1 and beam 2 (below the center beam). 
 
 

 
Figure 3.15.  CPU times for the conventional BEM and the fast multipole BEM. 

 

3.5.3. Potential Field in a Cube 
The cube problem used in Subsection 2.12.3 and shown in Figure 2.15 is solved 

with the 3-D fast multipole BEM code and compared with the conventional BEM. For 
the fast multipole BEM, 15 terms are used in all the expansions and the tolerance for 
convergence is set to 10-6. 
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Table 3.4 shows the results obtained with the fast multipole BEM and compared 
with these of the conventional BEM, using the CBIE, HBIE, and CHBIE, for BEM 
meshes with increasing numbers of elements. We can conclude from these results that 
the HBIE and CHBIE are as equally accurate as the CBIE, so is the fast multipole BEM 
compared with the conventional BEM. Constant triangular elements are used in this 
study. If linear or quadratic elements were applied, a few elements should have been 
sufficient for obtaining results of a similar accuracy because of the specified linear field. 
 

Table 3.4.  Results for the cube with a linear potential in the x-direction. 

Model 

Charge density at (0.5, 0, 0) 

Conventional BEM Fast multipole BEM 
Elem/edge DOFs CBIE HBIE CHBIE CBIE HBIE CHBIE 

2 48 1.08953 1.07225 1.06800 1.08955 1.07278 1.06843 
4 192 0.99124 1.00624 0.99754 0.99124 1.00624 0.99754 
8 768 0.99825 1.00438 0.99894 0.99825 1.00438 0.99894 

12 1728 0.99908 1.00327 0.99934 0.99908 1.00327 0.99934 
16 3072 0.99942 1.00260 0.99953 0.99943 1.00260 0.99953 
20 4800 0.99959 1.00216 0.99963 0.99962 1.00218 0.99965 
24 6912 0.99969 1.00185 0.99970 0.99969 1.00184 0.99969 
28 9408  - -   - 0.99976 1.00161 0.99975 
32 12,288       0.99981 1.00143 0.99979 
Exact value 1.00000 

 

3.5.4. Electrostatic Field Outside Multiple Conducting Spheres 
In this example, 11 perfectly conducting spheres (Figure 3.16) are analyzed with 

the fast multipole BEM. The center large sphere has a radius of 3, and the 10 small 
spheres have the same radius of 1 and are distributed evenly on a circle with a radius of 
5 and co-centered with the large sphere. A constant electric potential 5ϕ = +  is applied 
to the large sphere and five of the small spheres, and a potential 5ϕ = −  is applied to 
the other five small spheres (Figure 3.16). For the fast multipole BEM, elements per 
leaf are limited to 200, 10 terms are used in the expansions, and the tolerance for 
convergence is set to 10-4. 

The charge densities on the surfaces of the spheres are plotted in Figure 3.17 with 
the mesh using 10,800 elements per sphere. The plots are almost identical among the 
different meshes and exhibit the same symmetrical pattern as it should be. Table 3.5 
shows the maximum and minimum values of the charge densities on the spheres when 
the different meshes are used. These values are very stable and converged within the 
first two significant digits (except for the last set of data with the CBIE). Further 
improvements can be achieved by using a tighter set of parameters for the fast multipole 
BEM (e.g., more expansion terms and smaller tolerance). The last two columns of Table 
3.5 show the numbers of iterations with the GMRES solver for the CBIE and the 
CHBIE. The numbers of iterations for the CHBIE are about half those for the CBIE 
because of the better conditioning of the systems of equations based on the CHBIE.  
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Figure 3.16.  An 11-spherical perfect conductor model. 

 

 
Figure 3.17.  Contour plot of the charge densities on the spheres. 

 
 

Table 3.5.  Results for the 11-sphere model obtained with the fast multipole BEM. 

Model 
Charge densities on the spheres Numbers of 

iterations min max 

Elem/Sphere DOFs CBIE CHBIE CBIE CHBIE CBIE CHBIE 
768 8,448 -16.4905 -15.5285 11.1837 10.3923 14 8 

1200 13,200 -16.5363 -15.7922 11.2218 10.5920 15 8 
1728 19,008 -16.6322 -15.9618 11.2558 10.7156 17 8 
2352 25,872 -16.6436 -16.0789 11.2746 10.8041 18 8 
3072 33,792 -16.6733 -16.1618 11.3792 10.9160 19 8 
3888 42,768 -16.6648 -16.2195 11.3810 10.9464 20 7 
4800 52,800 -16.7435 -16.2671 11.3787 10.9763 20 8 
7500 82,500 -16.7068 -16.3614 11.2964 11.0283  21  8 

10,800 118,800 -17.1157 -16.4279 12.6511 11.0851 22 7 
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3.5.5. A Fuel Cell Model 
Next, an example of more challenging problems is presented. Figure 3.18(a) shows 

a solid oxide fuel cell (SOFC) model with nine cells used for thermal analysis. There 
are 1000 small holes on the inner and outer surfaces of each cylindrical cell, with a total 
of 9000 holes for the entire stack model. Because of the extremely complicated 
geometry, the FEM (such as ANSYS®) can model only one cell on a PC with 1-GB 
RAM. For the fast multipole BEM, however, multicell models can be handled readily, 
such as the nine-cell stack modeled successfully with 530,230 elements and solved on 
a desktop PC with 1-GB RAM (Figure 3.18(b)). 
 

 
         (a) a 3x3 stack model   (b) computed temperature 

Figure 3.18. A fuel cell model using the fast multipole BEM. 
 

3.5.6. Image-Based Boundary Element Models and Analysis 
In recent years, digital models using 3-D scanning technologies have attracted 

much attention in many engineering fields, such as reverse engineering and biomedical 
engineering applications. Computer-scanned images are often complicated in geometry 
and difficult to mesh and analyze with the domain-based methods because of the lack 
of the volume data from the scanned images. The scanned data are surface based and 
usually in stereolithography (STL), nonuniform rational B-spline (NURBS), and other 
file formats. Construction of the volume using these surface data is time consuming and 
often inaccurate. On the other hand, meshing the boundary of a scanned object using 
the surface data is straightforward and can be as accurate as the resolution of the scanner 
allows. 

The fast multipole BEM seems to be a very natural choice to be integrated for the 
image-based analysis of various engineering problems. Boundary meshes can be 
obtained quickly from the scanned surface data, especially data in the STL format. Fast 
and accurate analysis using the fast multipole BEM can then be obtained. The potentials 
of the integration of the fast multipole BEM with 3-D imaging technologies are huge 
in applications of reverse engineering, material characterizations, and biomedical 
applications. 
 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 84 

 
 (a) FEM volume mesh   (b) FEM temperature results 

  
 (c) BEM surface mesh   (d) BEM temperature results 

Figure 3.19. Image-based thermal analysis of an oil-lamp model. 
 

A couple of examples are presented here to show the potentials of the image-based 
analysis with the fast multipole BEM. This work is described in more detail in Ref. [68]. 
Figure 3.19 shows oil-lamp models generated by a 3-D laser scanner and analyzed by 
both the FEM (ANSYS software) and the 3-D fast multipole BEM code [62]. The FEM 
volume mesh contains 403,271 tetrahedral elements, whereas the BEM mesh has 
42,810 triangular elements to maintain a similar surface mesh density as in the FEM 
mesh. The top of the lamp is applied with a temperature of one unit and the bottom with 
a zero temperature. The other surfaces have zero-flux BCs. The two computed 
temperature results are comparable, as shown in the figure. The CPU times are close to 
1 h for the ANSYS solution and less than 15 min for the fast multipole BEM simulation, 
computed on a 3.2-GHz Pentium IV desktop PC. 

Figure 3.20 shows a microscale model and thermal analysis of a weak trabecular 
bone sample using a 3-D micro scanner together with the fast multipole BEM code. 
There are about 200,000 of elements in this model, and the model was solved in 3.4 h 
on the Pentium IV PC. The longer CPU time in solving this model is due to the 
increased number of iterations. Because of the many thin shapes in this complicated 
model, the conditioning of the BEM system of equations worsened, and thus it requires 
more iterations when the iterative solver is used. More discussions of the preceding 
results can be found in Ref. [68]. 
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        (a) BEM surface mesh   (b) BEM temperature results 

Figure 3.20. Image-based thermal analysis of a trabecular bone microstructure. 
 

All the numerical examples clearly demonstrate the accuracy and efficiency of the 
fast multipole BEM for solving large-scale 2-D and 3-D potential problems. In all the 
cases, constant elements were applied to implement the fast multipole BEM. Constant 
elements can certainly be replaced with higher-order elements to improve the accuracy 
of a fast multipole BEM code. However, this may not be advantageous, considering the 
efficiency of the code for solving large-scale problems. For constant elements, all the 
integrals can be evaluated analytically for all nonsingular, nearly singular and singular 
cases. There are no numerical integrations in the code. Therefore the code can be very 
efficient. For higher-order elements, however, this is not the case, and we have to use 
numerical integration in the direct evaluations of the integrals that can involve singular 
and nearly singular integrals. This complicates the code and reduces the efficiency of 
the fast multipole BEM solutions for large-scale problems. 
 

3.6. Summary 
An introduction of the fast multipole BEM is presented in this chapter for 2-D and 

3-D potential problems. The main idea of the fast multipole BEM is to replace the 
element-to-element interactions, which are costly to compute, with cell-to-cell 
interactions through the introduction of the multipole expansions of the kernels and 
related translations that are integrated with a hierarchical tree structure of the boundary 
elements. Complete formulations and implementation details of the fast multipole BEM 
are provided in this chapter. The Fortran code provided in Appendix B is also discussed; 
it can be used to solve 2-D potential problems, to learn the structure of a fast multipole 
BEM code, and to expand it to solve other large-scale 2-D and 3-D problems. Several 
numerical examples are presented to demonstrate the accuracy, efficiencies, and 
usefulness of the fast multipole BEM for solving large-scale 2-D and 3-D potential 
problems, especially in new technologies such as image-based modeling and 
simulations in reverse engineering and biomedical engineering. The fast multipole 
BEM algorithms and code presented in this chapter are the essence of the discussions 
in this book that should be studied thoroughly before one embarks on studying other 
topics in the fast multipole BEM. The approaches and the code discussed in this chapter 
can also be extended readily to solve 2-D and 3-D vector (elastostatic and Stokes flow) 
and 2-D and 3-D acoustic problems, as well as many other problems in applied 
mechanics. 
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Problems 

3.1. Show that, for two functions 2
1( )f N aN=  and 2 ( )f N bN= , one can always have 

1 2f f  for sufficiently large N, no matter how small the value of a and how 
large the value of b can be. 

3.2. Verify Eq. (3.6) with Eq. (3.7), that is, the real part of 0( , )G z z  in (3.7) does give 
the real-valued Green’s function ( , )G x y  in real variables. 

3.3. Derive expression (3.11) for the complex Green’s function by using a Taylor 
series expansion. 

3.4. Derive the L2L translation given in Eq. (3.30). 
3.5. Verify Eq. (3.34) with Eq. (3.33). 
3.6. Write a computer code to generate the quad-tree structure shown in Figure 3.5 for 

the boundary element mesh shown in Figure 3.4. 
3.7. Continuing Problem 2.9 in Chapter 2, apply the 2-D fast multipole BEM code to 

the quarter-symmetry annular region model. Compare the accuracy and 
efficiency of the results obtained with the conventional BEM and the fast 
multipole BEM. 

3.8. Develop a 2-D potential fast multipole BEM code using linear elements, based 
on the 2-D potential fast multipole BEM code given in Appendix B.2 and with 
constant elements. Compare the accuracy and computational efficiency of the 
developed code with these of the code using constant elements. 

3.9. Develop a 3-D potential fast multipole BEM code using constant triangular 
elements by extending the 2-D potential fast multipole BEM code given in 
Appendix B.2. 
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Chapter 4. Elastostatic Problems 

The direct BIE formulation and its numerical solutions using the BEM for 2-D 
elasticity problems were developed by Rizzo in the early 1960s and published in Ref. [4] 
in 1967. Following this early work, extensive research efforts were made for the 
development of the BIE and BEM for solving various elasticity problems (see, e.g., 
Refs. [24-28]). The advantages of the BEM for solving elasticity problems are the 
accuracy in modeling stress concentration or fracture mechanics problems and the ease 
in modeling complicated elastic domains such as various composite materials. 

The FMM was applied to solving elasticity problems for more than a decade. For 
2-D elasticity problems, Greengard et al. [69, 70] developed a fast multipole 
formulation for solving the biharmonic equations using potential functions. Peirce and 
Napier [36] developed a spectral multipole approach that shares some common features 
with the FMMs. Richardson et al. [71] proposed a similar spectral method using both 
2-D conventional and traction BIEs in the regularized form. Fukui et al. [72, 73] studied 
both the conventional BIE for 2-D stress analysis and the HBIE for large-scale crack 
problems. In his work, he first applied the complex variable representation of the 
kernels and then used the multipole expansions in complex variables as originally used 
for 2-D potential problems [35, 63]. Liu [74, 75] further improved Fukui’s approach 
and proposed a new set of moments for the 2-D elasticity CBIE, which yields a very 
compact and efficient formulation with all the translations being symmetrical regarding 
the two sets of moments. Wang and Yao [76] also studied crack problems by using a 
dual BIE approach with the CBIE collocating on one surface of a crack and HBIE on 
the other. They expanded the kernel functions in their original forms using complex 
Taylor series in an auxiliary way following the approach in Ref. [77].  

For 3-D elasticity problems, Fu et al. [38] have formulated the BIE for 3-D elastic 
inclusion problems by using the FMM. Some other earlier development of the fast 
multipole BEM for general 3-D elasticity problems can be found in Ref. [78] and for 
crack problems in Refs. [39, 79, 80]. Large-scale modeling of composite materials 
using the fast multipole elasticity BEM can be found in Refs. [81-83]. 

In this chapter, the governing equations for elasticity problems are reviewed first. 
Then the fundamental solutions are introduced and the BIEs are established. The 
conventional BEM approach is discussed briefly, followed by discussions on the FMM 
for solving the BIEs for 2-D and 3-D elasticity problems in both single and multiple 
domains. Numerical examples are provided to demonstrate the accuracy and 
efficiencies of the fast multipole BEM for solving large-scale elasticity problems. 
 

4.1. The Boundary-Value Problem 

Consider the displacement iu , strain ijε , and stress ijσ  in a linearly elastic solid 
occupying domain V with boundary S. The governing equations for these elastic fields 
are as follows 
Equilibrium equations: 

 , 0, inij j if Vσ + = , (4.1) 

where if  is the body force. 
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Strain-displacement relation: 

 1 ( , , ), in
2ij i j j iu u Vε = + . (4.2) 

Stress-strain relation (constitutive equations): 

 , inij ijkl klE Vσ ε= , (4.3) 

where ijklE  is the elastic modulus tensor given by 

 ( )ijkl ij kl ik jl il jkE λδ δ µ δ δ δ δ= + + , (4.4) 

for isotropic materials, λ  and µ  are the Lamé constants that are related to Young’s 
modulus E and Poisson’s ratio ν  by 

 ,
(1 )(1 2 ) 2(1 )

E Eνλ µ
ν ν ν

= =
+ − +

. (4.5) 

The boundary conditions for an elasticity problem can be described by 

 , oni i uu u S=  (displacement BC), (4.6) 

 , oni ij j i tt n t Sσ= =  (traction BC), (4.7) 

where overbar indicates the given value, it  is the traction, in  is the component of the 
outward normal, and u tS S S= . 

The main objective in elasticity is to solve for the fields iu , ijε , and ijσ  using 
governing equations (4.1), (4.2) and (4.3) under the BCs in (4.6) and (4.7). 
 

4.2. Fundamental Solution for Elastostatic Problems 

 
Figure 4.1.  An infinite elastic domain applied with a unit concentrated force P at x. 

 

Consider the full infinite space ( 2R  for two dimensions or 3R  for three 
dimensions) filled by an elastic material. Apply a unit concentrated force P at point x 
in the ith direction. The responses (displacement, strain, and stress) at any point y that 
are due to this unit force are called the fundamental solution (or Kelvin’s solution) in 
elasticity (Figure 4.1). 
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The stress component ( , )ijkΣ x y  in the fundamental solution satisfies the following 
equilibrium equation: 

 2 3, ( , ) ( , ) 0, , /ijk k ij R Rδ δΣ + = ∀ ∈x y x y x y , (4.8) 

where ( ) ( ), /k ky= ∂ ∂ , the first index i indicates the direction of the unit concentrated 
force at the source point x, and the Dirac-δ function ( , )δ x y  represents the body force 
corresponding to the unit concentrated force. 

For 2-D (plane-strain) problems, the displacement and traction components in the 
fundamental solution are given by 

 1 1 1( , ) (3 4 ) log , , ,
8 (1 ) 2ij ij i j ijU r r

r
ν δ δ

πµ ν
  = − + −  −   

x y  (4.9) 

 ( )1( , ) (1 2 ) 2 , , (1 2 ) , , ,
4 (1 )ij ij i j i j j i

rT r r r n r n
r n

ν δ ν
π ν

∂  = − − + − − −  − ∂ 
x y  (4.10) 

in which the index i indicates the direction of the unit force at the source point x and 
the index j indicates the jth component of the field at the field point y. For plane-stress 
problems, Poisson’s ratio ν  in the preceding expressions is replaced with / (1 )ν ν+ . 

Note that the constant term 1
2 ijδ−  in ijU  is added for the ease of the complex 

representation to be used in the fast multipole BEM. This term does not affect the 
solution of the BIEs. 

For 3-D problems, the fundamental solution gives: 

 1( , ) (3 4 ) , , ,
16 (1 )ij ij i jU r r

r
ν δ

πµ ν
 = − + −

x y  (4.11) 

 ( )2

1( , ) (1 2 ) 3 , , (1 2 ) , ,
8 (1 )ij ij i j i j j i

rT r r r n r n
r n

ν δ ν
π ν

∂  = − − + − − −  − ∂ 
x y . (4.12) 

It is interesting to note that the fundamental solution for elasticity problems is closely 
related to the fundamental solution for potential problems. Both fundamental solutions 
have the same order of singularities as their corresponding 2-D and 3-D counterparts. 
For example, ijU  is weakly singular and ijT  is strongly singular, similar to G and F, 
respectively, for the potential problems. 

The fundamental solution for elastostatic problems also satisfies several integral 
identities [46-48] as given in the following equations: 
First identity: 

 
, ,

( , ) ( )
0, ;

ij
ijS

V
T dS

E
δ− ∀ ∈

=  ∀ ∈
∫

x
x y y

x
 (4.13) 

Second identity: 

 
( , )

( ) 0, ;ij

S
k

T
dS V E

x
∂

= ∀ ∈
∂∫

x y
y x   (4.14) 

Third identity: 
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( , ) ( , ) , ,

( ) ( ) ( ) ( )
0, ;

iq ij ij kl
jlpq p l lS S

k k

U T V
E n dS y x dS

Ex x
∂ ∂ δ δ

∂ ∂
∀ ∈

− − =  ∀ ∈
∫ ∫

x y x y x
y y y

x
 (4.15) 

Fourth identity: 

 ( , )( ) ( ) ( , ) ( ) ( ) 0, ;ij k k jkpq ip qS S
T y x dS E U n dS V E− − = ∀ ∈∫ ∫x y y x y y y x   (4.16) 

where S is an arbitrary and closed contour (for two dimensions) or surface (for three 
dimensions), V is the domain enclosed by S, and E is the infinite (exterior) domain 
outside S. These identities have clear physical meanings and can be very convenient in 
deriving various weakly singular forms of the BIEs for elasticity problems [46-48]. 
These identities can be derived readily by integrating governing equation (4.8) over the 
domain V and invoking the Gauss theorem [46-48]. 
 

4.3. BIE Formulations 
To derive the BIEs for elastostatic problems, we first establish the generalized 

Green’s identity corresponding to elasticity equations. Let ( , , )i ij iju ε σ  and * * *( , , )i ij iju ε σ  
be two sets of solutions satisfying governing equations (4.1)-(4.3) in domain V. The 
following generalized Green’s identity, also called Somigliana’s identity, holds: 

 ( ) ( )* * * *, ,jk k j jk k j j j j jV S
u u dV t u t u dSσ σ− = −∫ ∫ . (4.17) 

This identity can be derived readily using either the Gauss theorem or the virtual work 
theorem. 

Now, let ( , , )i ij iju ε σ  be the solution of the boundary-value problem that needs to 
be solved, and let * * *( , , )i ij iju ε σ  be the fundamental solution, that is, 

* * *( ) ( , ), ( ) ( , ), , ( ) , ( , )j ij j ij jk k ijk ku U t T σ= = = Σy x y y x y y x y . 

Substituting these results into identity (4.17) and applying Eqs. (4.1) and (4.8), we 
obtain the following representation integral of the displacement field in domain V: 

 
( ) ( , ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ), .

i ij j ij jS

ij jV

u U t T u dS

U f dV V

 = − 

+ ∀ ∈

∫
∫

x x y y x y y y

x y y y x
 (4.18) 

Once the displacement iu  and traction it  are obtained on the entire boundary S, the 
preceding expression can be used to evaluate the displacement at any point inside the 
domain V, if needed. 

Let the source point x approach boundary S in Eq. (4.18) in the same way as 
discussed in Chapter 2 for the BIE for potential problems; we obtain the following 
conventional BIE (CBIE) for elastostatic problems: 

 
( ) ( ) ( , ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ), ,

ij j ij j ij jS

ij jV

c u U t T u dS

U f dV S

 = − 

+ ∀ ∈

∫
∫

x x x y y x y y y

x y y y x
 (4.19) 

where the coefficients 1
2ij ijc δ=  if S is smooth at source point x. In general, we have 

the following expression for ijc : 
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( )0

( ) lim ( , ) ( ) ( , ) ( )ij ij ij ij ijS S
c T dS T dS

εε
δ γδ

→
= + = −∫ ∫x

x x y y x y y , (4.20) 

in which 0γ =  for finite domain problems and 1γ =  for infinite domain problems and 
the last integral is a CPV integral. In deriving the preceding result, the first identity in 
Eq. (4.13) is applied. 

In CBIE (4.19), the integral with the U kernel is a weakly singular integral, 
whereas the integral with the T kernel is a strongly singular (CPV) integral. CBIE (4.19) 
can be applied to solve for the unknown displacement and traction on the boundary. 

The domain integral in CBIE (4.19) can be handled with the approaches presented 
in Section 2.9 in the case in which ( )jf y  is nonzero over a finite area or volume within 
the domain V. If ( )jf y  is due to a concentrated or point force within V, we can write 

( )jf y  as 

 ( ) ( , )j j Qf Q δ=y x y , (4.21) 

where Qx  is the location of the concentrated force and jQ  represents the components 
of the concentrated force. Using the sifting property of the Dirac-δ function [Eq. (1.25)], 
we can evaluate the domain integral in CBIE (4.19) for a concentrated force readily as 
follows: 

 ( , ) ( ) ( ) ( , ) ( , ) ( ) ( , )ij j j ij Q j ij QV V
U f dV Q U dV Q Uδ= =∫ ∫x y y y x y x y y x x . (4.22) 

This contribution is added to the right-hand-side vector b of the BEM system of 
equations based on CBIE (4.19). 

Taking the derivatives of representation integral (4.18), applying the stress-strain 
relation, and letting the source point x go to the boundary, we can obtain the traction 
BIE or HBIE as follows: 

 
( ) ( ) ( , ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ), ,

ij j ij j ij jS

ij jV

c t K t H u dS

K f dV S

 = − 

+ ∀ ∈

∫
∫

x x x y y x y y y

x y y y x



 (4.23) 

where the coefficients 1
2ij ijc δ=  if S is smooth at source point x. For 2-D (plane-strain) 

problems, the two new kernels are 

 1( , ) (1 2 )( , , , ) 2 , , , ( ),
4 (1 )ij ij k jk i ik j i j k kK r r r r r r n

r
ν δ δ δ

π ν
 = − + − + −

x y x  (4.24) 

 

( )

2( , ) 2 (1 2 ) , ( , , ) 4 , , ,
2 (1 )

2 ( , , , , ) (1 4 )

(1 2 ) 2 , , ( ),

ij ik j ij k jk i i j k

i j k k i j ik j

j i k ij k jk i k

rH r r r r r r
r n

n r r n r r n

n r r n n n

µ ν δ ν δ δ
π ν

ν ν δ

ν δ δ

∂  = − + + −  − ∂

+ + − −


+ − + + 



x y

x

 (4.25) 

where ( )in x  is the normal at the source point x. For 3-D problems, the two new kernels 
are 
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 2

1( , ) (1 2 )( , , , ) 3 , , , ( ),
8 (1 )ij ij k jk i ik j i j k kK r r r r r r n

r
ν δ δ δ

π ν
 = − + − + −

x y x  (4.26) 

 

( )

3( , ) 3 (1 2 ) , ( , , ) 5 , , ,
4 (1 )

3 ( , , , , ) (1 4 )

(1 2 ) 3 , , ( ).

ij ik j ij k jk i i j k

i j k k i j ik j

j i k ij k jk i k

rH r r r r r r
r n

n r r n r r n

n r r n n n

µ ν δ ν δ δ
π ν

ν ν δ

ν δ δ

∂  = − + + −  − ∂

+ + − −


+ − + + 



x y

x

 (4.27) 

In HBIE (4.23), the integral with kernel K is a CPV integral, whereas the one with 
kernel H is a HFP integral [84, 85]. As in the potential problem case, a dual BIE (or 
CHBIE) formulation using a linear combination of the CBIE and HBIE can be written 
as 

 CBIE HBIE 0β+ = , (4.28) 

where β is the coupling constant. Dual BIE formulations were found to be very effective 
and efficient for solving crack problems and problems involving thin shapes [49, 86]. 
Dual BIE formulations are especially beneficial to the fast multipole BEM because they 
provide better conditioning for BEM equations and thus can facilitate faster 
convergence with iterative solvers. 
 

4.4. Weakly Singular Forms of the BIEs 
As for the BIEs for potential problems, CBIE (4.19) and HBIE (4.23) can be recast 

into forms that involve only weakly singular integrals [46-48] or even nonsingular 
forms without any singular integrals [47]. For example, by using the result in (4.20) for 
the coefficient ( )ijc x  in CBIE (4.19), we obtain the following weakly singular form of 
the CBIE for elastostatics: 

 
( ) ( , ) ( ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ), ,

i ij j j ij jS S

ij jV

u T u u dS U t dS

U f dV S

γ  + − = 

+ ∀ ∈

∫ ∫
∫

x x y y x y x y y y

x y y y x
 (4.29) 

in which 0γ =  for finite domain problems and 1γ =  for infinite domain problems. The 
integral with the T kernel is now weakly singular, because 

( ) ( )

( )2

1 1 , for two dimensions,
( , ) ( ) ( )

1 1 , for three dimensions,
ij j j

O O r O
r

T u u
O O r O

r r

   =    −       =       

x y y x   

as 0r →  if the displacement iu  is continuous.  

Similarly, by using the first three identities (4.13)-(4.15) for the fundamental 
solution, we can derive the following weakly singular form of the HBIE for elastostatics 
[52]: 
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( ) ( , ) ( ) ( ) ( )( ) ( )

( ) ( , ) ( ) ( , ) ( ) ( )

( , ) ( , ) ( ) ( )

( , ) ( ) ( ) ( ) ( , ) ( ) ( ),

j
i ij j j oS

p
jkpq q ij k ji kS

ij ji jS

ji j j ij jS V

u
t H u u dS

u
E e K n T n dS

K T t dS

T t t dS P K f dV

α α
α

α
α

∂
γ ξ ξ

∂ ξ
∂
∂ ξ

 
+ − − − 

 

 + + 

 = + 

 − − + 

∫

∫

∫
∫ ∫

x x y y x x y

x x y y x y x y

x y x y y y

x y y x x y y y ,S∀ ∈x

 (4.30) 

in which αξ  and oαξ  are the coordinates of y and x, respectively, in tangential 
directions ( 1 for two dimensionsα =  and 1, 2 for three dimensionsα = ) in the local 
(natural) coordinate system on an element and /k ke xα α∂ ξ ∂=  [52]. All the integrals 
in (4.30) are now at most weakly singular if the displacement field iu  has continuous 
first derivatives. 

Weakly singular forms of the BIEs, or regularized BIEs, which do not contain any 
strongly singular and hypersingular integrals, are useful in cases when higher-order 
boundary elements are applied to solve the BIEs. In these cases, analytical evaluations 
of the singular integrals are difficult or impossible to obtain, and the use of numerical 
integration is troublesome. When constant elements are used, all the singular and 
hypersingular integrals can be evaluated analytically (see Appendix A.2 for 2-D cases, 
and Appendix A.5 for 3-D cases), and therefore the original “singular” forms of CBIE 
(4.19) and HBIE (4.23) can be applied directly. 
 

4.5. Discretization of the BIEs 
Discretization of the BIEs for elasticity problems is similar to that for the potential 

problems. The only difference is that we have two or three unknowns at each node for 
2-D or 3-D problems, respectively. For example, the discretized form of CBIE (4.19) 
can be written as follows (without considering the body force): 

 

11 12 1 1 11 12 1 1

21 22 2 2 21 22 2 2

1 2 1 2

N N

N N

N N NN N N N NN N

       
       

      =                      

T T T u U U U t
T T T u U U U t

T T T u U U U t

 

 

         

 

, (4.31) 

in which andi iu t  the displacement and traction vector at node i on boundary S (i = 1, 
2, …, N), and andij ijT U  are 2x2 (for 2-D) or 3x3 (for 3-D) submatrices we obtain by 
integrating the T and U kernels, respectively, when the source point x is at node i and 
integrations are done on all elements surrounding node j. For 2-D constant elements, 
all the integrals can be evaluated analytically (Appendix A.2), whereas for linear and 
quadratic elements numerical integrations need to be used. The diagonal submatrices 

iiT  can be determined by imposing a rigid-body motion on Eq. (4.31) to obtain 

 
, for a finite domain,

, for an infinite domain.

N

ij
j i

ii N

ij
j i

≠

≠

−
= 
 −


∑

∑

T
T

I T
 (4.32) 
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We can also prove this result by discretizing the weakly singular form of the CBIE in 
Eq. (4.29) directly [46]. 

A standard linear system of equations is formed as follows by applying the BC at 
each node in each direction and switching the columns in the two matrices in Eq. (4.31): 

 

11 12 1 1 1

21 22 2 2 2

1 2

, or

N

N

N N NN N N

     
     

     = =                  

A A A λ b
A A A λ b

Aλ b

A A A λ b





     



, (4.33) 

where A is the coefficient matrix of dimensions 2Nx2N (for 2-D) or 3Nx3N (for 3-D), 
λ  is the unknown vector, and b is the known right-hand-side vector (which may also 
contain contributions from the body forces). Again, the construction of matrix A 
requires 2( )O N  operations, and the size of the required memory for storing A is also 

2( )O N  because A is in general a nonsymmetric and dense matrix. The solution of the 
system in Eq. (4.33) by use of direct solvers such as Gauss elimination requires 3( )O N  
operations. Thus the conventional BEM approach by solving Eq. (4.33) directly is 
limited to BEM models with only a few thousand equations on a desktop computer. In 
the following sections, we discuss how to apply iterative solvers to the linear system of 
equations in (4.33) and how to use the FMM to evaluate the far-field contributions in 
the matrix-vector multiplication in order to accelerate the solutions of the BEM 
equations for elasticity problems and to achieve the O(N) efficiency. 
 

4.6. Recovery of the Full Stress Field On the Boundary 
In stress analysis, values of all the stress components on the boundary are of 

interest. However, in the BEM solution, only the displacement and traction components 
on the boundary are solved. The full stress field is not known from this solution, and 
the most important stress component, for example, the hoop stress on the edge of a hole, 
is often missing. In the following, we discuss how to recover the full stress field from 
the BEM solution of the displacement and traction fields, using the 2-D case as an 
example.  

For 2-D elasticity, we know the values of the displacement components u and v 
and the traction components xt  and yt  at each node on the boundary after we solve the 
BEM system of equations. To recover the stress components , , andx y xyσ σ τ  on the 
boundary, we proceed as follows. 

First, we note the following two equations relating the stress and traction 
components: 

 x x xy y xn n tσ τ+ = , (4.34) 

 xy x y y yn n tτ σ+ = , (4.35) 

in which andx yn n  are the direction cosines of the normal n.  

Second, we take the derivatives of the displacement field in the tangential direction 
ξ  (local coordinate) of the boundary S to obtain two more relations: 
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 u x u y u
x yξ ξ ξ
∂ ∂ ∂ ∂ ∂

+ =
∂ ∂ ∂ ∂ ∂

, (4.36) 

 v x v y v
x yξ ξ ξ
∂ ∂ ∂ ∂ ∂

+ =
∂ ∂ ∂ ∂ ∂

, (4.37) 

where we can readily compute the values of / , / , / , and /u v x yξ ξ ξ ξ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  on a 
boundary element by using the shape functions. For constant elements, we can first 
compute the averaged displacement values at the end points of all the elements and then 
apply a linear interpolation to compute the values of these derivatives at the nodes 
(centers) of the elements. 

Third, we write the 2-D stress-strain relations as follows: 

 (1 ) 0x
u vC
x y

σ ν ν
 ∂ ∂

− − + = ∂ ∂ 
, (4.38) 

 (1 ) 0y
u vC
x y

σ ν ν
 ∂ ∂

− + − = ∂ ∂ 
, (4.39) 

 0xy
u vG
y x

τ
 ∂ ∂

− + = ∂ ∂ 
, (4.40) 

where [ ] [ ]/ (1 )(1 2 ) , / 2(1 )C E G Eν ν ν= + − = + , E is Young’s modulus, and ν  is 
Poisson’s ratio for the plane-strain case. 

Therefore, we have seven equations, Eqs. (4.34)-(4.40), for seven unknowns on 
the boundary, , , , / , / , / , and /x y xy u x u y v x v yσ σ τ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , which are sufficient to 
recover all the stress components on the boundary. Note that the four derivatives of the 
displacement components / , / , / , and /u x u y v x v y∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  can be used to determine 
directly the strain components , , andx y xyε ε γ , if needed. 

Combining the seven equations in (4.34)-(4.40), we obtain the following linear 
system of equations for the recovery of the full stresses (and strains) in the 2-D case: 

 

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 (1 ) 0 0 0
0 1 0 0 0 (1 ) 0
0 0 1 0 0 0

x

x y xy

y x yxy

n n t
n n t

x y uu
x

x y vu
y

C C v
C C x

vG G
y

σ
σ
τ

ξ ξ ξ

ξ ξ ξ
ν ν

ν ν

 
    
   
   
   ∂ ∂ ∂∂   ∂ ∂ ∂ ∂      =∂ ∂ ∂∂  

    ∂ ∂ ∂∂    
 − − − ∂  
    − − − ∂    

∂ − −     
 ∂ 














. (4.41) 

We can derive a similar linear system with 15 equations for the 3-D elasticity case 
by following the same approach, which can be applied to recover all the six stress (and 
strain) components on the boundary surface. 
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4.7. Fast Multipole BEM for 2-D Elastostatic Problems 
The fast multipole algorithms for solving general 2-D elasticity problems by using 

CBIE (4.19) and HBIE (4.23) are described in detail in this section. As in the 2-D 
potential case, complex notation is used. The kernels are represented by complex 
functions from the classical 2-D elasticity theory. 

First, we note that the two integrals in CBIE (4.19) can be represented in complex 
variables readily if we write the fundamental solution ( , )ijU x y  and ( , )ijT x y  in the 
complex notation by using the results in 2-D elasticity. In 2-D elasticity theory with 
complex variables, the displacement field 1 2U U iU= +  at a field point 

1 2( , with 1)z y iy i= + = −  because of a point force 1 2P P iP= +  at the source point 

0 1 2( )z x ix= +  can be written as (see, e.g., Refs. [87, 88])  

 0
1 2 0 0

0

1( ) ( ) log( ) log( )
4 (1 )

z zU z iU z P z z z z P
z z

κ
πµ κ

 −  + = − − + − +  + −  
, (4.42) 

in which the overbar indicates the complex conjugate and 3 4κ ν= −  for the plane-
strain case. 

We can obtain the fundamental solution ijU  exactly as given in Eq. (4.9) by letting 
P = 1 and i (first in the x direction, then in the y direction, respectively), in Eq. (4.42). 
Using the preceding result, we can show that the first integral in CBIE (4.19) can be 
written in the following complex form by applying Eq. (4.42) (with no body force) [74]: 

 0 0 0
1 ( ) ( ) ( )
2 t uu z D z D z= − , (4.43) 

where 1 2u u iu= +  is the complex representation of the displacement field and 
boundary S is assumed to be smooth at the source point 0z . In the preceding equation, 

( ) ( )

0 1 2

0 0 0 0

( ) ( , ) ( ) ( ) ( , ) ( ) ( )

1 ( , ) ( ) ' , ( ) ( , ) ( ) ( ),
2 (1 )

t j j j jS S

S

D z U t dS i U t dS

G z z t z z z G z z t z G z z t z dS zκ κ
µ κ

   ≡ +   

 = − − + +

∫ ∫

∫

x y y y x y y y
 

 (4.44) 
representing the first integral with the U kernel in CBIE (4.19), and 

 ( )

0 1 2

0 0 0

0

( ) ( , ) ( ) ( ) ( , ) ( ) ( )

1 '( , ) ( ) ( ) ''( , ) ( ) ( )
1

'( , ) ( ) ( ) ( ) ( ) ( ),

u j j j jS S

S

D z T u dS i T u dS

G z z n z u z z z G z z n z u z

G z z n z u z n z u z dS z

κ
κ

   ≡ +   


= − − −+ 
 + +  

∫ ∫

∫

x y y y x y y y

 (4.45) 

representing the second integral with the T kernel in CBIE (4.19), where 1 2t t it= +  and 

1 2n n in= +  are the complex traction and normal, respectively; 
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 0 0
1( , ) log( )

2
G z z z z

π
= − −  (4.46) 

is the Green’s function (in complex form) for 2-D potential problems [see Eq. (3.7)], 
and 0( ) ' ( ) / z≡ ∂ ∂ . 

To derive the complex form of HBIE (4.23), we first note that the real variable 
traction it  on boundary S is given by 

 , ( , , )i ij j ij k k i j j i jt n u u u nσ λδ µ = = + +  , (4.47) 

in which ijσ  is the stress tensor and 2 / (1 2 )λ µν ν= −  for plane-strain problems. It is 
interesting to note that this relation can be written in complex form as follows: 

 1( ) 2
1

u u ut z n n
z z z

µ
κ
  ∂ ∂ ∂

= + +  − ∂ ∂ ∂   
, (4.48) 

in which , , andt u n  are the complex traction, displacement, and normal on boundary 
S, respectively. In applying this formula, z and z  must be considered as two 
independent variables, that is, / / 0z z z z∂ ∂ = ∂ ∂ = . It is straightforward to verify that 
Eq. (4.48) is indeed equivalent to Eq. (4.47) by simply extracting the real and imaginary 
parts of t(z) from Eq. (4.48) and comparing with the results we obtain by expanding 
Eq. (4.47). 

Applying the relation in Eq. (4.48), we can show that HBIE (4.23) can be written 
in the following complex form (with no body force): 

 0 0 0
1 ( ) ( ) ( )
2 t ut z F z F z= − , (4.49) 

where  

 0 0 0
0 0 0

0 0 0

( ) ( ) ( )1( ) 2 ( ) ( )
1

t t t
t

D z D z D zF z n z n z
z z z

µ
κ
  ∂ ∂ ∂

= + +  
− ∂ ∂ ∂   

 (4.50) 

represents the first integral with the K kernel in HBIE (4.23), and  

 0 0 0
0 0 0

0 0 0

( ) ( ) ( )1( ) 2 ( ) ( )
1

u u u
u

D z D z D zF z n z n z
z z z

µ
κ
  ∂ ∂ ∂

= + +  
− ∂ ∂ ∂   

 (4.51) 

represents the second integral with the H kernel in HBIE (4.23). Applying Eqs. (4.44) 
and (4.45), we obtain the following explicit results: 

 

[ ]

( ) ( )

0 1 2 1 2

0 0 0

0 0 0 0

( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

1 '( , ) ( ) '( , ) ( ) ( )
1

'( , ) ( ) '' , ( ) ( ) ( ),

t j j j jt S S

S

F z F iF K t dS i K t dS

G z z t z G z z t z n z

G z z t z z z G z z t z n z dS z

κ

κ

   ≡ + ≡ +   
 = + + 

 + − −   

∫ ∫

∫

x x x y y y x y y y

(4.52) 
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( ) ( )

0 1 2 1 2

0 0 0

0 0 0 0

( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

2 ''( , ) ( ) ( ) ''( , ) ( ) ( ) ( )
1

''( , ) ( ) ( ) ( ) ( ) '''( , ) ( ) ( ) ( ) ( ),

u j j j ju S S

S

F z F iF H u dS i H u dS

G z z n z u z G z z n z u z n z

G z z n z u z n z u z z z G z z n z u z n z dS z

µ
κ

   ≡ + ≡ +   
 = − + + 

 + + − −   

∫ ∫

∫

x x x y y y x y y y

 

 (4.53) 
To show that complex variable CBIE (4.43) is equivalent to real variable CBIE 

(4.19) and complex variable HBIE (4.49) is equivalent to real variable HBIE (4.23), we 
can simply introduce the polar coordinate system (r, θ) with the origin at 0z ; notice that 

 
( )0

0

1 1 1, ' , ' ,
2 2 2

i i iz z re G e G e
z z r r

θ θ θ

π π π
−− = = = =

−
 and so on, (4.54)  

and extract the real and imaginary parts of the results in the complex variable BIEs. 
In the following discussion, we first study the multipole expansions, local 

expansions, and their translations related to Eqs. (4.44) and (4.45) in the fast multipole 
BEM for CBIE (4.43). Then we present the expansions related to Eqs. (4.52) and (4.53) 
for HBIE (4.49). The derivations of these results are similar and closely related to those 
for 2-D potential problems discussed in the previous chapter. 

4.7.1. Multipole Expansion for the U Kernel Integral 

Let cz  be a multipole expansion point close to z (Figure 3.2), that is, 

0c cz z z z− << − ; the multipole expansion for 0( )tD z  in (4.44) with the U kernel is 
given by [74] 

 
0 0 0 1 0

0 0

0
0

1( ) ( ) ( ) ( ) ( )
4 (1 )

( ) ( ) ,

t k c k c k c k c
k k

k c k c
k

D z O z z M z z O z z M z

O z z N z

κ
πµ κ

∞ ∞

+
= =

∞

=

= − + −+ 
+ − 

∑ ∑

∑
 (4.55) 

where  

 ( ) ( ) ( ) ( ), for 0;
c

k c k cS
M z I z z t z dS z k= − ≥∫  (4.56) 

 
0

1

( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ), for 1,
c

c

c S

k c k c k cS

N z t z dS z

N z I z z t z I z z zt z dS z k

κ

κ −

=

 = − − − ≥ 

∫
∫

 (4.57) 

are the two sets of moments about cz , with cS  being a subset of S that is far away from 
the source point 0z  (Figure 3.2). The two auxiliary functions ( ) and ( )k kI z O z  were 
defined in Eqs. (3.12). Equation (4.55) is derived readily by use of the expansion for 

0( , )G z z  given in Eq. (3.11). 

4.7.2. Moment-to-Moment Translation 

If the multipole expansion point cz  is moved to a new location 'cz  (Figure 3.2), 
we have 
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 ' '
0

( ) ( ) ( ), for 0
k

k c k l c c l c
l

M z I z z M z k−
=

= − ≥∑ . (4.58) 

Similarly 

 ' '
0

( ) ( ) ( ), for 0
k

k c k l c c l c
l

N z I z z N z k−
=

= − ≥∑ . (4.59) 

These are the M2M translations for the moments when cz  is moved to 'cz . Note that 
these translation coefficients are symmetrical for the two sets of moments ( k lI −  and 
conjugate of k lI − ) and coefficients k lI −  are exactly the same as used in the 2-D potential 
case (see, Eq. (3.23)). 

4.7.3. Local Expansion and Moment-to-Local Translation 

Let Lz  be a local expansion point close to the source point 0z  (Figure 3.2), that is, 

0 L c Lz z z z− << − . Expanding 0( )tD z  in (4.55) about 0 Lz z=  by using a Taylor 
series expansion, we have the following local expansion [74]: 

 
0 0 0 1 0

0 1

0
0

1( ) ( ) ( ) ( ) ( )
4 (1 )

( ) ( ) ,

t l L l L l L l L
l l

l L l L
l

D z L z I z z z L z I z z

K z I z z

κ
πµ κ

∞ ∞

−
= =

∞

=

= − − −+ 
+ − 

∑ ∑

∑
 (4.60) 

where the coefficients are given by the following M2L translations: 

 
0

( ) ( 1) ( ) ( ), for 0l
l L l k L c k c

k
L z O z z M z l

∞

+
=

= − − ≥∑ ; (4.61) 

 
0

( ) ( 1) ( ) ( ), for 0l
l L l k L c k c

k
K z O z z N z l

∞

+
=

= − − ≥∑ . (4.62) 

Note that these M2L translation coefficients are also symmetrical regarding the 
translation coefficients [see, Eq. (3.25)]. 

4.7.4. Local-to-Local Translation 

If the local expansion point is moved from Lz  to 'Lz  (Figure 3.2), the new local 
expansion coefficients are given by the following L2L translations [74]: 

 ' '( ) ( ) ( ), for 0l L m l L L m L
m l

L z I z z L z l
∞

−
=

= − ≥∑ ; (4.63) 

 ' '( ) ( ) ( ), for 0l L m l L L m L
m l

K z I z z K z l
∞

−
=

= − ≥∑ , (4.64) 

which are also symmetrical regarding the translation coefficients [see, Eq. (3.30)]. 

4.7.5. Expansions for the T Kernel Integral 
Through a procedure similar to that used for the U kernel integral in (4.44), the 

multipole expansion of the T kernel integral 0( )uD z  in (4.45) can be written as [74] 
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 



0 0 0 1 0
1 1

0
1

1( ) ( ) ( ) ( ) ( )
2 (1 )

( ) ( ) ,

k ku k c c k c c
k k

kk c c
k

D z O z z M z z O z z M z

O z z N z

κ
π κ

∞ ∞

+
= =

∞

=

= − + −+ 
+ − 

∑ ∑

∑
 (4.65) 

where the two sets of moments are 

 

1( ) ( ) ( ) ( ) ( ), for 1;
c

k c k cS
M z I z z n z u z dS z k−= − ≥∫  (4.66) 

 



 {
}

1

1

2

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ), for 2.

c

c

c S

k c k cS

k c

N z n z u z n z u z dS z

N z I z z n z u z n z u z

I z z zn z u z dS z k

−

−

 = + 

 = − + 

− − ≥

∫

∫  (4.67) 

These moments are similar to those for the U kernel integral. It can be shown that all 
the M2M, M2L, and L2L translations remain the same for the T kernel integrals, except 
that 0 0 0.M N= =   In fact, moments kM  and kM  are combined, as well as moments 

kN  and kN , so that only two sets of moments are involved in the M2M and M2L 
translations. 

The local expansion for 0( )uD z  is [74] 

 
0 0 0 1 0

0 1

0
0

1( ) ( ) ( ) ( ) ( )
2 (1 )

( ) ( ) ,

u l L l L l L l L
l l

l L l L
l

D z L z I z z z L z I z z

K z I z z

κ
π κ

∞ ∞

−
= =

∞

=

= − − −+ 
+ − 

∑ ∑

∑
 (4.68) 

where the local expansion coefficients ( )l LL z  and ( )l LK z  are given by Eqs. (4.61) and 
(4.62), with kM  and kN  replaced with kM  and kN , respectively. 

4.7.6. Expansions for the HBIE 
To derive the multipole expansions and local expansions for HBIE (4.49), we can 

simply take the derivatives of the local expansions for the two integrals in the CBIE, 
that is, the integrals in Eqs. (4.60) and (4.68), respectively, and then invoke the 
constitutive relation in the complex form, that is, Eqs. (4.50) and (4.51). The result of 
the local expansion for the first integral 0( )tF z  in Eq. (4.52) for the HBIE is 

 
0 1 0 1 0 0

0 0

0 1 1 0 1 0 0
1 0

1( ) ( ) ( ) ( ) ( ) ( )
2 (1 )

( ) ( ) ( ) ( ) ( ) ,

t l L l L l L l L
l l

l L l L l L l L
l l

F z L z I z z L z I z z n z

z L z I z z K z I z z n z

π κ

∞ ∞

+ +
= =

∞ ∞

+ − +
= =

 = − + − + 
 + − − + −   

∑ ∑

∑ ∑
 (4.69) 

in which the expansion coefficients ( )l LL z  and ( )l LK z  are given by the same M2L 
translations in (4.61) and (4.62), respectively. That is, the same sets of moments kM  
and kN  used for 0( )tD z  are used for 0( )tF z  directly. 
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Similarly, it can be shown that the local expansion for the second integral 0( )uF z  
in Eq. (4.53) for the HBIE is 

 
0 1 0 1 0 0

0 0

0 1 1 0 1 0 0
1 0

( ) ( ) ( ) ( ) ( ) ( )
(1 )

( ) ( ) ( ) ( ) ( ) ,

u l L l L l L l L
l l

l L l L l L l L
l l

F z L z I z z L z I z z n z

z L z I z z K z I z z n z

µ
π κ

∞ ∞

+ +
= =

∞ ∞

+ − +
= =

 = − + − + 
 + − − + −   

∑ ∑

∑ ∑
 (4.70) 

in which ( )l LL z  and ( )l LK z  are given by Eqs. (4.61) and (4.62), with kM  replaced 
with kM  and kN  with kN . Again, the same sets of moments kM  and kN  used for 

0( )uD z  are used for 0( )uF z  directly, and thus all the M2M, M2L, and L2L translations 
for the HBIE remain the same as those used for the CBIE. 

The details of the fast multipole algorithms for solving 2-D elasticity problems are 
similar to those for 2-D potential problems, which are described in the previous chapter. 
For example, if constant boundary elements (straight line segment with one node) are 
applied to discretize the 2-D elasticity BIEs, all the moments can be evaluated 
analytically, as well as the integration of the kernels in the near-field direct evaluations 
(Appendix A.2). 
 

4.8. Fast Multipole BEM for 3-D Elastostatic Problems 
To discuss the fast multipole formulation for 3-D elasticity problems, we first note 

that the fundamental solution in Eq. (4.11) can be written in the following form: 

 1 2( , )
8 2

j j
ij ij

i

x y
U

r x r
λ µδ

πµ λ µ
− + ∂

= − + ∂ 
x y . (4.71) 

Start with the following expansion [see Eq. (3.46) used for 3-D potential problems]: 

 , ,
0

1 ( ) ( ),
( , )

n

n m c n m c c c
n m n

S R
r

∞

= =−

= − − − < −∑ ∑ x y y y y y x y
x y

, (4.72) 

where cy  is an expansion point close to the field point y and overbar indicates the 
complex conjugate. The functions ,n mR  and ,n mS  are solid harmonic functions given in 
Eqs. (3.47) and (3.48), respectively. Note that the left-hand side of Eq. (4.72) is a real 
function. Therefore the complex conjugate can also be placed on ,n mR  in Eq. (4.72). 
Substituting the results in (4.72) into Eq. (4.71), we arrive at 

 
, , ,

0

, , ,

1( , ) ( ) ( )
8

( )( ) ( ) ,

n

ij ij n m c n m c
n m n

i n m c c j n m c

U F R

G R

πµ

∞

= =−

= − −

+ − − − 

∑ ∑x y x y y y

x y y y y y
 (4.73) 

where 

 , , , ,
3( ) ( ) ( ) ( )
2 2ij n m c ij n m c c j n m c

i

F S S
x

λ µ λ µδ
λ µ λ µ
+ + ∂

− ≡ − − − −
+ + ∂

x y x y x y x y , (4.74) 
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 , , ,( ) ( ).
2i n m c n m c

i

G S
x

λ µ
λ µ
+ ∂

− ≡ −
+ ∂

x y x y  (4.75) 

Consider the first integral with the U kernel in CBIE (4.19) on a subdomain cS  of 
S away from the source point x. Applying expression (4.73), with point cy  being close 
to subdomain cS  (elements within a leaf), we obtain the following multipole expansion: 

 
, , , ,

0

, , ,

1( , ) ( ) ( ) ( ) ( )
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( ) ( ) ,
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x y y
 (4.76) 

in which 

 
, , ,

, ,
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( ) ( ) ( ) ( ) ( )
c

c
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n m c c j n m c jS

M R t dS
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∫
∫

y y y y y

y y y y y y y
 (4.77) 

are the moments for given n and m. Evaluations of these four moments are independent 
of the location of the source point x and thus need to be calculated only once on each 
element. 

To obtain the multipole expansion for the T kernel integral in CBIE (4.19), we note 
that 

 ( , ) ( ) ( , )ij jklp k il
p

T E n U
y
∂

=
∂

x y y x y . (4.78) 

From this relation and expansion in Eq. (4.73), we obtain the multipole expansion for 
the T kernel integral as follows: 
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in which 

 


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 (4.80) 

Depending on the boundary conditions, only one in each of the pairs  , ,, ,( , )j n mj n mM M  

and  ,,( , )n mn mM M  are used in the moment calculations. There is a total of four moments 
that need to calculated on each boundary element. 

When the expansion point is moved from cy  to 'cy , we have the following M2M 
translations: 
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which are also valid for  , ,j n mM  and  ,n mM . 

The local expansion of the U kernel integral on cS  about the point L=x x  is given 
as follows: 
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where the local expansion coefficients are given by the following M2L translations: 
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 (4.83) 

, ,
R

ij n mF  and , ,
R
i n mG  are obtained from Eq. (4.74) and Eq. (4.75), respectively, with ,n mS  

replaced with ,n mR  in each case. The local expansion for the T kernel integral is similar 

to that of Eq. (4.82), only with , ', 'j n mM  and ', 'n mM  replaced with  , ', 'j n mM  and  ', 'n mM , 
respectively, in Eqs. (4.83) when the local expansion coefficients for the T kernel 
integral are computed. 

When the local expansion point is moved from Lx  to 'Lx , we have the following 
L2L translations: 
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 (4.84) 

We can readily obtain the fast multipole formulation for the HBIE by taking the 
derivatives of the local expansions for the CBIE and invoking the constitutive equations, 
as we did in the 2-D elasticity case. 

As in the 2-D cases, the fast multipole formulations for 3-D elasticity problems 
closely resemble those for 3-D potential problems. In fact, all the expansions and 
translations (M2M, M2L, and L2L) for the 3-D elasticity case are similar to those for 
3-D potential cases as we discussed in the previous chapter. The only difference is that 
we have four moments in the multipole expansion for 3-D elasticity problems, whereas 
we have only one moment for 3-D potential problems. From this fact, we can readily 
develop a fast multipole BEM program for 3-D elasticity problems by extending a fast 
multipole BEM program for 3-D potential problems. 

It should be pointed that the M2L translations are more expensive compared with 
other operations in the FMM, especially for 3-D vector problems. A new version of the 
FMM was introduced by Greengard and Rokhlin in 1997 [66], which uses exponential 
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expansions and replaces the M2L translations with multipole to exponential (M2X), 
exponential to exponential (X2X), and exponential to local (X2L) expansions. This new 
version is more difficult to implement. However, it can speed up the solutions by about 
20-40% for many 3-D applications [62, 67]. 
 

4.9. Fast Multipole BEM for Multidomain Elasticity Problems 
In this section we discuss a BEM formulation for multidomain elasticity problems 

[75], that can be applied to model fiber-reinforced composite materials, functionally 
graded materials, and other inclusion problems in elasticity. Efficient preconditioners 
for this BEM formulation are constructed that can provide efficient solution strategies 
for the fast multipole BEM for solving such multidomain elasticity problems. 
 

 
Figure 4.2.  Matrix domain V0 and n inclusions. 

 

Consider a 2-D or 3-D elastic domain V0 with boundary 0S  and embedded with n 
elastic inclusions Vα  with interface Sα , where 1,2,..., nα =  (Figure 4.2). In this 
discussion, we assume all the inclusions are completely embedded inside the elastic 
matrix domain, that is, there is no intersection of the interface Sα  with the outer 
boundary 0S . This is a special case of the general multidomain problems. We also 
assume that no body force is present. 

For the matrix domain V0, we have the following CBIE from Eq. (4.19): 

 1 ( ) ( , ) ( ) ( , ) ( ) ( ), ,
2 i ij j ij jS

u U t T u dS S = − ∀ ∈ ∫x x y y x y y y x  (4.85) 

where andi iu t  are the displacement and traction, respectively; 
0

n
S Sα

α=
=   is the total 

boundary of domain V0 (assuming that S is smooth around x), and ( , )ijU x y  and 
( , )ijT x y  are the two kernel functions. 

For each inclusion, the CBIE from Eq. (4.19) can be written as 
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 ( ) ( ) ( ) ( ) ( )1 ( ) ( , ) ( ) ( , ) ( ) ( ), ,
2 i ij j ij jS

u U t T u dS S
α

α α α α α
α = − ∀ ∈ ∫x x y y x y y y x  (4.86) 

for 1, 2,...,nα = , in which ( ) ( )andi iu tα α  are the displacement and traction, respectively, 
for inclusion α , and ( ) ( , )ijU α x y  and ( ) ( , )ijT α x y  are the two kernels using the shear 
modulus, Poisson’s ratio, and outward normal for inclusion α .  

HBIE (4.23) can also be applied in the matrix as well as in the inclusion domains. 
In fact, the dual BIE formulation (CHBIE, a linear combination of the CBIE and HBIE) 
is preferred for modeling inclusion problems in which thin shapes often exist and can 
present difficulties for the CBIE formulation when it is applied alone. 

Assume that the inclusions are perfectly bonded to the matrix, that is, there are no 
gaps or cracks and no interphase regions. We have the following interface conditions 

 ( ) ( ),i i i iu u t tα α= = − , (4.87) 

for 1, 2,...,nα = , which state that the displacements are continuous and the tractions are 
in equilibrium at the interfaces. 

From the assumptions just mentioned, we can write the discretized form of the 
multidomain BIEs by using either the CBIE or CHBIE for the matrix domain and the 
inclusions as follows [75]: 
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(4.88) 

in which 0 0andu t  are the displacement and traction vector on the outer boundary 0S , 
andi iu t  are the displacement and traction vector on the interface iS  from the matrix 

domain, andij ijA B  are the coefficient submatrices from the matrix domain, and 

andf f
i iA B  are the coefficient submatrices from inclusion i. By rearranging the terms 

in Eq. (4.88), we can write an alternative form of the BEM system of equations as [75] 
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 (4.89) 
Both systems of equations in (4.88) and (4.89) can be applied with the fast 

multipole BEM to solve inclusion problems in elasticity. The multipole expansions and 
related translations discussed in the previous two sections for 2-D and 3-D elasticity 
BIEs can be applied readily for the BIEs from the matrix domain and those from the 
inclusion domains. The only difficult part in the implementation is the bookkeeping of 
the locations of the submatrices from different domains in the systems of equations.  

Preconditioning for the fast multipole BEM is even more crucial for its 
convergence and efficiency in solving multidomain problems. Two preconditioners can 
be devised based on the two forms of the BEM systems of equations shown in 
Eqs. (4.88) and (4.89). 

For Preconditioner A, a block diagonal preconditioner based on Eq. (4.88) is used. 
For the matrix domain, a diagonal submatrix is formed on each leaf by use of direct 
evaluations of the kernels on the elements within that leaf, whereas, for the inclusions, 
the submatrix f

iB  in Eq. (4.88) along the main diagonal is used for each inclusion. 

For Preconditioner B, a block diagonal preconditioner based on Eq. (4.89) is used. 
In this case, the following matrix from the matrix in Eq. (4.89) is used as the 
preconditioner: 
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. (4.90) 

This preconditioner is equivalent to solving many inclusion problems as if there were 
only one inclusion embedded in an infinite domain in each case. For this preconditioner, 
larger diagonal matrices need to be processed for each inclusion, which can be time 
consuming if the number of elements on each inclusion is large. However, this 
preconditioner is very effective for inclusion problems because the number of iterations 
for the GMRES solver can be reduced significantly, as is shown in the numerical 
examples in the following section (also in Ref. [75]). A similar preconditioner is applied 
in the 3-D fast multipole BEM for modeling rigid-inclusion problems by the 3-D single-
domain CBIE in Refs. [81, 82]. 
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The systems in Eqs. (4.88) and (4.89) are right preconditioned with the preceding 
two preconditioners, respectively, in solving elasticity inclusion problems by using the 
fast multiple BEM. LU decompositions (LU stands for lower triangular and upper 
triangular matrices) of the submatrices in these preconditioners can be computed once 
and saved in memory in the subsequent iterations to save the CPU time in solving such 
problems. 
 

4.10. Numerical Examples 
Several numerical examples are given in this section to demonstrate the accuracy 

and efficiency of the fast multipole BEM for solving 2-D and 3-D elasticity problems. 
In all the cases, the Young’s modulus of the material is E and the Poisson’s ratio is ν . 

4.10.1. A Cylinder with Pressure Loads  
 

 
Figure 4.3.  A thick cylinder with pressure loads. 

 
We first consider a thick cylinder under pressure loads (in the plane-strain case) as 

shown in Figure 4.3. The inner pressure is ip , and the outer pressure is op . The 
analytical solutions for the radial displacement and stresses in the polar coordinate 
system are given by [89] 

 ( ) ( )
2 2 2 2

o i i o
2 2 2 2

1 1 1 2r

a b p p a p b pu r
E b a r b a
ν ν
 − −+

= − + − − − 
, (4.91) 
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− −
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. (4.93) 

In the case studied, we set b = 2a, i op p p= = , and Poisson’s ratio ν  = 0.3. We 
discretize the inner and outer boundaries with the same number of elements and run 
both the fast multipole BEM code and a conventional BEM code that also uses constant 

a 

b 
O 

V  
 

S 
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elements and analytical integrations. The conventional BEM code uses both the direct 
solver (LAPACK) and the iterative solver (GMRES) for solving the linear system. For 
the fast multipole BEM, the numbers of terms for both multipole and local expansions 
were set to 20, the maximum number of elements in a leaf to 20, and the tolerance for 
convergence of the solution to 10-6. All the fast multipole BEM results converged in 
about three iterations without using any preconditioner in this example. 

Table 4.1 shows the results of radial displacement ru  and hoop stress θσ  at the 
inner boundary obtained with both the fast multipole BEM and the conventional BEM 
(with the direct solver) as the total number of elements increases from 200 to 4800 
(DOFs from 400 to 9600). As we can see, the results for both the fast multipole BEM 
and the conventional BEM converge quickly to the exact solution [89] for the mesh 
with 360 constant elements with a relative error of less than 3%. The results continue 
to improve with the increase of the number of elements.  
 

Table 4.1.  Radial displacement and hoop stress at the inner boundary. 

 ru  (x pa/E) θσ  (x p) 

DOFs  Conventional BEM Fast multipole BEM Conventional BEM Fast multipole BEM 
400 -0.52233 -0.52233 -1.00228 -1.00228 

720 -0.52143 -0.52143 -1.00149 -1.00148 

1440 -0.52076 -0.52076 -1.00081 -1.00082 

2880 -0.52039 -0.52039 -1.00042 -1.00042 

4800 -0.52024 -0.52024 -1.00026 -1.00026 

9600 -0.52012 -0.52012 -1.00013 -1.00007 
Exact 

Solution - 0.52000 - 1.00000 

 

 
    (a) Boundary displacement u      (b) Boundary stress xσ      (c) Domian displacement u 

Figure 4.4.  Contour plots of boundary solutions and field values inside domain. 
 

The contour plots of computed results using the 200 element (400 DOF) model are 
shown in Figure 4.4. The boundary solutions are obtained first by solving the BIEs with 
the conventional BEM or fast multipole BEM. Then the field (domain) displacement 
and stress values are calculated using the representation integrals for the displacement 
and stress fields respectively. 
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Figure 4.5.  CPU times used by the conventional BEM and fast multipole BEM. 

 
The CPU times used for the two BEM approaches (on a Pentium IV laptop PC 

with a 2.4-GHz CPU and 1-GB RAM) are plotted in Figure 4.5, which shows the 
significant advantage of the fast multipole BEM compared with the conventional BEM 
with either a direct or an iterative solver. For example, for the model with 4800 elements 
(DOFs = 9600), the fast multipole BEM used only 3 s of the CPU time, while the 
conventional BEM used 1483 s with the direct solver and 38 s with the iterative solver. 
Beyond 10,000 DOFs, the conventional BEM (with double precision) encounters the 
1-GB physical memory barrier and cannot run efficiently without using the virtual 
memory. It is also interesting to note from Figure 4.5 that the slopes of the three curves 
for the conventional BEM with direct solver, iterative solver, and the fast multipole 
BEM are close to 3, 2, and 1 on the log-log scales, suggesting 3( )O N , 2( )O N , ( )O N  
efficiencies of the three methods, respectively. 

This example shows that the fast multipole BEM is very efficient compared with 
the conventional BEM. In addition, the fast multipole BEM results are equally accurate 
as the conventional BEM results, and the solutions are very stable with the increase of 
the model size. 
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4.10.2. A Square Plate with a Circular Hole 
 

Figure 4.6.  A square plate with a circular hole at the center and loaded with p. 
 

In the second example, we further study the accuracy of the fast multipole BEM 
by using a stress concentration problem – a square plate with a circular hole at the center, 
as shown in Figure 4.6. The edge length of the square plate is L, and the radius of the 
hole is a = 0.1L. The plate is loaded in the x direction with a uniform load p and 
Poisson’s ratio ν  = 0.3. The maximum (at point A) and minimum (at point B) hoop 
stresses on the edge of the hole are sought (Figure 4.6) using both the fast multipole 
BEM code and ANSYS. In the BEM models, the number of boundary elements on the 
edge of the hole increases whereas that on the outer edges of the plate is kept at 100, 
except for the last BEM model, in which 200 elements are used on the outer edges of 
the plate. The numbers of terms for both multipole and local expansions were set to 20, 
the maximum number of elements in a leaf to 100, and the tolerance for convergence 
to 10-6. All the fast multipole BEM results converged in about 20 iterations. In the FEM 
models, Q4 elements are used in order to compare with the BEM models (which use 
constant boundary elements). 

Table 4.2 shows the comparison of the computed hoop stresses at points A and B. 
For an infinitely large plate with a hole, the hoop stress at point A is 3p and that at point 
B is –p [89]. For our finite-sized plate with the hole, the hoop stresses should be slightly 
higher than these values. The stress values for both fast multipole BEM (with 
DOFs = 1640) and FEM (with DOFs = 4522) converged quickly to around 3.22p at 
point A and -1.19p at point B. Further increases of the numbers of elements provided 
little improvement in the results. This example demonstrates again that the results 
obtained when the fast multipole BEM code is used are accurate and stable. 

It should be pointed out that the element types used for both the BEM and the FEM 
in this study are the simplest elements available. If higher-order elements such as 
quadratic elements are used, a few hundred elements should be sufficient for both the 
BEM and the FEM to achieve the same accuracy as reported in this example. 
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Table 4.2.  Computed hoop stress θσ  (x p) on the edge of the hole. 

Fast multipole BEM FEM 
DOFs  At Point A At Point B DOFs At Point A At Point B 

560 3.215 -1.176 1206 3.148 -1.101 

920 3.216 -1.183 4522 3.229 -1.185 

1640 3.216 -1.185 9490 3.225 -1.187 

3080 3.217 -1.188 38,440 3.226 -1.192 

7600 3.222 -1.190    

 

4.10.3. Multiple Inclusion Problems 
We next study multiple inclusion problems by using the dual BIE and the fast 

multipole BEM [75]. The same square domain and BCs as in the previous example are 
used (Figure 4.6), but with elliptical inclusions (long axis a and short axis b). Two cases 
are considered here, one with multiple circular inclusions (long and unidirectional 
fibers) under the plane-strain condition, and the other with multiple crack like 
inclusions under plane-stress condition. For the circular inclusion case, the parameters 
used are a = b = 0.2, fiber volume fraction = 12.57%, E = 1, and ν  = 0.25 for the matrix 
and E = 10 and ν  = 0.25 for the inclusions. For the crack like inclusion case, b = 0.2, 
a/b = 0.01, crack density = b2 = 4%, E = 1 and ν  = 0.25 for the matrix, and E = 0.00001 
and ν  = 0.25 for the inclusions (cracks). In both cases, the inclusions are randomly 
distributed in the material domains. Two BEM models for the two cases are shown in 
Figure 4.7. For the outer boundary, 400 elements are used, and on each interface 200 
elements are used. 
 

 
(a)             (b) 

Figure 4.7.  Elastic domains embedded with 400 elastic inclusions: (a) circular 
inclusions (fibers) with 0/ 10iE E = , (b) crack-like inclusions with 0/ 0.00001iE E =  

and a/b = 0.01. 
 

We evaluate the effective Young’s moduli of the materials containing the circular 
inclusions and cracks in the x-y plane by using the fast multipole BEM with the CHBIE 
and compare with the estimates by using homogenization theories. Table 4.3 shows the 
BEM results with different numbers of the inclusions in the models, and excellent 
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results are obtained for both cases. With the increase of the size of the models, the 
evaluated effective Young’s moduli approach constant values, as expected. 
 

Table 4.3.  Computed effective moduli for the materials with circular and crack-like 
inclusions. 

No. of 
Inclusions Total DOFs 

Effective Moduli (x 0E ) 

Circular Inclusions 
( ,x yE E ) Crack-Like Inclusions ( xE ) 

2x2 4,000 1.2678 0.7631 

4x4 13,600 1.2728 0.8024 

6x6 29,600 1.2596 0.7808 

8x8 52,000 1.2605 0.7923 

10x10 80,800 1.2649 0.7891 

12x12 116,000 1.2640 0.7902 

14x14 157,600 1.2635 0.7886 

16x16 205,600 1.2651 0.7900 

18x18 260,000 1.2642 0.7897 

20x20 320,800 1.2644 0.7885 

Analytical Estimates [90]  1.2491 0.7992 

 
 

  
Figure 4.8.  CPU times used for the multiple circular and crack-like inclusion models. 
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Figure 4.8 is a plot of the CPU times used with the fast multipole BEM for the two 
cases studied and with the two preconditioners discussed in the previous section on the 
multidomain BEM. Preconditioner A is based on the coefficients calculated on leaves, 
and preconditioner B is based on those on the inclusions [75]. The computer used for 
these calculations is a desktop PC with an Intel Pentium D 3.2-GHz processor and 2-
GB memory size. For the circular inclusion case, the numbers of iterations using 
preconditioner A range from 141 to 550, whereas those using preconditioner B range 
from 11 to 16, with a tolerance of 10-6. For the crack like inclusion case, the numbers 
of iterations using preconditioner A range from 29 to 41, whereas those using 
preconditioner B range from 12 to 14. Significant advantages of using preconditioner B 
are observed in both cases. It is also observed that the dual BIE (CHBIE) formulation, 
which uses a linear combination of the CBIE and HBIE, provides much better 
conditioning of the system for the crack like inclusion problems, based on the fact that 
much faster convergence was achieved for the crack like problem than for the circular 
inclusion problem. 
 

4.10.4. Modeling of Functionally Graded Materials  
We next show an example in modeling functionally graded materials by using the 

fast multipole BEM for 2-D elasticity inclusion problems. We model functionally 
graded composites with long fibers that are distributed randomly and with a decreasing 
density in one direction. The plane-strain model is used to extract the moduli of the 
composites in the transverse directions. Two cases are studies, one with the fibers of a 
circular shape and the other with the fibers of a star shape (Figure 4.9). The volume 
fraction of the fibers is fixed at 12.57%, and the material properties for the fibers and 
matrix are the same as in the previous example [Figure 4.7 (a)]. 
 

        
(a)       (b)  

Figure 4.9. Functionally graded composites: (a) circular-shaped fibers, (b) star-shaped 
fibers. 

 
Table 4.4 shows the computed effective Young’s moduli for the functionally 

graded composite models. The cell sizes increase with the increase of the included 
fibers to keep the fiber volume fraction at 12.57%, as in the previous example. It turns 
out that the effective moduli converge to the same value of the analytical solution [90] 
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that is based on a “uniform” (nongraded) distribution of the fibers as used in the 
previous example [Figure 4.7 (a)]. This suggests that the effective moduli of the 
composites are not affected by the shape and the distribution of the fibers, as expected, 
if the volume fraction of the fibers is the same. However, the graded distribution of the 
fibers may reduce the stresses in the composites, and the star-shaped fibers may 
improve the interfacial properties of the composites. 
 

Table 4.4.  Computed effective moduli for the functionally-graded composites. 

No. of 
Inclusions Total DOFs 

Effective Moduli xE  (x 0E ) 

Circular-Shaped Fibers Star-Shaped Fibers 
4 4000 1.2752 1.2254 

16 13,600 1.2600 1.2181 

36 29,600 1.2674 1.2227 

64 52,000 1.2645 1.2208 

100 80,800 1.2639 1.2227 

144 116,000 1.2616 1.2200 

196 157,600 1.2621 1.2216 

256 205,600 1.2600 1.2209 

324 260,000 1.2625 1.2224 

400 320,800 1.2628 1.2215 

Analytical Estimates [90]  1.2491 

 

4.10.5. Large-Scale Modeling of Fiber-Reinforced Composites 
The 3-D BEM was applied to model fiber-reinforced composite materials for quite 

some time (see, e.g., Refs. [54, 91]). However, because of the limitations in the 
conventional BEM, only models with a few fibers can be modeled and analyzed with 
the BEM, even with parallel computing techniques. With the advance of the fast 
multipole BEM, we can now analyze 3-D BEM models of composite materials with 
more than tens of thousands of fibers that are modeled explicitly. 

To demonstrate this, we next study a few 3-D representative volume elements 
(RVEs) of fiber-reinforced composites by using the fast multipole BEM for 3-D 
problems. In these models, the fibers are regarded as rigid inclusions and the matrix 
material is considered as an elastic medium. These models are useful in cases in which 
the Young’s moduli of the fibers are much higher than those of the matrix, as in the 
case of carbon nanotube (CNT) composites. The RVE is loaded in the x direction to 
evaluate the effective modulus in that direction. Elements are needed on only the 
boundaries and interfaces with the BEM. More examples in modeling fiber-reinforced 
composites, especially CNT composites, including those incorporating the molecular 
dynamics (MD) and cohesive interface conditions, can be found in Refs. [81-83]. The 
following large models were solved on a supercomputer at Kyoto University. 

Figure 4.10 shows a smaller RVE of a short fiber-reinforced composite and the 
stress contour plot on the interfaces between the fibers and matrix. A boundary element 
mesh using constant triangular elements on the interfaces is shown in the insert. Using 
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the fast multipole BEM, we can readily study the interface stresses in such models and 
extract the effective mechanical properties of the composites. 
 

 
Figure 4.10. Stress contour plot ( σ ∞× ) for a RVE with 216 short fibers (insert shows 

the mesh). 
 

Figure 4.11 shows a larger RVE model with 5832 long fibers and 10,532,592 
DOFs. The volume fraction of the fibers is 3.85%, and Poisson’s ratio for the matrix is 
0.3. Figure 4.12 shows the normalized effective Young’s moduli ( /eff matrixE E ) 
computed from the RVE models for the composite with increasing numbers of the fibers 
(from 9 to 5832) and with uniform and random distributions of the fibers, while keeping 
the same value of the volume fraction. Theoretically, the moduli of the materials should 
be independent of the sizes of the RVE models. However, when the RVE sizes are small 
(with only a few fibers), there are significant changes in the estimated moduli as we 
increase the model sizes, which suggests that the models are not yet representative of 
the composites. The estimated moduli approach constant with the increase of the fibers 
and thus the sizes of the models. The increases in the values of the moduli compared 
with those of the matrix range from 75.9% to 95.0% for the uniform case and from 65.4% 
to 87.6% for the random case. However, the increases in the random case are about 8% 
lower than those in the uniform case. This suggests that even small misalignments and 
rotations of fibers can offset the enhancement in the stiffness of composites.  

The largest BEM model solved so far in modeling fiber-reinforced composites 
contains 16,000 fibers with a total of 28.8 million DOFs and was solved on the 
supercomputer at Kyoto University [81]. More discussion and examples of modeling 

 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 116 

the fiber-reinforced composites using the fast multipole BEM can be found in Refs. 
[81-83]. 
 

 
Figure 4.11. A RVE containing 5,832 long fibers with the total DOFs = 10,532,592. 

 
 

 
Figure 4.12. Estimated effective Young’s moduli in the x-direction for the composite 

models. 
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4.11. Summary 
In this chapter, the governing equations for elastostatic problems are reviewed. The 

fundamental solutions, their properties, and the generalized Green’s identity 
(Somigliana’s identity) are introduced. The BIE formulations are presented based on 
this identity and the fundamental solutions. The fast multipole formulations for solving 
the BIEs are described in detail for 2-D problems, and the results for 3-D problems are 
presented. Fast multipole BEM for multidomain problems is also discussed. Numerical 
examples are presented to demonstrate the accuracy and efficiencies of the fast 
multipole BEM for solving large-scale 2-D and 3-D elasticity problems. 
 

Problems 
4.1. For an isotropic, linearly elastic body, derive the following equilibrium equations 

in terms of the displacement field iu : 

 , , 0
1 2i jj j ji iu u fµµ

ν
+ + =

−
. (4.94) 

4.2. Derive the generalized Green’s identity for elasticity problems (Somigliana’s 
identity) in Eq. (4.17) by using both the Gauss theorem and the virtual work 
theorem. 

4.3. Derive the traction kernel ijT  in Eq. (4.10) from the displacement kernel ijU  in 
Eq. (4.9) for 2-D (plane strain) problems. 

4.4. Prove the results given in Eq. (4.32). 
4.5. Verify that Eq. (4.42) does give the same fundamental solution given in Eq. (4.9). 
4.6. Prove the complex notation of the traction given in Eq. (4.48). 
4.7. Write a conventional BEM code for solving 2-D elasticity problems using 

constant elements. You can use the 2-D potential code used in Chapter 2 
(Appendix B.1) as the starting point and use the analytical integration results in 
Appendix A.2 for the 2-D elasticity case. 

4.8. Solve the cylinder model in Figure 4.3 by using a quarter-symmetry model and 
compare the accuracy and efficiency of the obtained results with those using the 
full model. 

4.9. Write a fast multipole BEM code for solving 2-D elasticity problems using 
constant elements based on the 2-D potential fast multipole BEM code given in 
Appendix B.2.  Study its accuracy and efficiency by using the cylinder example. 
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Chapter 5. Stokes Flow Problems 

Stokes flows are incompressible flows at low Reynolds’ number [92], which can 
be found in many applications such as creeping flows in biological systems and fluid-
structure interactions in MEMS. Stokes flow problems were formulated with BIEs and 
solved by the BEM for decades with either direct or indirect BIE formulations (see, e.g., 
Refs. [93, 94]).  

For Stokes flow problems using the fast multipole BEM, there are several 
approaches reported in the literature. Greengard et al. [69] developed a fast multipole 
formulation for directly solving the biharmonic equations in 2-D elasticity with the 
Stokes flow as a special case. Gomez and Power [37] studied 2-D cavity flow governed 
by Stokes equations by using both direct and indirect BIEs and the FMM in which they 
used Taylor series expansions of the kernels in real variables directly. Mammoli and 
Ingber [40] applied the fast multipole BEM to study Stokes flow around cylinders in a 
bounded 2-D domain by using direct and indirect BIEs with the kernels expanded by a 
Taylor series of the real variables. In the context of modeling MEMS problems, Ding 
and Ye [95] developed a fast BEM by using the precorrected fast Fourier transform 
(FFT) accelerated technique for computing drag forces with 3-D MEMS models with 
slip BCs. Frangi and co-workers [96-99] conducted extensive research by using the 
direct BIE formulations and the fast multipole BEM for evaluating damping forces of 
3-D MEMS structures. They applied a mixed-velocity-traction BIE in modeling large-
scale 3-D MEMS problems under both no-slip and slip BCs. Liu [100] also developed 
a fast multipole BEM for solving 2-D Stokes flow problems based on a dual BIE 
formulation. 

In this chapter, the direct BIE formulations for solving Stokes flow problems are 
reviewed first. Then the FMMs for both 2-D and 3-D Stokes flow problems are 
presented. Because of the similarities of the Stokes flow equations to those for the 
elasticity problems, many of the results for Stokes flow problems can be obtained 
directly from those for elasticity presented in the previous chapter. Several numerical 
examples are presented, which clearly show the accuracy, efficiency, and potentials of 
the fast multipole BEM for analyzing large-scale Stokes flow problems. 
 

5.1. The Boundary-Value Problem 
Consider the following boundary-value problem for a steady-state Stokes flow in 

domain V with boundary S: 
Equilibrium equations: 

 , 0, inij j Vσ = ; (5.1) 

Continuity equations: 

 , 0, ini iu V= ; (5.2) 

Constitutive equations: 

 ( , , ), inij ij i j j ip u u Vσ δ µ= − + + , (5.3) 

where ijσ  is the stress in the fluid, iu  is the velocity, p is the pressure, and µ  is the 
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coefficient of viscosity of the fluid. Substituting Eqs. (5.2) and (5.3) into Eq. (5.1), we 
obtain the Stokes equation as follows: 

 , , 0, ini i jjp u Vµ− + = . (5.4) 

Taking the derivative of this equation again and applying Eq. (5.2), we note that the 
pressure p field satisfies the Laplace equation: 

 2 0, inp V∇ = . (5.5) 

Two typical BCs for Stokes flow problems are 

 , oni i uu u S=    (Velocity BCs), (5.6) 

 , oni ij j i tt n t Sσ= =    (Traction BCs), (5.7) 

where the overbar indicates the specified value of the field, it  is the traction, in  is the 
outward normal, and u tS S S= . 

 

5.2. Fundamental Solution for Stokes Flow Problems 

Let ( , )ijkΣ x y , ( , )ijU x y , and ( , )iP x y  be the stress, displacement and pressure 
fields, respectively, in the fundamental solution for Stokes flow problems, with i 
indicating the direction of the unit concentrate force acting at the source point x. We 
have the following equations: 

 2 3, ( , ) ( , ) 0, , /ijk k ij R Rδ δΣ + = ∀ ∈x y x y x y , (5.8) 

 2 3, ( , ) 0, , /ij jU R R= ∀ ∈x y x y , (5.9) 

in which the Dirac-δ function ( , )δ x y  represents the body force corresponding to the 
unit force. From Eq. (5.3), we have 

 ( , , )ijk i jk ij k ik jP U Uδ µΣ = − + + . (5.10) 

Substituting this result into Eq. (5.8) and applying Eq. (5.9), we have 

 2 3, ( , ) , ( , ) ( , ) 0, , /i j ij kk ijP U R Rµ δ δ− + + = ∀ ∈x y x y x y x y . (5.11) 

Taking the derivative again with respect to jy , we obtain 

 2 2 3( , ) ( , ) 0, , /i
i

P R R
y
δ∂

−∇ + = ∀ ∈
∂

x y x y x y . (5.12) 

Comparing this equation with Eq. (2.4), we find that 

 ( , )( , ) , ( , )i i
i

GP G
y

∂
= − = −

∂
x yx y x y , (5.13) 

where G is the fundamental solution for potential problems. 
For 2-D Stokes flow problems, the pressure, displacement, and traction fields in 

the fundamental solution are given by 

 1( , ) ,
2i iP r

rπ
=x y , (5.14) 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 120 

 1 1 1( , ) log , ,
4 2ij ij i j ijU r r

r
δ δ

πµ
  = + −    

x y , (5.15) 

 1( , ) , , , ( )ij i j k kT r r r n
rπ

= −x y y . (5.16) 

For 3-D Stokes flow problems, the fundamental solution gives 

 2

1( , ) ,
4i iP r

rπ
=x y , (5.17) 

 ( )1( , ) , ,
8ij ij i jU r r

r
δ

πµ
= +x y , (5.18) 

 2

3( , ) , , , ( )
4ij i j k kT r r r n

rπ
= −x y y . (5.19) 

It is noticed that the U and T kernels for Stokes flow problems can also be obtained 
readily from the U and T kernels for elasticity problems, respectively, by simply setting 
the Poisson’s ratio ν  = ½ in the results for elasticity problems. Similar integral 
identities as those in Eqs. (4.13)-(4.16)  are satisfied by the fundamental solutions for 
Stokes flow problems. 
 

5.3. BIE Formulations 
Applying a generalized Green’s identity, similar to the one in Eq. (4.17), we obtain 

the following representation integral for the velocity within the domain V: 

 ( ) ( , ) ( ) ( , ) ( ) ( ),i ij j ij jS
u U t T u dS V = − ∀ ∈ ∫x x y y x y y y x . (5.20) 

Let the source point x approach the boundary S; we obtain the CBIE for Stokes flow 
problems (see, e.g., Refs. [93, 94]): 

 ( ) ( ) ( , ) ( ) ( , ) ( ) ( ),ij j ij j ij jS
c u U t T u dS S = − ∀ ∈ ∫x x x y y x y y y x , (5.21) 

where 1
2ij ijc δ=  if S is smooth around x, the integral with the U kernel is a weakly 

singular integral and the integral with the T kernel is a CPV integral. Equation (5.21) is 
valid for both interior and exterior problems (assuming velocity and traction fields 
vanish at the infinity for the latter). Equation (5.21) is the direct BIE formulation for 
Stokes flow problems in which the density functions have direct physical meanings, 
that is, they represent the velocity and traction ( andi iu t , respectively). 

The pressure field can be represented by the following integral (see also Refs. [93, 
94]): 

 ( ) , ( , ) ( ) 2 , ( , ) ( ) ( ),j j j jS
p G t F u dS Vµ = − ∀ ∈ ∫x x y y x y y y x , (5.22) 

in which ( , )F x y  is the same F kernel for potential problems, that is, 

 ( , )( , )
( )

GF
n

∂
=

∂
x yx y
y

. (5.23) 

From Eq. (5.22), we can find the pressure field ( )p x  in domain V once the velocity and 
traction fields are known on boundary S. 
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Taking the derivatives of Eq. (5.20) and applying Eq. (5.3), we have the following 
results: 

 
( ) ( ) ( ) ( ) ( ) , ( , ) ( ) 2 , ( , ) ( ) ( )

( , ) ( ) ( , ) ( ) ( ), ,

ij j i i j j j jS

ij j ij jS

n p n n G t F u dS

K t H u dS V

σ µ = − + − 

 + − ∀ ∈ 

∫
∫

x x x x x x y y x y y y

x y y x y y y x
 (5.24) 

with ( )in x  being a vector at x. Noting Eq. (5.22) and letting x tend to S, we obtain the 
following traction BIE (or HBIE)  from the preceding result: 

 ( ) ( ) ( , ) ( ) ( , ) ( ) ( ), ,ij j ij j ij jS
c t K t H u dS S = − ∀ ∈ ∫x x x y y x y y y x  (5.25) 

where 1
2ij ijc δ= , assuming S is smooth around x. For 2-D Stokes flow problems, the 

two new kernels are 

 1( , ) , , , ( )ij i j k kK r r r n
rπ

=x y x , (5.26) 

 
( )2( , ) , , 8 , , , , ( )

, , , , ( ),

ij ij k jk i i j k l l

i j k k i j ik j k

H r r r r r r n
r

n r r n r r n n

µ δ δ
π

δ

= + −

+ + + 

x y y

x
 (5.27) 

where ( )in x  is the normal at the source point x. For 3-D problems, the two new kernels 
are 

 2

3( , ) , , , ( )
4ij i j k kK r r r n

rπ
=x y x , (5.28) 

 
{

}
3( , ) 3( , , ) 30 , , , , ( )

4
3( , , , , ) 2 ( ).

ij ij k jk i i j k l l

i j k k i j ik j k

H r r r r r r n
r

n r r n r r n n

µ δ δ
π

δ

 = + − 

+ + +

x y y

x
 (5.29) 

In HBIE (5.25), the integral with the K kernel is a CPV integral, whereas the one with 
the H kernel is a HFP integral. For exterior problems, it has been assumed that the 
pressure field ( )p x  vanishes at infinity in the derivation of HBIE (5.25). 

We can obtain CBIE (5.21) and HBIE (5.25) with the four kernels 
, , , andij ij ij ijU T K H  from those for elasticity problems by simply setting Poisson’s 

ratio to ½ in the corresponding elasticity BIEs. However, it is still beneficial to derive 
these BIEs based on the field equations in order to better understand the BIEs for Stokes 
flow problems. In addition, it should be pointed out that the relations between the 
elasticity BIEs and the Stokes flow BIEs do not provide an easy path for solving Stokes 
flow problems by just using the fast multipole BEM code for elasticity problems. A few 
results related to the elasticity BIEs become invalid when Poisson’s ratio ν  is set to ½ 
directly (for example, the Lamé constant 2 / (1 2 )λ µν ν= − →∞  when 1

2ν → ). 

 Some observations on CBIE (5.21) and HBIE (5.25) are in order: 
1. For a Dirichlet problem in which velocity is prescribed on the entire boundary 

S, CBIE (5.21) is reduced to 

 ( , ) ( ) ( ) ( ), ,ij j iS
U t dS b S= ∀ ∈∫ x y y y x x  (5.30) 
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where ib  is a known vector from the velocity field; HBIE (5.25) is reduced to 

 1 ( ) ( , ) ( ) ( ) ( ) , ,
2 i ij j iS

t K t dS d S= + ∀ ∈∫x x y y y x x  (5.31) 

where id  is another known vector (assuming S is smooth). Equation (5.30), a 
Fredholm equation of the first kind, is often ill-conditioned and not suitable for 
iterative solvers, whereas Eq. (5.31), a Fredholm equation of the second kind, 
often yields a system of equations with better conditioning [37, 40, 93, 94]. 

2. Any constant-pressure field 0( )p p=x , with 00 andi i iu t p n= = − , is a solution 

of both Eq. (5.30) (for interior and exterior problems) and Eq. (5.31) (for 

interior problems only). That is, 0i it p n= −  are eigenfunctions of both Eq. (5.30) 

and Eq. (5.31), although corresponding to different eigenvalues, and their 

solutions for the traction field may not be unique [37, 40, 93, 94]. 

3. HBIE (5.25) has another defect, that is, an arbitrary constant can be added to 

the velocity field on a closed contour without changing HBIE (5.25) because 

( , ) ( ) 0
k

ijS
H dS =∫ x y y , 

for any closed contour kS  [46]. This means that we have either nonunique 
solutions of the velocity on the contour if traction is prescribed, or inaccurate 
evaluation of this contour integral if velocity is given, when HBIE (5.25) is 
applied alone. This deficiency with the HBIE and its remedies have been 
discussed in the context of elasticity in Refs. [101, 102]. 

A remedy to the preceding mentioned defects or difficulties is to use CBIE (5.21) 
and HBIE (5.25) together in the form of a linear combination, which was found to be 
very effective for 3-D exterior Stokes flow problems in Refs. [96-99], and for both 2-
D and 3-D interior and exterior potential and elasticity problems as in previous chapters. 
Other remedies include the so-called completed indirect BIE formulations [37, 40, 93, 
94], which have been shown to yield BEM equations with better conditioning for 
solving Stokes flow problems. 

In operator or matrix form, CBIE (5.21) and HBIE (5.25) can be written as: 

1 1,
2 2

+ = − + =u Tu Ut t Kt Hu , 

respectively. Thus a dual BIE formulation using a linear combination of CBIE (5.21) 
and HBIE (5.25) can be written as 

 1 1
2 2

β   + − + − + − =   
   

u Tu Ut t Kt Hu 0 , (5.32) 

where β is the coupling constant. A positive β (e.g., β = 1) was found to work quite well 
for all the cases studied for 2-D Stokes flow problems. More discussion on the 
selections of β can be found in Refs. [50, 52, 58, 60, 86, 103] for other problems. As 
mentioned in the previous chapters, dual BIE formulations are especially beneficial to 
the fast multipole BEM because they can provide better conditioning for the BEM 
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systems of equations and thus can facilitate faster convergence when the iterative 
solvers are used with the fast multipole BEM. 
 

5.4. Fast Multipole BEM for 2-D Stokes Flow Problems 
The fast multipole algorithms for solving 2-D potential and elasticity problems 

were described in detail in the previous two chapters. As a case similar to 2-D elasticity, 
the 2-D Stokes flow case can be handled by using the same algorithms as in 2-D 
elasticity. The only task is to derive the required expansions and moments. For both 
CBIE (5.21) and HBIE (5.25), the results can be extracted from those for the 2-D 
elasticity case given in the previous chapter. Therefore, only the results for Stokes flow 
problems without detailed derivations are listed. 

In the previous chapter, it is shown that the two integrals in the CBIE for 2-D 
elasticity can be represented in complex variables readily if the fundamental solution 

( , )ijU x y  and ( , )ijT x y  are written in complex form by using the results in 2-D elasticity. 
By setting Poisson’s ratio to ½ in these results, we obtain the corresponding expressions 
for 2-D Stokes flow problems. For example, the first integral in CBIE (5.21) can be 
written in the following complex form [cf. Eq. (4.44) for 2-D elasticity]: 

 
[ ]

( ) ( )

0 1 2 1 2

0 0 0 0

( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

1 ( , ) ( ) ( , ) ( ) ' , ( ) ( ),
4

t j j j jt S S

S

D z i U t dS i U t dS

G z z t z G z z t z z z G z z t z dS z
µ

   ≡ ∆ + ∆ ≡ +   

 = + − − 

∫ ∫

∫

x x x y y y x y y y
(5.33) 

where 1i = − , the overbar indicates the complex conjugate, 1 2t t it= +  is the complex 
traction, 0 1 2( )z x ix= +  and 1 2( )z y iy= +  represent x and y, respectively, 

0 0( , ) (1/ 2 ) log( )G z z z zπ= − −  is the complex Green’s function for 2-D potential 
problems, and 0 0'( , ) /G z z G z≡ ∂ ∂ . The integral in Eq. (5.33) can be used to evaluate 
readily the U kernel integral in CBIE (5.21). 

Similarly, the complex representation for the second integral with the T kernel in 
CBIE (5.21) can be written as follows [cf. Eq. (4.45) for 2-D elasticity]: 

 

[ ]

( ){
}

0 1 2 1 2

0 0 0

0

( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

1 '( , ) ( ) ( ) ''( , ) ( ) ( )
2

'( , ) ( ) ( ) ( ) ( ) ( ),

u j j j ju S S

S

D z i T u dS i T u dS

G z z n z u z z z G z z n z u z

G z z n z u z n z u z dS z

   ≡ ∆ + ∆ ≡ +   

= − − −

 + + 

∫ ∫

∫

x x x y y y x y y y

(5.34) 

in which 1 2u u iu= +  and 1 2n n in= +  are the complex velocity and normal, respectively. 

The first integral with the K kernel in HBIE (5.25) can be written in the following 
complex form [cf. Eq. (4.52) for 2-D elasticity]: 

 

[ ]

{
( ) ( ) }

0 1 2 1 2

0 0 0

0 0 0 0

( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

1 '( , ) ( ) '( , ) ( ) ( )
2

'( , ) ( ) '' , ( ) ( ) ( ).

t j j j jt S S

S

F z F iF K t dS i K t dS

G z z t z G z z t z n z

G z z t z z z G z z t z n z dS z

   ≡ + ≡ +   

 = + 

 + − − 

∫ ∫

∫

x x x y y y x y y y

(5.35) 
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Similarly, the second integral with the H kernel in HBIE (5.25) can be written as 
follows [cf. Eq. (4.53) for 2-D elasticity]: 

 

[ ]

{
( ) ( ) }

0 1 2

1 2

0 0 0

0 0 0 0

( ) ( ) ( )

( , ) ( ) ( ) ( , ) ( ) ( )

''( , ) ( ) ( ) ''( , ) ( ) ( ) ( )

''( , ) ( ) ( ) ( ) ( ) '''( , ) ( ) ( ) ( ) ( ).

u u

j j j jS S

S

F z F iF

H u dS i H u dS

G z z n z u z G z z n z u z n z

G z z n z u z n z u z z z G z z n z u z n z dS z

µ

≡ +

   ≡ +   

 = − + 

 + + − − 

∫ ∫
∫

x x

x y y y x y y y
(5.36) 

In the following, the multipole expansions, local expansions, and their translations 
related to Eqs. (5.33) and (5.34) in the fast multipole BEM for CBIE (5.21) are 
presented. Then we discuss those related to Eqs. (5.35) and (5.36) for HBIE (5.25). 

5.4.1. Multipole Expansion (Moments) for the U Kernel Integral 

It can be shown that the multipole expansion for the integral 0( )tD z  is as follows 
[cf. Eq. (4.55) for 2-D elasticity]: 

 
0 0 0 1 0

0 0

0
0

1( ) ( ) ( ) ( ) ( )
8

( ) ( ) ,

t k c k c k c k c
k k

k c k c
k

D z O z z M z z O z z M z

O z z N z

πµ

∞ ∞

+
= =

∞

=

= − + −
+ − 

∑ ∑

∑
 (5.37) 

where cz  is the expansion point close to the field point z (Figure 3.2), and the two sets 
of moments about cz  are 

 ( ) ( ) ( ) ( ), for 0
c

k c k cS
M z I z z t z dS z k= − ≥∫ , (5.38) 

 
0

1

( ) ( );

( ) ( ) ( ) ( ) ( ) ( ), for 1.
c

c

S

k c k c k cS

N t z dS z

N z I z z t z I z z zt z dS z k−

=

 = − − − ≥ 

∫
∫

 (5.39) 

5.4.2. Moment-to-Moment Translation 

If point cz  is moved to a new location 'cz  (Figure 3.2), we have the following 
M2M translations: 

 ' '
0

( ) ( ) ( ), for 0
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k c k l c c l c
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M z I z z M z k−
=

= − ≥∑ , (5.40) 

 ' '
0

( ) ( ) ( ), for 0
k

k c k l c c l c
l

N z I z z N z k−
=

= − ≥∑ , (5.41) 

which are exactly the same as those used in the 2-D elasticity case. 

5.4.3. Local Expansion and Moment-to-Local Translation 
We have the following local expansion [cf. Eq. (4.60) for 2-D elasticity]: 
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where Lz  is the local expansion point close to point 0z  (Figure 3.2), and the 
coefficients are given by the following M2L translations: 
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which are the same as those used in the 2-D elasticity case. 

5.4.4. Local-to-Local Translation 

If the point for the local expansion is moved from Lz  to 'Lz  (Figure 3.2), the new 
local expansion coefficients are given by the following L2L translations: 
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which are also the same as those used in the 2-D elasticity case. 

5.4.5. Expansions for the T Kernel Integral 
The multipole expansion of (5.34) can be written as follows [cf. Eq. (4.65) for 2-

D elasticity]: 
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where the two sets of moments are 
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The M2M, M2L, and L2L translations remain the same for the T kernel integrals, except 
for the fact that 0 0 0.M N= =   In fact, the moments kM  and kM  will be combined, as 
well as moments kN  and kN , so that only two sets of moments are involved in the 
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M2M and M2L translations.  

The local expansion for 0( )uD z  is [cf. Eq. (4.68) for 2-D elasticity]: 
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where the coefficients ( )l LL z  and ( )l LK z  are given by Eqs. (5.43) and (5.44) with kM  
replaced with kM  and kN  with kN . 

5.4.6. Expansions for the HBIE 
To derive the multipole expansions and local expansions for HBIE (5.25), we can 

simply apply the results for 2-D elasticity problems and set Poisson’s ratio to ½ to 
obtain the results for 2-D Stokes flow problems. The result of the local expansion for 
the first integral 0( )tF z  in Eq. (5.35) for the HBIE is [cf. Eq. (4.69) for 2-D elasticity) 
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in which the expansion coefficients ( )l LL z  and ( )l LK z  are given by the same M2L 
translations in (5.43) and (5.44), respectively. Therefore the same sets of moments kM  
and kN  used for 0( )tD z  are used for 0( )tF z  directly. 

The local expansion for the second integral 0( )uF z  in Eq. (5.36) for the HBIE is 
[cf. Eq. (4.70) for 2-D elasticity] 
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 (5.52) 

in which ( )l LL z  and ( )l LK z  are given by Eqs. (5.43) and (5.44) with kM  replaced 
with kM  and kN  with kN . Again, the same sets of moments kM  and kN  used for 

0( )uD z  are used for 0( )uF z , and all the M2M, M2L and L2L translations for the HBIE 
remain the same as those used for the CBIE. 

The details of the fast multipole algorithms for solving 2-D Stokes problems are 
similar to the ones for 2-D potential and elasticity problems, which have been described 
in detail in the previous two chapters. Preconditioners for the fast multipole BEM are 
crucial for its convergence and computing efficiency. The block diagonal 
preconditioner is used in the study of the numerical examples, which is formed on each 
leaf by direct evaluations of the kernels on the elements within that leaf. 

When constant elements (straight-line segment with one node) are used to 
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discretize the BIEs, all the moments can be evaluated analytically, as well as the 
integrations of the kernels in the near-field direct evaluations for 2-D Stokes flow 
problems (Appendix A.3). 
 

5.5. Fast Multipole BEM for 3-D Stokes Flow Problems 
The fast multipole formulation for 3-D Stokes flow problems can be derived 

readily from that for the 3-D elasticity problems through a limiting process. For 
convenience and completeness, the results are subsequently summarized. First, we note 
that the fundamental solution in Eq. (5.18) for the 3-D Stokes flow case can be written 
in the following form: 
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Then we start with the following expansion [same as Eq. (4.72)]: 
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where cy  is the expansion center close to the field point y and functions ,n mR  and ,n mS  
are solid harmonic functions given in Eqs. (3.47) and (3.48), respectively. Substituting 
(5.54) into (5.53), we have 
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in which 
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Applying expression (5.55), with point cy  being close to subdomain cS , we 
obtain the following multipole expansion for the U kernel integral in CBIE (5.21): 
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in which 
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are the moments for the given n and m. Note that these moments are similar to those for 
3-D elasticity problems. 
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To derive the multipole expansion for the T kernel integral in CBIE (5.21), we first 
note that the T kernel can be expressed as 
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where Eqs. (5.13) and (5.53) have been applied. Using the results in (5.54) and (5.60), 
we obtain the multipole expansion for the T kernel integral in CBIE (5.21) as follows: 
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in which 
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We can also derive these moments from those for the 3-D elasticity case by letting 
Poisson’s ratio tend to ½ in the corresponding elasticity results. As in the elasticity case, 
only one in each of the pairs  , ,, ,( , )j n mj n mM M  and  ,,( , )n mn mM M  is used in the moment 
calculations, depending on the BCs. Therefore there are only four moments that need 
to calculated on each boundary element. 

When the expansion point is moved from cy  to 'cy , we have the following M2M 
translations: 
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which also apply to  , ,j n mM  and  ,n mM . 

The local expansion of the U kernel integral on cS  about the point L=x x  is given 
by 
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where the local expansion coefficients are given by the following M2L translations: 
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and , ,
R

ij n mF  and , ,
R
i n mG  are obtained from Eqs. (5.56) and (5.57), respectively, with ,n mS  

replaced with ,n mR  in each case. The local expansion for the T kernel integral is similar 

to that of Eq. (5.64), only with , ', 'j n mM  and ', 'n mM  replaced with  , ', 'j n mM  and  ', 'n mM , 
respectively, in Eq. (5.65) when the local expansion coefficients are computed for the 
T kernel integral. 

When the local expansion point is moved from Lx  to 'Lx , we have the following 
L2L translations: 
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We can readily obtain the fast multipole formulation for the HBIE by taking the 
derivatives of the local expansions for the CBIE and invoking the constitutive equations. 

As in the 2-D cases, we can readily derive the fast multipole expansions for 3-D 
Stokes flow problems by letting Poisson’s ratio ν  tend to ½ in the corresponding results 
for 3-D elasticity problems. All the M2M, M2L, and L2L translations are identical to 
those for the 3-D elasticity case. Based on this fact, a fast multipole BEM program for 
3-D elasticity problems can be extended readily to a fast multipole BEM program for 
3-D Stokes flow problems if the direct BIE formulations are used for the Stokes flow 
problems. 
 

5.6. Numerical Examples 
Three examples in two dimensions are first presented to demonstrate the accuracy 

and the efficiency of the fast multipole BEM for Stokes flow problems. In all the 2-D 
examples, the computations are done on a Pentium IV laptop PC with a 2.4-GHz CPU 
and 1-GB RAM. The numbers of terms in expansions are set to 20, the maximum 
number of elements in a leaf to 100, and the coupling constant 1β =  for the dual BIE. 
Finally, two 3-D models are presented to further demonstrate the applications and 
potentials of the fast multipole BEM for solving Stokes flow problems. 

5.6.1. Flow that is Due to a Rotating Cylinder 
 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 130 

 
Figure 5.1.  A rotating cylinder in an infinite fluid. 

 
The flow in an infinite 2-D medium that is due to a rotating circular cylinder is 

considered first (Figure 5.1). The radius of the cylinder is a, and the angular velocity is 
Ω . A solution to this problem exists [104], that is, in the polar coordinate system, we 
have 

 2 2 2( , ) 0, ( , ) / , ( , ) 2 /r ru r u r a r r a rθ θθ θ σ θ µ= = Ω = − Ω , (5.67) 

which can be used to verify the BEM solutions. The velocity is specified on the 
boundary by use of the preceding results, and the tractions are sought with the BEM. 
For the fast multipole BEM solutions, the tolerance for convergence is set to 10-6. 

Table 5.1 shows the results of the tractions at the boundary computed by the fast 
multipole BEM with both the CBIE and CHBIE formulations (the HBIE cannot provide 
solutions in this case due to defect 3 mentioned in Section 5.3). Although both BIE 
formulations give results of comparable accuracies, the CHBIE converges much faster 
than the CBIE, as indicated by the number of iterations used, which are also listed in 
Table 5.1. 

 

Table 5.1.  Traction at ( ,0)yt a  and numbers of iterations used in the fast multipole 
BEM. 

 yt  (x aµΩ ) Number of iterations 
DOFs  CBIE CHBIE CBIE CHBIE 

80 1.9999 1.9891 16 7 

160 2.0003 1.9936 18 7 

320 2.0054 1.9965 13 7 

640 2.0028 1.9981 13 4 

1280 2.0011 1.9990 14 4 

2560 2.0005 1.9995 16 4 

5120 1.9997 1.9998 21 4 

10240 1.9997 1.9999 28 4 

20480 2.0007 1.9999 32 4 

Exact solution 2.0000  
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Figure 5.2 is a plot of the traction components on the boundary of the cylinder with 
40 elements and using CHBIE. Figure 5.3 shows the velocity computed at points inside 
the fluid domain with the same mesh and the CHBIE. Both results demonstrate that the 
fast multipole BEM results are quite accurate with only 40 constant elements. 
 

 
Figure 5.2.   Computed tractions on boundary S (with 40 elements). 

 
 

 
Figure 5.3.  Computed velocity uθ  at points inside the fluid domain V (with 40 

elements). 
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The CPU times used for the fast multipole BEM based on the CBIE and CHBIE 
approaches are plotted in Figure 5.4, which shows the significant advantage of the 
CHBIE formulation over the CBIE formulation. For example, for the model with 
10,240 elements (DOFs = 20,480), the fast multipole BEM with CHBIE used about 17 
s of CPU time, whereas the BEM with the CBIE used about 92 s, which is about four 
times slower. Higher condition numbers are observed for the CBIE and very low 
condition numbers for the CHBIE with a direct solver, which is consistent with the 
solution efficiency with the iterative solver. 
 

  
Figure 5.4.  Total CPU time used for solving the rotating cylinder problem (log-log 

scale). 
 

5.6.2. Shear Flow Between Two Parallel Plates 
The flow between two parallel plates (Figure 5.5) is studied next using the CBIE, 

HBIE, and CHBIE formulations. The top plate is moving with a constant speed 0v  in 
the x-direction and a no-slip condition is assumed between the plates and fluid. The 
analytical solutions for this problem are 

 0 0( , ) / , 0, 0, / .x y x y xyu x y v y h u v hσ σ σ µ= = = = =  (5.68) 

The purpose of this example is to show the behaviors of the BEM solutions as the 
ratio h/L approaches zero, that is, when the fluid domain becomes a narrow channel. 
The narrow spaces between two fingers of a MEMS comb-drive device closely 
resemble the configuration studied in this example with small ratios of h/L. 

Mixed boundary conditions are used so that all the three BIE formulations, that is, 
CBIE, HBIE, and CHBIE, can be tested. For the lower boundary, zero velocities are 
specified, whereas for the upper boundary, velocities are given as 0xu v=  and 0yu = . 
For the two vertical boundaries, tractions are given as 00, /x yt t v hµ= =  at x = L and 
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00, /x yt t v hµ= = −  at x = 0. The tolerance for convergence in the fast multipole BEM 
is set to 10-6. 
 

 
Figure 5.5.  Shear flow between two parallel plates. 

 
 

Table 5.2.  Comparison of the three BIE formulations for the shear flow problem. 

h/L 
Number of 
elements on 

edges L and h 

Traction xt  (x 0 /v hµ ) at (L/2, 
0) 

Number of iterations 

CBIE HBIE CHBIE CBIE HBIE CHBIE 
100 100 / 100 -0.99980 -1.00135 -0.99961 15 17 16 
10-1 100 / 20 -0.99998 -1.00264 -1.00185 25 21 21 
10-2 100 / 10 -1.00000 -1.00027 -1.00021 73 68 69 
10-3 100 / 5 -1.00000 -0.99985 -0.99988 142 67 67 
10-4 100 / 3 -1.00000 -0.99931 -0.99935 185 65 94 
10-5 100 / 2 -0.99998 -0.99943 -0.99514 227 49 70 
10-6 100 / 1 -0.99979 -0.99322 -0.98546 298 40 54 

Exact solution -1.00000  

 
Table 5.2 shows the dimension, discretization, and computed tractions at the 

midpoint of the lower boundary and the numbers of iterations used in the fast multipole 
BEM solutions with the three BIE formulations. It is observed that, as the ratio of h/L 
becomes smaller, more iterations are needed for the CBIE formulation, whereas about 
the same numbers of iterations are needed for the HBIE and CHBIE formulations. 
These results indicate the poor conditioning of the CBIE, but also indicate the good and 
improved conditioning of the HBIE and the CHBIE, respectively. Most interesting is 
the fact that, even at h/L = 10-6, all three BIE formulations can still provide reasonably 
good results of the tractions. The results from the HBIE and the CHBIE are slightly less 
accurate than those from the CBIE at small h/L, which may be caused by the extremely 
small elements on the two small vertical edges. Recall that, for 2-D problems, the finite-
part of the hypersingular integral is proportional to 1/R, where R is the element length 
(see Appendix A.3). If R is very small, as is tested in this case, 1/R can be very large 
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and can cause numerical errors in the BEM systems of equations. In fact, the BEM code 
fails when the ratio h/L is smaller than 10-6 for this example because of the existence of 
the hypersingular kernel H. This is different from the results reported in Chapter 3 and 
Ref. [58] for electrostatic MEMS problems, in which the ratio h/L of a beam can reach 
10-16 for the dual BIE formulation that does not have the hypersingular kernel. 

This example demonstrates that the dual BIE formulation can facilitate fast 
convergence for the fast multipole BEM even when the domain under consideration is 
extremely thin. This is consistent with the conclusions with the dual BIE approach for 
the fast multipole BEM in the context of electrostatic analysis of the MEMS models 
shown in Chapter 3 and Refs. [58, 60]. 

5.6.3. Flow Through a Channel with Many Cylinders 
 

 
Figure 5.6. Channel flow around a cylinder. 

 
We next consider an interior Dirichlet problem, that is, Stokes flows through a 

channel placed with one or multiple cylinders. The dimensions of the channel are shown 
in Figure 5.6. At the inlet of the channel (x = 0), the flow has a parabolic velocity profile: 

 0(0, ) 4 (1 / ) / , (0, ) 0x yu y v y h y h u y= − = , (5.69) 

where 0v  is the maximum value of the velocity. At the outlet of the channel (x = L), the 
same velocity profile is assumed (Figure 5.6), that is, the flow is assumed to have 
recovered from the disturbances by the cylinder(s) placed in the middle section of the 
channel. On the upper and lower boundaries and all cylinder boundaries, no-slip BCs 
are assumed. For this test, the tolerance for convergence for the solver is set to 10-5. 

First, the case with one circular cylinder placed in the center of the channel is 
studied, with L = 2h and a = 0.1h. Figure 5.7 shows the velocity vector plot within the 
fluid obtained by use of the CHBIE. There are about 800 points distributed evenly 
inside the domain where the velocity is evaluated with the representation integral after 
the tractions are obtained from the BEM solutions. 
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Figure 5.7.  Vector plot of the velocity field for one circular cylinder with a = 0.1h 

and L = 2h. 
 

Table 5.3 shows the total fluid force applied on the cylinder and evaluated by 
integration of the obtained traction field on the boundary of the cylinder (assuming a 
unit depth). There are 600 elements on the outer boundary and the number of elements 
on the cylinder increases. Both the CBIE and the CHBIE are used, and the results for 
the total force on the cylinder are very stable with the CBIE, whereas those with the 
CHBIE increase slowly to reach a stable value. The errors with the CHBIE may be due 
to the finite-part integrals in the HBIE on curved boundaries computed with constant 
elements that can introduce numerical errors. As shown in Table 5.3, the number of 
iterations with the CBIE increases as the model size increases, whereas the number of 
iterations with the CHBIE is almost constant and only about one half to one quarter of 
that for the CBIE. 
 

Table 5.3.  Force F computed on the cylinder with CBIE and CHBIE. 

Number of 
elements on 

cylinder 

Total  
DOFs 

Force F (x 0vµ ) No. of iterations CPU time (s) 

CBIE CHBIE CBIE CHBIE CBIE CHBIE 

320 1840 16.21 15.38 23 12 9.8 5.7 

640 2480 16.21 15.76 26 12 16.2 8.5 

1280 3760 16.21 15.96 28 9 30.8 12.0 

2560 6320 16.21 16.06 28 9 68.8 26.2 

5120 11,440 16.21 16.11 33 9 137.8 45.2 

10,240 21,680 16.21 16.14 37 9 277.1 82.1 

  
Next, the models with multiple elliptic cylinders placed in the middle section of a 

channel with L = 3h are studied. These models are motivated by the examples presented 
by Greengard et al. in Ref. [69], with different geometries, BCs and numbers of 
elements. 
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(a) Velocity plot for uniform distribution of 5x5 elliptic cylinders with a = 0.05h, b = 0.5a, DOFs = 

16,600. 

  
(b) Velocity plot for random distribution of 5x5 elliptic cylinders with a = 0.05h, b = 0.5a, DOFs = 

16,600. 

 
(c) A larger model with 13 x 13 elliptic cylinders and a = 0.02h, b = 0.5a, DOFs = 103,000. 

Figure 5.8.  Various BEM models of the channel with many elliptic cylinders 
(L = 3h). 

 

Figure 5.8(a) shows the velocity plot for a 5x5 array of elliptic cylinders with a 
uniform distribution, and Figure 5.8(b) shows the velocity field with a random 
distribution, both using the CHBIE with 16,600 DOFs. For the uniform distribution, 59 
iterations are used (381 s CPU time), whereas for the random distribution, 82 iterations 
are used (491 s CPU time). It is observed that, when more cylinders are placed in the 
same space or when cylinders are distributed randomly, the iteration numbers for the 
BEM solutions will increase because of the intensified interactions between the 
cylinders, as discussed in Ref. [40]. Figure 5.8(c) shows a larger model with 13x13 
elliptic cylinders packed evenly in the middle section of the channel. The model has 
103,000 DOFs and both the CBIE and the CHBIE are applied. The number of iterations 
increases dramatically for this large model. The CBIE used 248 iterations (9130 s CPU 
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time), whereas the CHBIE used 168 iterations (6631 s CPU time). Again, the advantage 
of the CHBIE formulation with the fast multipole BEM is evident. 

From the preceding 2-D examples, we can conclude that the dual BIE approach, 
using a linear combination of the CBIE and the HBIE, can significantly improve the 
conditioning of the BEM systems of equations and thus facilitate faster convergence in 
the fast multipole BEM. 

5.6.4. A Translating Sphere 
 

 
Figure 5.9.  A translating sphere meshed with 10,800 constant triangular elements. 

 

We next study a 3-D example by using a translating sphere, as shown in Figure 5.9. 
The sphere has radius R and moves with a constant velocity U0 in the x-direction in an 
infinite 3-D fluid. The analytical solution of this Stokes flow problem is available and 
can be used to validate the BEM solutions. 

Table 5.4 shows the computed total drag force on the sphere with different BEM 
discretizations and using the 3-D fast multipole BEM code for Stokes flow problems. 
For comparison, the results obtained with the 3-D elasticity code with Poisson’s ratio v 
= 0.499 (close to ½) are also listed in the table. Both BIE results are very satisfactory 
compared with the analytical solution, with the Stokes BIE solutions closer to the 
analytical solution, as expected. The number of iterations is also listed, and fast 
convergence is observed for this exterior domain Stokes flow problem. In the BEM 
solutions, the tolerance for convergence is set to 10-4, the number of terms in expansions 
to 15, and the number of elements in a leaf to 100. A Pentium D 3.2-GHz PC with 2-
GB RAM is used for this study. The total CPU times used to run all the models are 
plotted in Figure 5.10, which shows a computational efficiency very close to O(N). 
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Table 5.4.  Computed drag force for the translating sphere. 

Number of 
elements 

Total 
DOFs 

Drag force (x μRU0) Number of 
iterations Stokes BIE Elasticity BIE with v = 0.499 

432 1296 18.6585 18.6396 9 
768 2304 18.7414 18.7226 11 

1200 3600 18.7801 18.7613 12 
2700 8100 18.8187 18.7999 12 
4800 14,400 18.8319 18.8131 16 
7500 22,500 18.8382 18.8194 17 

10,800 32,400 18.8422 18.8234 16 
14,700 44,100 18.8440 18.8252 18 
19,200 57,600 18.8452 18.8264 20 
24,300 72,900 18.8462 18.8274 20 
30,000 90,000 18.8468 18.8280 20 
36,300 108,900 18.8473 18.8285 20 
43,200 129,600 18.8479 18.8291 20 

                Exact value 18.8496  
 

 

 
Figure 5.10.  CPU times used for solving the translating sphere problem. 

 

5.6.5. Large-Scale Modeling of Multiple Particles 
As the last example, a 3-D model is shown with multipole particles that move 

through an infinite fluid, as shown Figure 5.11. These particles are in the shape of a 
typical red-blood cell (RBC) and are used here to study the drag forces on these cells 
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as they move in the fluid. The cells move with a constant velocity U0 in the x-direction. 
There are 40 cells in this model, and each cell is discretized with 7500 constant 
triangular elements (Figure 5.12). The number of the total DOFs for the model is 
900,000, and the model is solved on the 2.4-GHz Pentium IV laptop with 1-GB RAM. 
 

 
Figure 5.11.  BEM model of 40 cells. 

 

 

 
Figure 5.12.  BEM mesh on each cell with 7500 constant triangular elements. 

 

The computed drag forces (traction xt ) on the cells are shown in Figure 5.13. As 
expected, most of the values of traction are negative, that is, the forces are in the 
opposite direction of the motion of the cells. The large forces occur near the front and 
the end of the group of the cells. The CPU time used in solving this large BEM model 
with 900,000 DOFs is 730 min with 49 iterations for a tolerance of 10-4 and 15 
expansion terms. 
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Figure 5.13.  Computed traction (drag force) on the cells in the flow direction. 

 
The results in this example are preliminary because the cells have been considered 

to be rigid bodies and the motion to be constant. These results can be regarded as a 
snapshot in one instance. To improve the BEM model, deformation of the cells should 
be considered, for example, by applying the elasticity BEM or other mechanics models 
[104-106] for the cells. Quasi-dynamic analysis of the cells can also be conducted [40] 
to predict the evolution of the cell configurations. 

Other potential applications of the 2-D and the 3-D Stokes flow fast multipole 
BEMs discussed in this chapter include studies of damping forces in MEMS devices 
[96-99, 107] and Stokes flows interacting with deformable bodies [104-106]. Indeed, 
combining the Stokes flow fast multipole BEM code with the one for elasticity 
problems to study coupled fluid-structure interaction problems in general is an 
interesting research topic for applications in analyzing biological systems as well as 
MEMS devices. 
 

5.7. Summary 
In this chapter, the governing equations for solving Stokes flow problems are 

reviewed. The BIE formulations for 2-D and 3-D Stokes flow problems are presented, 
and the deficiencies of the direct CBIE and HBIE formulations are discussed. The fast 
multipole formulations for solving the BIEs are discussed for 2-D problems, and the 
formulations for 3-D problems are presented. Numerical examples are presented to 
demonstrate the accuracy and efficiencies of the fast multipole BEM for solving large-
scale 2-D and 3-D Stokes flow problems. The advantages of the dual BIE (CHBIE) 
formulation for solving the Stokes flow problems are demonstrated regarding the 
computational efficiencies. 

It is observed that the Stokes flow case is very similar to the elasticity case 
discussed in the previous chapter, regarding the fundamental solutions, singularities of 
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the kernels, BIE formulations, fast multipole formulations and solution procedures. 
Many of the results for Stokes flow problems can be obtained readily from their 
corresponding elasticity equations. 
 

Problems 
3.1.   Solve the Stokes equation and obtain the analytical solutions in Eqs. (5.67) for the 

rotating cylinder example. 
3.2.   Derive representation integral (5.22) for the pressure field p(x). 
3.3.   Derive the K and H kernels in Eqs. (5.28) and (5.29), respectively, for 3-D Stokes 

flow problems from the corresponding elasticity equations. 
3.4.   Verify expression (5.60) for the T kernel in three dimensions. 
3.5.   Verify multipole expansion (5.61) for the T kernel integral in the 3-D CBIE. 
3.6.   Write a 2-D Stokes flow conventional BEM code using the CBIE and constant 

elements, based on the code for 2-D potential problems in Appendix B.1. Test 
your code on the 2-D examples used in this chapter. 

3.7.   Write a 2-D Stokes flow fast multipole BEM code using the CBIE and constant 
elements, based on the code for 2-D potential problems in Appendix B.2. Test 
your code on the 2-D examples used in this chapter and study its accuracy and 
efficiency. 
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Chapter 6. Acoustic Wave Problems 

Solving acoustic wave problems is one of the most important applications of the 
BEM, which can be used to predict acoustic fields for noise control in automobiles, 
airplanes, and many other consumer products. Acoustic waves often exist in an infinite 
medium outside a structure that is in vibration (a radiation problem) or impinged upon 
by an incident wave (a scattering problem). With the BEM, only the boundary of the 
structure needs to be discretized. In addition, the boundary conditions (BCs) at infinity 
can be taken into account analytically in the BIE formulations, and thus these conditions 
are satisfied exactly. The governing equation for acoustic wave problems is the 
Helmholtz equation, which was solved using the BIE and BEM for more than four 
decades (see, e.g., some of the early work in Refs. [108-121]). Especially, the work by 
Burton and Miller in Ref. [109] is regarded as classical work that provides a very 
elegant way to overcome the so-called fictitious frequency difficulties existing in the 
conventional BIE for exterior acoustic wave problems. Burton and Miller’s BIE 
formulation has been used by many others in their research on the BEM for acoustic 
problems (e.g., Refs. [50, 51, 122-126]). 

The development of the fast multipole BEM for solving large-scale acoustic wave 
problems is perhaps the most important advance in the BEM that has made the BEM 
unmatched by other methods in modeling acoustic wave problems. The fast multipole 
method developed by Rokhlin and Greengard [33-35] has been extended to solving the 
Helmholtz equation for quite some time (see, e.g., Refs. [103, 127-138] and review 
[41]). Most of these works are good for solving acoustic wave problems at either low 
or high frequencies. For example, Greengard et al. [131] suggested a diagonal 
translation in the FMM for the low-frequency range. Rokhlin [128] proposed a diagonal 
form of the translation matrices for the high-frequency range for the Helmholtz 
equation. Most recently, the same group also proposed integrated algorithms that are 
valid for a wide range of frequencies [138]. Gumerov and Duraiswami’s research 
volume [137] is the first book that is devoted entirely to the topic of the FMM for 
solving the Helmholtz equation in three dimensions. 

In this chapter, we first review the basic governing equations for acoustic wave 
problems and the fundamental solutions. Then, the BIE formulations for acoustic wave 
problems are presented, followed by a discussion on the fast multipole BEM for solving 
the acoustic BIEs in both two and three dimensions. Finally, several numerical 
examples are presented to demonstrate the advantages of the fast multipole BEM in 
solving acoustic wave problems and to discuss the remaining challenges. 
 

6.1. Basic Equations in Acoustics 
In 1-D space, the acoustic wave equation can be written as 

 
2 2

2 2 2

1 ( , ) 0QQ x x
x c t
φ φ δ∂ ∂
− + =

∂ ∂
, (6.1) 

in which ( , )x tφ φ=  is the perturbation acoustic pressure, x is the coordinate, t is the 
time, c is the speed of sound in the medium (e.g., c = 343.6 m/s in air at a temperature 
of 20°C), and ( , )QQ x xδ  represents a possible point source located at Qx . The 
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preceding equation can be applied to describe the acoustic wave in a 1-D long duct that 
is due to a disturbance along the axis of the duct (x direction). 

We can verify that the solutions of Eq. (6.1) are of the following forms when 0Q = : 

 ( , ) ( ), ( , ) ( )x t f x ct x t g x ctφ φ= − = + . (6.2) 

Function ( )f x ct−  represents a right-traveling wave (waves moving along the +x 
direction), and ( )g x ct+  is a left-traveling wave (waves moving along the –x direction). 

Similarly, in 2-D or 3-D spaces, the acoustic wave equation can be written as 

 
2

2
2 2

1 ( , ) 0,QQ E
c t

φφ δ∂
∇ − + = ∀ ∈

∂
x x x , (6.3) 

where ( , )tφ φ= x  is the perturbation acoustic pressure at point x and time t, c is the 
speed of sound, ( , )QQδ x x  is a typical point source located at Qx  in E (Figure 6.1), and 

2 2( ) ( ) / ( ),k k kkx x∇ = ∂ ∂ ∂ =  is the Laplace operator. The acoustic domain E is 
considered to be isotropic and homogeneous and can be an infinite domain exterior to 
a body V or a finite domain interior to a closed surface. 
 

 

S V 

E 

n(y) r 

n(x) 

y 

x 

Qx   
Figure 6.1.  The acoustic medium E, body V, and boundary S. 

 

For time harmonic waves, the point source intensity 

i tQ Qe ω−=  and the solutions 
to the governing equation can be written as 

 ( , ) ( , ) i tt e ωφ φ ω −=x x , (6.4) 

in which ( , )φ ωx  is the (complex) acoustic pressure in the frequency domain, ω is the 

circular frequency, and 1i = − . Substituting Eq. (6.4) into Eq. (6.3), we obtain 

  

2
2

2 ( , ) 0,QQ E
c
ωφ φ δ∇ + + = ∀ ∈x x x . 

Let /k cω=  be the wavenumber, and, for convenience, we drop the tildes in the 
preceding equation. We obtain the following governing equation for acoustic wave 
problems: 
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 2 2 ( , ) 0,Qk Q Eφ φ δ∇ + + = ∀ ∈x x x , (6.5) 

with ( , )φ ωx  being the complex acoustic pressure and ( , )QQδ x x  representing the point 
source located at Qx  (inside domain E). The preceding equation is the well-known 
inhomogeneous Helmholtz equation. Note that the cyclic frequency 

 = / 2   (with unit of inverse of seconds, or Hertz)f ω π , (6.6) 

and the wavelength 

 / 2 / 2 /c f c kλ π ω π= = =    (with unit of length). (6.7) 

The BCs for the governing equation can be classified as follows: 
Pressure is given: 

 , Sφ φ= ∀ ∈x ; (6.8) 

Velocity is given: 

 ,nq q i v S
n
φ ωρ∂

≡ = = ∀ ∈
∂

x ; (6.9) 

Impedance is given: 

 ,nZv Sφ = ∀ ∈x ; (6.10) 

where ρ is the mass density (e.g., ρ = 1.29 kg/m3 for air at 0°C and 1 atm pressure), nv  
is the normal velocity, Z is the specific acoustic impedance, and the quantities with 
overbars indicate given values. 

For the boundary-value problem for acoustic waves, we need to solve governing 
equation (6.5) at a given frequency or wavenumber and under the BCs in (6.8)-(6.10). 
Once we have the solution  in the frequency domain, we can obtain the solution 
in the time domain from Eq. (6.4) for the time harmonic case. 

There are two typical types of problems in acoustic wave analysis. One is called a 
radiation problem, in which a structure is in vibration and causes disturbances in the 
acoustic field outside or inside the structure. In this case, the velocity on the boundary 
S is specified in the acoustic analysis. Another type of acoustic wave problems is called 
a scattering problem, in which the structure stands still and an incoming disturbance (a 
plane incident wave or an incident wave from a point source) interacts with the structure 
and waves are scattered by the structure. 

For exterior (infinite domain) acoustic wave problems, in addition to the boundary 
conditions on S, the field at infinity must satisfy the following Sommerfeld radiation 
condition: 

 lim 0
R

R ik
R
φ φ

→∞

 ∂ 
− = ∂ 

, (6.11) 

where R is the radius of a large sphere covering the structure and φ  is the radiated wave 
in a radiation problem or the scattered wave in a scattering problem. Basically, the 
Sommerfeld condition says that any acoustic disturbances caused by the structure 
(either radiated or scattered) should die out at infinity based on the energy 
considerations. 

( , )φ ωx
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As an example, let us consider a pulsating sphere in an infinite acoustic medium 
(Figure 6.2). This example is often used as a test problem to verify the numerical 
solutions. The sphere has a radius a and is applied with a uniform velocity v0 in the 
radial direction (imagine a balloon expanding and contracting uniformly in the radial 
directions and harmonically in time). This is a radiation problem, and the boundary-
value problem is given by 

 

2 2

0

0 ,

, .

k E

i v S
n

φ φ
φ ωρ

∇ + = ∀ ∈
∂

= − ∀ ∈
∂

x

x
 (6.12) 

To solve this problem, we note the spherical symmetry and use the spherical 
coordinates, that is, ( , ) ( , )rφ ω φ ω=x , where r is the radial coordinate (Figure 6.2). 

 

 
Figure 6.2.  A pulsating sphere in an infinite acoustic domain E. 

 
We have in the spherical coordinate system 

( )
2 2

2
2 2

2 1 d r
r r r r dr

φ φ φ
 ∂ ∂

∇ = + = ∂ ∂ 
; 

therefore, governing equation (6.12) is reduced to 

 ( ) ( )
2

2
2 0d r k r

dr
φ φ+ = . (6.13) 

The solution of this ODE is of the form 

( )1 2
1( , ) ikr ikrr A e A e
r

φ ω −= + , 

where A1 and A2 are two constants. For the field caused by the pulsating sphere, the 
wave should be a outgoing wave (traveling away from the sphere). Thus, the second 
term representing an incoming wave (traveling toward the sphere) should vanish 
(A2 = 0). We have 

1
1( , ) ikrr A e
r

φ ω = . 

To determine A1, we apply the BC in (6.12) and find that 

x1 

x2 

x3 

a 

n 

E 

S 

v0 

r 
x 
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2
0 0

1
( )

1 1
ika ikai v a cv ikaA e ae

ika ika
ωρ ρ− −= =

− −
. 

Therefore, the solution to the pulsating-sphere problem is found to be 

 ( )0 ( )( , )
1

ik r acv ika ar e
ika r

ρφ ω −=
−

, (6.14) 

which represents the perturbation pressure field that is due to the pulsating sphere. We 
notice that this is an outgoing wave and it vanishes at infinity (i.e., satisfies the 
Sommerfeld radiation condition). 
 

6.2. Fundamental Solution for Acoustic Wave Problems 
If we place a unit concentrated source (disturbance or “pulsating point”) at point x 

in an acoustic medium occupying the full space, then the mathematical representation 
for the response (acoustic disturbance pressure) at another point y is called the 
fundamental solution or the full-space Green’s function for acoustic problems. This 
fundamental solution, denoted as ( , , )G ωx y  in this chapter, satisfies the following 
governing equation: 

 2 2 2 3( , , ) ( , , ) ( , ) 0, , /G k G R Rω ω δ∇ + + = ∀ ∈x y x y x y x y , (6.15) 

in which the derivative is taken at field point y, and the Dirac-δ function represents the 
unit source at source point x. ( , , )G ωx y  should represent an outgoing wave and have 
spherical (radial) symmetry. From the solution in (6.14) for the pulsating sphere, we 
know that ( , , )G ωx y  should have the following form for 3-D problems: 

 ( , , ) ikrAG e
r

ω =x y , (6.16) 

where r is the distance between x and y and A is a constant. To determine A, which 
represents the strength of the source, we integrate Eq. (6.15) over a small spherical 
domain ( )Eε x  centered at x, with radius ε and boundary ( )Sε x  to obtain 

 2 2

( ) ( )
( ) ( , ) ( ) 1

E E
G k G dE dE

ε ε

δ ∇ + = − = − ∫ ∫x x
y x y y . (6.17) 

Applying the Gauss theorem and expression (6.16), we have 

2

( ) ( )
( ) ( ) 4 ( 1) ik

E S

GGdE dS A ik e
nε ε

επ ε∂
∇ = = −

∂∫ ∫x x
y y . 

Similarly, using the spherical coordinates ( , , )r θ ϕ , we obtain 

22 2 2

( ) 0 0 0

1( ) sin 4 (1 ) 1ikr ik

E
k GdE k A e r d d dr A ik e

rε

ε π π εϕ ϕ θ π ε = = − − ∫ ∫ ∫ ∫x
y . 

Substituting the preceding two results into Eq. (6.17), we obtain 1/ 4A π=  and the 
following results for the fundamental solution for 3-D acoustic wave problems: 

 1( , , ) ,
4

ikrG e
r

ω
π

=x y  (6.18) 

 2

( , , ) 1( , , ) ( 1) , ( ) ,
( ) 4

ikr
j j

GF ikr r n e
n r

ωω
π

∂
≡ = −

∂
x yx y y

y
 (6.19) 
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where , / ( ) /j j j jr r y y x r= ∂ ∂ = − . Note that when k = 0, that is, when the problem 
becomes a static one, the preceding two results are exactly the same as those for the 3-
D potential problems discussed in Chapter 2. This is expected, because Helmholtz 
equation (6.5) becomes a Poisson equation if k = 0. 

For 2-D acoustic wave problems, we have the following results for the fundamental 
solution: 

 (1)
0( , , ) ( ),

4
iG H krω =x y  (6.20) 

 (1)
1

( , , )( , , ) ( ) , ( )
( ) 4 l l

G ikF H kr r n
n

ωω ∂
≡ = −

∂
x yx y y

y
, (6.21) 

in which (1)
nH  denotes the Hankel function of the first kind [139]. 

To see the variations of the 3-D kernel functions in space, we plot in Figure 6.3 the 
G, F, K, and H kernels with x being placed at (0, 0, 0) and y changing on the O12 plane, 
for a fixed k = 15. We can see the rapid variations of all four kernel functions in the 
radial direction, which are the sources of challenges to the acoustic BEM. 
 

 
          (a) G kernel           (b) F kernel          (c) K kernel        (d) H kernel 

Figure 6.3.  Variations of real parts of the four kernel functions for 3-D problems. 
 

6.3. BIE Formulations 
To derive the BIE corresponding to Helmholtz equation (6.5), we apply the second 

Green’s identity given in Eq. (1.24) (we use the 3-D case as the example): 

 2 2

RE S S

v uu v v u dE u v dS
n n
∂ ∂  ∇ − ∇ = −   ∂ ∂ ∫ ∫



, (6.22) 

in which E is a domain bounded by the boundary S of the structure (Figure 6.1) and a 
large sphere SR of radius R (with R →∞ ). For interior problems, SR does not exist. Let 

( ) ( )v φ=y y  which satisfies Eq. (6.5), and ( ) ( , , )u G ω=y x y  which satisfies Eq. (6.15). 
We have from identity (6.22): 

2 2

RE S S

GG G dE G dS
n n
φφ φ φ∂ ∂  ∇ − ∇ = −   ∂ ∂ ∫ ∫



. 

Applying Eqs. (6.5), (6.15), and (1.25), we obtain: 

 [ ]( ) ( , , ) ( ) ( , , ) ( ) ( ) ( , , ), ,
R

QS S
G q F dS QG Eφ ω ω φ ω= − + ∀ ∈∫x x y y x y y y x x x



 (6.23) 

in which /q nφ= ∂ ∂  and the term ( , , )QQG ωx x  is due to the point source at Qx  in the 
domain. 
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Now, consider the integral on SR as R →∞  for an infinite domain. For this purpose, 
we first note the following inequalities: 

( ) ( ) ,

( ) ( ) ( ) ( ) , and so on.

f x dx f x dx

f x g x f x g x

≤

+ ≤ +

∫ ∫  

For radiation problems, φ  is the radiated wave, and we evaluate 
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−
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≤ − + ∂ 

∂
= − + =

∂

∫

∫ ∫

∫

x y y x y y y

 (6.24) 

by using the Sommerfeld radiation condition in Eq. (6.11) and noting the fact that φ  
itself should vanish at infinity. 

For scattering problems, φ  is the total wave that is the sum of the incident wave 
Iφ  and the scattered wave Sφ , that is, I Sφ φ φ= + . The scattered wave Sφ  also 

satisfies the Sommerfeld condition. Thus, for scattering problems, we have for the 
integral on SR as R →∞ : 

[ ]( , , ) ( ) ( , , ) ( ) ( )
R

R R

S

I I S S

S S

G q F dS

Gq F dS Gq F dS

ω ω φ

φ φ

−

   = − + −   

∫
∫ ∫

x y y x y y y
 

in which / and /I I S Sq n q nφ φ= ∂ ∂ = ∂ ∂ . The first integral on the right-hand side is 
equal to the incident wave Iφ  by considering Iφ  within the domain as enclosed by SR, 
and the second integral vanishes as in the radiation problems. Therefore, for the 
scattering problems, we have 

 [ ]( , , ) ( ) ( , , ) ( ) ( ) ( )
R

I

S
G q F dSω ω φ φ− =∫ x y y x y y y x . (6.25) 

From the results in (6.24) and (6.25), we obtain from Eq. (6.23) the following general 
representation integral: 

 
[ ]( ) ( , , ) ( ) ( , , ) ( ) ( )

( ) ( , , ), ,
S

I
Q

G q F dS

QG E

φ ω ω φ

φ ω

= −

+ + ∀ ∈

∫x x y y x y y y

x x x x
  (6.26) 

where the incident wave ( )Iφ x  is not present for radiation problems. 

Equation (6.26) is the representation integral of the solution φ  inside domain E for 
Helmholtz equation (6.5) for both exterior and interior domain problems. Once the 
values of both φ  and q are known on S, Eq. (6.26) can be applied to calculate φ  
everywhere in E, if needed. 
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Let the source point x approach the boundary S. We obtain the following CBIE for 
acoustic wave problems: 

        
[ ]( ) ( ) ( , , ) ( ) ( , , ) ( ) ( )

( ) ( , , ), ,
S

I
Q

c G q F dS

QG S

φ ω ω φ

φ ω

= −

+ + ∀ ∈

∫x x x y y x y y y

x x x x
              (6.27) 

where the constant ( )c x = ½ if S is smooth around x. This CBIE can be used to solve 
for the unknown φ  and q on S. The integral with the G kernel is a weakly singular 
integral, whereas the one with the F kernel is a strongly singular (CPV) integral, as in 
the potential case. 

It is well known that this CBIE has a major defect for exterior domain problems, 
that is, it has nonunique solutions at a set of fictitious eigenfrequencies associated with 
the resonant frequencies of the corresponding interior problems [109]. This difficulty 
is referred to as the fictitious eigenfrequency difficulty. A remedy to this problem is to 
use the normal derivative BIE in conjunction with this CBIE. Taking the derivative of 
integral representation (6.26) with respect to the normal at the point x and letting x 
approach S, we obtain the following HBIE for acoustic wave problems: 

        
[ ]( ) ( ) ( , , ) ( ) ( , , ) ( ) ( )

( ) ( , , ), ,
S

I
Q

c q K q H dS

q QK S

ω ω φ

ω

= −

+ + ∀ ∈

∫x x x y y x y y y

x x x x



                (6.28) 

where ( )c x = ½ if S is smooth around x. For 3-D problems, the two new kernels are 
given by 

 2

( , , ) 1( , , ) ( 1) , ( ) ,
( ) 4

ikr
j j

GK ikr r n e
n r

ωω
π

∂
≡ = − −

∂
x yx y x

x
 (6.29) 
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ωω
π

∂
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x yx y y
x

y x
 (6.30) 

and for 2-D problems, the two new kernels are 

 (1)
1

( , , )( , , ) ( ) , ( ),
( ) 4 j j

G ikK H kr r n
n

ωω ∂
≡ =

∂
x yx y x

x
 (6.31) 
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(1)
2

( , , )( , , ) ( ) ( ) ( )
( ) 4

( ) , ( ) , ( ).
4
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j j l l

F ikH H kr n n
n r

ik H kr r n r n

ωω ∂
≡ =

∂

−

x yx y x y
x

x y
 (6.32) 

In HBIE (6.28), the integral with the kernel K is a strongly singular (CPV) integral, 
whereas the one with the H kernel is a hypersingular (HFP) integral. 

For exterior acoustic wave problems, a dual BIE (CHBIE or composite BIE [50]) 
formulation using a linear combination of CBIE (6.27) and HBIE (6.28) can be written 
as 

 CBIE HBIE 0β+ = , (6.33) 

where β is the coupling constant. This dual BIE formulation is called the Burton-Miller 
formulation [109] for acoustic wave problems and was shown by Burton and Miller to 
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yield unique solutions at all frequencies, if β is a complex number (which, for example, 
can be chosen as β =i/k [140]). 
 

6.4. Weakly Singular Forms of the BIEs 
CBIE (6.27) and HBIE (6.28) contain singular integrals that are difficult to 

evaluate analytically on higher-order elements. Numerical integration can be used to 
compute all the singular integrals with proper care, but it was found to be not very 
efficient computationally with higher-order elements. As in all the other problems using 
the BEM, the best approach in such cases is to use the weakly singular forms of these 
BIEs, which are obtained analytically and do not introduce any approximations. For 
dynamic problems, however, there were no integral identities found with the dynamic 
kernels directly. Therefore there are extra steps in the development of the weakly 
singular forms of the BIEs for acoustic wave and other dynamic problems using the 
BIEs [50, 52, 125]. 

For CBIE (6.27), we first note that the free-term coefficient c(x) can be written as 
(see notation used in Chapter 2) 

 
( ) ( )0 0

( )0

( ) 1 lim ( , , ) ( ) 1 lim ( , ) ( )

lim ( , ) ( )

( , ) ( ), (a CPV integral),

S S

S S

S

c F dS F dS

F dS

F dS S

ε ε

ε

ε ε

ε

ω

γ

γ

→ →

−→

= + = +

= −

= − ∀ ∈

∫ ∫
∫

∫

x x

x

x x y y x y y

x y y

x y y x

 (6.34) 

in which ( , ) ( , ,0)F F=x y x y  is the static F kernel for potential problems (an overbar is 
added in this chapter to distinguish static kernels from the dynamic ones), 0γ =  for a 
finite domain and 1γ =  for an infinite domain. In deriving Eq. (6.34), the first identity 
in Eq. (2.7) for the potential (static) kernel is applied. The fact that the dynamic kernel 
can be replaced with the static kernel is due to the following results for small r (with 
the 3-D case as the example): 

 
2 3

2
0 1 2

1 1 1 1( , , ) ( , ) 1 ( ) ( )
4 4 2! 3!

,

ikrG G e ikr ikr ikr
r r

a a r a r

ω
π π

  − = − = + + +    
= + + +

x y x y 



 (6.35) 

and 

 2
0 1 2( , , ) ( , ) ( , ) ( ), as 0

( ) nF F a a r a r O r O r r
n

ω ∂  − = + + + = = → ∂
x y x y

y


, (6.36) 

where 0 1 2, , , ...a a a , are some constants. Substituting the expression in (6.34) for ( )c x  
into CBIE (6.27), we obtain the following weakly singular form of the CBIE for 
acoustic wave problems: 

 
[ ]( ) ( , , ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( )

( , , ) ( ) ( ) ( ) ( , , ), ,
S S

I
QS

F F dS F dS

G q dS QG S

γφ ω φ φ φ

ω φ ω

 + − + − 

= + + ∀ ∈

∫ ∫
∫

x x y x y y y x y y x y

x y y y x x x x
 (6.37) 

in which all three integrals are now at most weakly singular and can be handled readily 
by numerical integration schemes. 
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Similarly, if we introduce the static kernel and a two-term subtraction and apply 
the identities satisfied by the static kernels, we can show that HBIE (6.28) can be 
written in the following weakly singular form [50, 51]: 
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( ) ( , , ) ( , ) ( ) ( )

( , ) ( ) ( ) ( )( ) ( )

( ) ( , ) ( ) ( , ) ( ) ( )
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∫

∫

∫

∫
∫

x x y x y y y

x y y x x y

x x y y x y x y

x y x y y y

x y y x y x x x ,S∀ ∈x

 (6.38) 

in which αξ  ( 1α =  for 2-D and 1, 2α =  for 3-D) are local coordinates in tangential 
directions at S∈x  and /k ke xα α∂ ξ ∂=  [51]. All the integrals in (6.38) are now at most 
weakly singular if φ  has continuous first derivatives, which we can verify by simply 
expanding the kernels as shown in Eqs. (6.35) and (6.36). 

Plots of the 3-D dynamic kernels before and after the subtractions with the 
corresponding static kernels are shown in Figure 6.4. The effects of the subtractions in 
attenuating the singularities of the kernels are obvious from these plots. 
 

  

Figure 6.4.  Amplitudes of the four 3-D kernels before and after the subtractions. 
 

6.5. Discretization of the BIEs 
We can obtain the discretized equations of the CBIE, HBIE, or Burton-Miller’s 

BIE formulation, in either singular or weakly singular forms, by discretizing the 
boundary S using constant [103], linear, or quadratic [50] (see Figure 2.6) or other 
higher-order elements [141]. As in potential and other problems, the discretized BIEs 
can be written as 
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

, (6.39) 

where A is the system matrix, λ is the vector of unknown boundary variables at the 
nodes, b is the known vector containing contributions from the possible source term, 
the plane incident wave, or boundary conditions, and N is the number of nodes on the 
boundary. In contrast to static problems, for acoustic wave problems, this system of 
equations is in complex numbers, that is, all the coefficients and variables are complex 
numbers, and thus the memory requirement is four times as large as its counterpart in 
potential problems. As a result of this, only relatively small models can be solved by 
use of the conventional BEM approach with direct solvers. 
 

6.6. Fast Multipole BEM for 2-D Acoustic Wave Problems 
We first discuss the fast multipole BEM formulation for 2-D acoustic wave 

problems (see, e.g., Ref. [41]). The 2-D formulation is based on Graf’s equation [see 
Ref. [139], p. 363, Eq. (9.1.79)] for the kernel G. That is, the far field expansion for the 
G kernel can be represented as follows: 

 (1)
0( , , ) ( ) ( ) ( ),

4 4 n c n c c c
n

i iG H kr O Iω
∞

−
=−∞

= = − − − < −∑x y x y y y y y x y , (6.40) 

where k is the wavenumber, cy  is an expansion point close to y, and the two auxiliary 
functions nI  and nO  are given by 

 ( ) ( ) ( )n in
n nI i J kr e α= −x , (6.41) 

 (1)( ) ( ) .n in
n nO i H kr e α=x  (6.42) 

In the preceding two expressions, x is a typical vector, nJ  is the Bessel-J function, and 
( , )r α  is the polar coordinate of x. 

Using Eq. (6.40), we find that the far-field expansion for the F kernel is given by 

 ( )( , , )( , , ) ( ) ,
( ) 4 ( )

n c
n c c c

n

IG iF O
n n

ωω
∞

−

=−∞

∂ −∂
= = − − < −

∂ ∂∑ y yx yx y x y y y x y
y y

, (6.43) 

in which the derivative can be obtained by the formula 

 1 1
( ) ( ) [ ( ) ( ) ]

( ) 2

n
i i inn c

n n
I i k J kr e J kr e e

n
δ δ α−−

+ −

∂ − −
= −

∂
y y

y
, (6.44) 

where δ  is the angle between the vector r


 from cy  to y and the outward normal ( )n y . 

Applying expansions in Eqs. (6.40) and (6.43), we can evaluate the G and F 
integrals in CBIE (6.27) on cS  (a subset of S that is away from the source point x) with 
the following multipole expansions: 

 ( , , ) ( ) ( ) ( ) ( ), ,
c

n c n c c cS
n

G q dS O Mω
∞

=−∞

= − − < −∑∫ x y y y x y y y y x y  (6.45) 
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 ( , , ) ( ) ( ) ( ) ( ), ,
c

nn c c c cS
n

F dS O Mω φ
∞

=−∞

= − − < −∑∫ x y y y x y y y y x y  (6.46) 

where nM  and  nM  are the multipole moments centered at cy  and given by 

 ( ) ( ) ( ) ( ),
4 c

n c n cS

iM I q dS−= −∫y y y y y  (6.47) 
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( )( ) ( ) ( )
4 ( )c

n c
n c S

IiM dS
n

φ−∂ −
=

∂∫
y yy y y

y
. (6.48) 

When the multipole expansion center is moved from cy  to c'y , we have the 
following M2M translation for both and nnM M : 

 ' '( ) ( ) ( )n c n m c c m c
m

M I M
∞

−
=−∞

= −∑y y y y . (6.49) 

The local expansion for the G kernel integral in CBIE (6.27) is given as  

 ( , , ) ( ) ( ) ( ) ( )
c

n L n LS
n

G q dS L Iω
∞

−
=−∞

= −∑∫ x y y y x x x , (6.50) 

where Lx  is the local expansion point close to x ( L c L− < −x x y x ), and the expansion 
coefficients are given by the following M2L translation: 

 ( ) ( 1) ( ) ( )m
n L n m L c m c

m
L O M

∞

−
=−∞

= − −∑x x y y . (6.51) 

This result, which is slightly different from that given in Ref. [41], is derived with 
Graf’s equation [139]. 

Similarly, the local expansion for the F kernel integral in CBIE (6.27) is given by 

 ( , , ) ( ) ( ) ( ) ( )
c

n L n LS
n

F dS L Iω φ
∞

−
=−∞

= −∑∫ x y y y x x x , (6.52) 

with  nM  replacing nM  in M2L translation (6.51) for calculating the expansion 
coefficient. 

The local expansion center in expansion (6.50) can be shifted from Lx  to 'Lx  
using the following L2L translation: 

 ' '( ) ( ) ( )n L m L L n m L
m

L I L
∞

−
=−∞

= −∑x x x x . (6.53) 

For HBIE (6.28), the local expansion of the K kernel integral can be written as 
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with the same local expansion coefficient ( )n LL x  as that given by Eq. (6.51). Similarly, 
the local expansion for the H kernel integral is given by 
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n L
n LS

n
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ω φ
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=
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with  nM  replacing nM  in Eq. (6.51) for evaluating ( )n LL x . Therefore the same 
moments, M2M, M2L, and L2L translations as used for the G and F integrals in the 
CBIE are used for the K and H integrals in the HBIE, respectively. 

The fast multipole algorithms and implementations for 2-D acoustic wave 
problems are similar to those for 2-D potential problems, as given in Chapter 3. For 
example, the same tree structure and code for a 2-D potential program can be applied 
to a 2-D acoustic program. The additional care is to select a proper p, the number of 
expansion terms in the multipole and local expansions. For low-frequency problems, a 
value of p less than or equal to 10 is found to be sufficient. For higher-frequency 
problems, larger values of p will be needed, and this will consume more CPU time 
because of the use of the more expansion terms for the kernels. 
 

6.7. Fast Multipole BEM for 3-D Acoustic Wave Problems 
The FMM for solving Burton-Miller’s BIE (6.33) is discussed in this section for 

the 3-D case [103]. We first note that the fundamental solution ( , , )G ωx y  for the 
Helmholtz equation in three dimensions can be expanded as (see, e.g., Refs. [64, 129]) 
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where k is the wavenumber, yc is an expansion point near y, and the outer function m
nO  

is defined by 
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the inner function m
nI  is given by 

 ( )( , )m m
n n nI k j k Y

 
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xx x
x

, (6.58) 

and m
nI  is the complex conjugate of m

nI . In the preceding equations, (1)
nh  is the nth-

order spherical Hankel function of the first kind, nj  is the nth-order spherical Bessel 
function of the first kind, and m

nY  are the spherical harmonics given by 

 ( ) ( )! (cos ) , for 0,1,2,..., ,...,
( )!

m m im
n n

n mY P e n m n n
n m

φθ−
= = = −

+
x , (6.59) 

with ( , , )ρ θ φ  being the coordinates of x here in a spherical coordinate system (that is, 

1 2 3sin cos , sin sin , cosx x xρ θ φ ρ θ φ ρ θ= = = ), and m
nP  is the associated Legendre 

function defined in Eq. (3.49). These spherical harmonics are orthogonal to each other 
over the unit sphere and thus can form the basis for expanding other functions [137]. 
Note that slightly different definitions of the spherical harmonics exist in the literature 
[137, 138], and care needs to be taken to make sure that the fast multipole formulations 
are consistent with these different notations. 
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Similarly, the kernel ( , , )F ωx y  for 3-D acoustic wave problems can be expanded 
as 
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 (6.60) 

Applying expansions in Eqs. (6.56) and (6.60), we can evaluate the G and F 
integrals in CBIE (6.27) on cS  (a subset of S that is away from the source point x) with 
the following multipole expansions: 
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where ,n mM  and  ,n mM  are the multipole moments centered at cy  and given by 
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When the multipole expansion center is moved from cy  to c'y , we have the 
following M2M translation: 

' '
' '

, ' , ', , ', ' ', '
' 0 ' ' '

' : even

( , ) (2 ' 1) ( 1) ( , ) ( , ),
n n n

m m m
n m c n n m m l l c c n m c

n m n l n n
n n l

M k n W I k M k
∞ +

− −
−

= =− = −
+ −

= + − −∑ ∑ ∑y y y y

 (6.65) 

where , ', , ',n n m m lW  is calculated with the following formula: 

 '
, ', , ',

' '
(2 1)

0 0 0 ' '
n n l

n n m m l

n n l n n l
W l i

m m m m
− +   

= +   − −  
, (6.66) 

and 
 
 
 

  

  

 denotes the Wigner-3j symbol [142]. 

The local expansion for the G kernel integral in CBIE (6.27) is given as follows: 

 ,
0

( , , ) ( ) ( ) (2 1) ( , ) ( , )
4c

n
m

n m L n LS
n m n

ikG q dS n L k I kω
π

∞

= =−

= + −∑ ∑∫ x y y y x x x , (6.67) 

where the local expansion coefficients are given by the following M2L translation: 

 

' ' '

, ', , ', , ', '
' 0 ' ' '
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( , ) (2 ' 1) ( , ) ( , )
n n n m m

ln m L n n m m l L c n m c
n m n l n n

n n l

L k n W O k M k
∞ + − −

= =− = −
+ −

= + −∑ ∑ ∑x x y y , (6.68) 

for L c L− < −x x y x , in which Lx  is the local expansion center and 
m
nO  is defined by 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 156 

 

(1)( , ) ( )
m m

nn nO k h k Y
 

=   
 

xx x
x
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The local expansion center can be shifted from Lx  to 'Lx  by the following L2L 
translation: 

 
' '

'
, ' ', , ', , ' ', '
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= − + −∑ ∑ ∑x x x x (6.70) 

The local expansion for the F kernel integral in CBIE (6.27) is similar to that of 
Eq. (6.67): 

 ,
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( , , ) ( ) ( ) (2 1) ( , ) ( , )
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n
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n m L n LS
n m n
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π

∞
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= + −∑ ∑∫ x y y y x x x , (6.71) 

 with  ,n mM  replacing ,n mM  in M2L translation (6.68). 

For HBIE (6.28), we can obtain the local expansions for the K and H integrals by 
taking the normal derivatives of the local expansions for the G and F integrals, 
respectively. We have 
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, (6.72) 

with ,n mM  in M2L translation (6.68), and similarly for the H kernel integral 
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with  ,n mM  replacing ,n mM  in M2L translation (6.68). Again, the same moments, M2M, 
M2L, and L2L translations, as used for the G and F integrals in the CBIE, are used for 
the K and H integrals in the HBIE, respectively. 

To determine p, the number of terms in the multipole and local expansions, the 
following empirical formula (see, e.g., Ref. [41]) can be applied: 

 0 log( )p kD c kD π= + + , (6.74) 

where D is the diameter of the cell on which the expansions are calculated, and 0c  is a 
number that depends on the precision of the arithmetic. Formulas like (6.74) can be 
applied to adaptively determine the values of p at different tree levels in the fast 
multipole algorithms. 

The fast multipole formulations discussed above for solving 3-D acoustic wave 
problems or the Helmholtz equation in general are good for low frequencies because of 
the 5( )O p  nature of the formulation. To perform the M2M, M2L, and L2L translations, 

5( )O p  computations are required because there are three summations in all translations 
and two indices in the coefficients, as shown in Eqs. (6.65), (6.68), and (6.70). 
Although the number of operations can be reduced to 4( )O p  by use of various 
recursive relations, the computing time can still increase quickly with the increase of 
the value of p. In addition, the use of the Wigner-3j symbol in (6.66), which is time 
consuming to calculate each time and takes more memory if its values are stored, further 
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reduces the computational efficiency. As mentioned in the 2-D case and also shown in 
Eq. (6.74), at higher frequencies, more terms are required in the expansions to represent 
the increased variations in the field, leading to a larger p and a slower performance of 
any fast multipole BEM code based on the formulations discussed previously. In fact, 
the FMM gives 2( )O N  computing complexity using these original formulations [41]. 
Adaptive fast multipole algorithms [61, 62] are used to accelerate the solutions of the 
fast multipole BEM for 3-D acoustic wave problems based on these formulations [103]. 

For higher-frequency problems, the diagonal form proposed by Rokhlin [128] can 
be used to accelerate the computations of all the translations. Unfortunately, this 
diagonal form breaks down at lower frequencies, where the original formulations will 
need to be applied [41]. The wideband FMM proposed by Cheng et al. [138] may be 
considered; it provides a seamless framework for combining the low- and high-
frequency formulations. On the other hand, an 3( )O p  formulation was developed by 
Gumerov and Duraiswami [133, 137] that is adequate for both low- and high-frequency 
applications. This 3( )O p  formulation does not use the Wigner-3j symbol, which can 
also reduce the memory usage. 

Based on the adaptive fast multipole algorithms reported in Ref. [103] and the 
Gumerov and Duraiswami 3( )O p  formulations presented in Ref. [137], a very robust 
acoustic software, FastBEM Acoustics® was developed that has been applied 
successfully in solving large-scale acoustic BEM models with the number of DOFs 
above 5 million on PCs. Several 3-D numerical examples presented in the following 
section are solved with the FastBEM Acoustics® software (V.8, updated in 2025). 
 

6.8. Numerical Examples 
Examples of solving 2-D and 3-D acoustic wave problems are presented in this 

section. Constant elements are used in all cases, that is, one node line elements for 2-D 
models and one node triangular elements for 3-D ones. The 2-D computer code is based 
on the BIEs presented in Section 6.6 and the same fast multipole algorithms for 2-D 
potential problems discussed in Chapter 3. The 3-D code, FastBEM Acoustics® (V.8), 
is based on an improved adaptive fast multipole algorithm of that in Ref. [103] and 

3( )O p  formulations in Ref. [137]. OpenMP parallel programing was introduced in the 
code to further speedup the BEM solutions. 

6.8.1. Scattering From Cylinders in a 2-D Medium 
First, we consider a 2-D scattering problem with a single rigid cylinder with the 

incident wave coming from the right. The cylinder has a radius a = 1 and is discretized 
with 1000 elements. A relative error of 0.01% is achieved for ka = 1 with 16 expansion 
terms and a tolerance of 10-8. Figure 6.5 is the contour plot of the magnitude of the 
scattered-pressure field outside the cylinder in a square-field region. 

We next consider a case with multiple scatterers in which an array of 15x10 
cylinders is modeled with 195,000 elements. Again, the incident wave is from the right. 
Figure 6.6 shows the computed scattered pressure field with 10,000 field points inside 
the domain and at ka = 5.4. The model was solved for a tolerance of 10-8 on a desktop 
PC. In this case, about 60% of the total CPU time were spent on solving the BEM 
system of equations and another 40% of the CPU time on calculating the pressure at 

https://www.fastbem.com/
https://www.fastbem.com/
https://www.fastbem.com/
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the 10,000 field points inside the domain, which can also be accelerated by the fast 
multipole algorithms. 
 

 
Figure 6.5.  Scattering from a single cylinder with 1000 elements. 

 
 

 
Figure 6.6.  Scattering from multiple cylinders with 195,000 elements. 

 

6.8.2. Radiation From a Pulsating Sphere 
A pulsating sphere with radius = 1 m is used next to verify the 3-D fast multipole 

BEM code. The analytical solution for this problem was discussed in Section 6.1. We 
consider the case with changing frequencies (frequency sweep) for the nondimensional 
wavenumber ka varying from 0.1 to 10. The total number of elements used is 10800. 
The computed pressures at (5 m, 0, 0) are plotted in Figure 6.7, which shows that the 
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conventional BEM with the CBIE fails to predict the surface-pressure field at the 
fictitious eigenfrequencies (k = π, 2π, …, etc., for this case). The results obtained with 
the conventional BEM with Burton-Miller (CHBIE) formulation agree well with the 
analytical solution at all wavenumbers. The adaptive fast multipole BEM with the 
CHBIE also yields results very close to those of the conventional BEM with the CHBIE, 
suggesting that the truncation errors introduced in multipole expansions are under 
control for ka ranging from 0.2 to 20. In this example, the maximum number of 
elements in a leaf is set to 100, the number of multipole and local expansion terms to 
10, and the tolerance for GMRES solver to 10-4. The contour plot of the acoustic 
pressure on an annular field surface and at ka = 20 is shown in Figure 6.8. 
 

 
Figure 6.7.  Frequency-sweep plot for the pulsating-sphere model. 

 
 

 
Figure 6.8.  Contour plot of sound pressure on the field surface at ka = 10. 

 

6.8.3. Scattering From Multiple Scatterers 
A multi-scatterer model (Figure 6.9) containing 1000 randomly distributed 

capsule-like rigid scatterers in a 2 m x 2 m x 2 m domain is studied next. Each scatterer 
is meshed with 200 elements, with a total of 200,000 elements for the entire model. The 
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incident wave is ik xe−  with k = 1. Sample field points are placed at an annular field 
surface with inner and outer radii equal to 5 m and 10 m, respectively. The computed 
sound pressure distribution is shown in Figure 6.10 for this discretization.  
 

 
Figure 6.9.  A BEM model of 1000 capsule-like scatterers with 200,000 elements. 

 
 

 
Figure 6.10.  Computed sound pressure on the multiple scatterers and field surface. 

 

6.8.4. Performance Study of the 3-D Fast Multipole BEM Code 
Next, we use a radiating sphere of radius = 1 m to test the accuracy and efficiency 

of the 3-D acoustic fast multipole BEM code. The numbers of elements range from 588 
to 1,503,792. The non-dimensional wavenumbers are ka = 2 and 20, with corresponding 
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numbers of expansion terms p = 6 and 10, respectively. The tolerance for convergence 
is set at 10-4. 

Figure 6.11 shows the relative errors in the computed sound pressure and power 
(integration of the pressure and velocity on the surface). As seen from the plot, the 
accuracy of the fast multipole BEM solutions is quite satisfactory considering the 
tolerance (10-4) used and the sizes of the BEM models. The errors decrease quickly and 
stay around 0.2% for models with more than 100,000 DOFs at ka = 2, indicating the 
numerical stability of the used fast multipole algorithms. 
 

  
Figure 6.11.  Relative errors of the fast multipole BEM solutions at ka = 2. 

 
 

 
Figure 6.12.  Total solution time used to solve the pulsating-sphere model. 

 
Figure 6.12 shows the CPU time of using the fast multipole BEM compared with 

that of the conventional BEM on a laptop PC (ThinkPad® P1). The total solution (wall-
clock) time for the fast multipole BEM code increases almost linearly with the increase 
of the DOFs, and the largest BEM model with 5.88 million DOFs was solved in 15 min 
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at ka = 2 (note that this is a system of equations with complex variables, which is 
equivalent to a system of about 12 million DOFs in real variables). The conventional 
BEM, however, can only solve models with up to 145,200 DOFs on the same laptop, 
and the total solution time used increases almost as a cubic function of the number of 
DOFs. The efficiencies of the fast multipole BEM compared with those of the 
conventional BEM are most evident from this example. 

6.8.5. An Engine-Block Model 
We next study the radiation of acoustic waves from an engine block. The engine 

block has an overall dimension of 0.31 m x 0.27 m x 0.36 m in the x, y, and z directions, 
respectively, and is discretized with 51,766 triangular elements, as shown in 
Figure 6.13. Velocity BCs are applied on the surfaces of the engine block, and the 
sound-pressure field on a semi-spherical field surface is computed at wavenumber 
ka = 3.6. Figure 6.14 shows the computed sound-pressure distribution on this field 
surface. The model was solved in 2 min on a PC and with the tolerance set at 10-4. 
 

 
Figure 6.13.  An engine-block model discretized with 51,766 boundary elements. 

 
 

X

Y

Z
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Figure 6.14.  Computed sound-pressure distribution for the engine-block model. 

 

6.8.6. A Submarine Model 
A submarine model is studied next to predict the noise that is due to the vibration 

of the propeller. This is an interesting example of using the fast multipole BEM in 
solving large-scale underwater acoustic problems, which has been a challenging task 
for other domain-based methods. The Skipjack submarine is modeled, which has a 
length of 76.8 m. A total of 250,220 elements are used (Figure 6.15), with a typical 
element size equal to 0.14 m. Velocity BCs are applied to the propeller, and the model 
is solved at a nondimensional wavenumber ka = 38.4 (frequency f = 123.3 Hz). The 
computed sound-pressure level on the surface of the submarine is shown in Figure 6.16, 
and the radiated wave on a cylindrical field surface is shown in Figure 6.17. The model 
was solved in 2 min on a PC and with the tolerance set at 10-4. Scattering problems, in 
which the submarine is not moving and incident waves impinge upon the model from 
different directions, were also solved with the same BEM model. 
 

 
Figure 6.15.  BEM mesh used for the submarine model. 
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Figure 6.16.  Computed sound-pressure level on the submarine model. 

 
 

 
Figure 6.17.  Radiated sound pressure on the field surface. 
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6.8.7. An Airbus A320 Model 
In this example, prediction of the jet noise from an airplane is simulated by using 

the fast multipole BEM. A model of Airbus A320 is used, which has a length of 123 ft. 
There are 539,722 elements for this model with a typical element size equal to 0.2 ft. 
The plot of the BEM mesh on one of the engines is shown in Figure 6.18. The acoustic 
pressure on the surface of the airplane due to the vibrations of the two jet engines was 
computed at ka = 61.5 or f = 90 Hz and is shown in Figure 6.19. The model was solved 
in 25 min on a PC with a tolerance of 10-4. Prediction of jet noise is still a very 
challenging problem for the fast multipole BEM because of scale and the nature of the 
high frequencies involved. Large BEM models with considerably more elements need 
to be used and more realistic boundary conditions (such as the results from CFD 
simulations) can be applied. 
 

 
Figure 6.18.  Plot of BEM mesh near one engine of the Airbus A320 model. 

 
 
 

 
Figure 6.19.  Distribution of computed sound pressure on the Airbus A320 model. 
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6.8.8. A Human-Head Model 
A human-head model is now presented for acoustic analysis. Such models using 

the BEM can be used to study the impact of noise on human hearing and to help design 
better audio devices. The head model is discretized using 87,340 elements, and the 
sound pressure on the surface of the model for a plane incident wave coming in the –x 
direction and at 11 kHz (ka = 50) is computed, as shown in Figure 6.20. The model was 
solved in 1 min on a PC with a tolerance of 10-4. It is interesting to note that both ears 
on the illuminated side (left ear) and the shadow side (right ear) register higher values 
of sound pressure, besides the area between the two lips, indicating the unique acoustic 
effects of the geometries near these areas. The same phenomenon is observed in models 
at other frequencies or with the sound from other directions. 
 

 
Figure 6.20.  BEM mesh and sound-pressure plots for a human-head model. 

 

6.8.9. Analysis of Sound Barriers – A Half-Space Acoustic Wave Problem 
Many of the acoustic problems are present in a half space, such as airport or other 

traffic noise control problems. With the BEM, these half-space acoustic wave problems 
can also be modeled readily. Formulations of the adaptive fast multipole BEM for 3-D 
half-space acoustic wave problems can be found in Ref. [143]. 

Figures 6.21 and 6.22 show the computed sound-pressure levels (in dB or decibels) 
for the BEM models of three buildings near a highway without and with a sound barrier, 
respectively, using the fast multipole BEM for half-space acoustic wave problems [143]. 
The dimensions (length x width x height) of the three buildings are 30 x 10 x 20, 
20 x 12 x 15, and 9.5 x 9 x 8 (in meters), respectively. The barrier has a height of 6 m 
and a length of 255.94 m. One point source load with a frequency of 20 Hz is located 
13 m away from the middle point of the barrier and 1 m above the ground. The BEM 
model contains 56,465 triangular elements. In the case with no sound barrier, the 
surface of the largest building closest to the source has the maximum sound level of 
94 dB, as shown in Figure 6.21. After the barrier is inserted into the model, the 
maximum sound level on the surfaces of the buildings is reduced to 90 dB, as shown in 
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Figure 6.22. The effect of the sound barriers in reducing the noise level is evident from 
this BEM simulation. 
 

 
Figure 6.20.  Noise level (in decibels) on buildings without a barrier. 

 
 

 
Figure 6.21.  Noise level (in decibels) on buildings with a barrier. 

 
All the examples presented in this section clearly demonstrate the accuracy, 

efficiency, and potentials of the fast multipole BEM for solving large-scale acoustic 
wave problems in both two and three dimensions. More application examples can be 
found at the website https://www.fastbem.com/Examples.html. To extend the 
applications, the fast multipole BEM can be combined with other methods to solve 
more complicated problems, such as acoustic waves interacting with elastic structures 
[144, 145], and multidomain acoustic wave problems [146]. On the other hand, the fast 
multipole BEM has also been applied successfully in solving various large-scale elastic 
wave or elastodynamic problems, and extensive research results on this important topic 
can be found in Refs. [41, 64]. 
 

https://www.fastbem.com/Examples.html
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6.9. Summary 
The basic governing equations for acoustic wave problems are reviewed in this 

chapter. The main equation to be solved in acoustic wave problems is the Helmholtz 
equation, which reduces to the Laplace equation for potential problems if the 
wavenumber is zero. Thus, the acoustic wave problems are closely related to the 
potential problems we studied in Chapters 2 and 3. The fundamental solution for the 
Helmholtz equation is derived for 3-D cases using the solution of a pulsating sphere. 
BIE formulations are presented with the emphasis on the Burton-Miller BIE 
formulation, which can provide unique solutions for all wavenumbers for exterior 
acoustic wave problems. Weakly singular forms of the CBIE and HBIE are introduced 
by using the static kernels for potential problems and using the integral identities 
satisfied by these static kernels. Formulations in the fast multipole BEM for solving 
Helmholtz equations in both two and three dimensions are presented. Several numerical 
examples are provided to demonstrate the accuracy and efficiency of the fast multipole 
BEM for solving large-scale acoustic wave problems in both two and three dimensions, 
including half-space problems. 
 

Problems 
6.1. Verify that the two functions given in Eqs. (6.2) satisfy the 1-D wave equation in 

(6.1). 

6.2. Verify that the fundamental solution ( , , )G ωx y  given in Eq. (6.18) for three 
dimensions satisfies the Sommerfeld radiation condition in Eq. (6.11). 

6.3. Derive the kernels K and H in Eqs. (6.29) and (6.30) for the 3-D HBIE. 

6.4. Prove Eq. (6.36), that is, show that , ( ), as 0
( )n
rr O r r

n
∂

= = →
∂ y

. 

6.5. Show that all the integrals in Eq. (6.38) are weakly singular, that is, all the 
integrands have O(1/r) or less singularity in 3-D cases. 

6.6. Because the constant solution or rigid-body solution approach does not apply to 
the Helmholtz equation, discuss how we can determine the diagonal coefficients 
in the matrix associated with the F kernel for acoustic wave problems. 

6.7. Write a 2-D acoustic conventional BEM code using the CBIE and constant 
elements, based on the code for 2-D potential problems in Appendix B.1. Test 
your code on a “pulsating-cylinder” problem. 

6.8. Write a 2-D acoustic fast multipole BEM code using the CBIE and constant 
elements, based on the code for 2-D potential problems in Appendix B.2. Test 
your code on the “pulsating-cylinder” problem and study its accuracy and 
efficiency. 
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Appendix A. Analytical Integration of the Kernels 

A.1. 2-D Potential BIE Kernels 
For 2-D potential problems, we have the following four kernels for the CBIE and 

HBIE: 
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Figure A.1.  Analytical integration on an arbitrary line segment. 

 
The integrations of the four kernels on a line segment ΔS shown in Figure A.1 

(from point 1 to point 2) can be evaluated analytically as follows (note that on ΔS, 
/ cosr d θ= , / cosdS rdθ θ= ): 
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in which 2 12 ( )R T T= −  is the total length of the line element and kt  is the component 
of the tangential vector t (Figure A.1). These results can be used to evaluate directly the 
coefficients of the CBIE and HBIE for 2D potential problems using constant elements. 
If the source point x is on the element of integration (at the midpoint), we have  

2 1θ θ π− = , 0d = , 1 2r r R= = , 1 2T T R= − = − , 

and the four integrals have the following values: 
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Note that in the preceding results, the second (F kernel) and third (K kernel) integrals 
are equal to the CPV integrals plus the jump terms, and the last (H kernel) integral is a 
HFP integral. 
 

A.2. 2-D Elastostatic BIE Kernels 
For 2-D elasticity, we have the following four kernels for the CBIE and HBIE: 
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Note that the constant term 1
2 ijδ−  in ijU  is added for the ease of the complex 

representation used in the fast multipole BEM. This term does not affect the solution of 
the BIEs. 

To evaluate the integrals of these kernels over the straight-line segment ΔS (a 
constant element) shown in Figure A.1, we use the local coordinate system n-t at y on 
ΔS. In this local coordinate system, we have 

 ( ) ( )
0

1( , ) (3 4 )
8 (1 )

n t n t
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U dS I I Rν δ δ
πµ ν
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 ( ) ( , ) ( )n t
ij ijk kS

K dS C n−

∆
=∫ x y x ,   (A.19) 
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∆
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where 
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In the above expressions: 
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in which all the parameters are as defined in Figure A.1. Once the integrals of the 
kernels are determined in the local n-t system, they need to be transformed to the global 
x-y system. 

When the source point x is on the element of integration, we have  

2 1θ θ π− = , 0d = , 1 2r r R= = , 1 2T T R= − = − , 

and the four integrals have the following results: 
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2
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2
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 ( ) ( , )
(1 )
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H dS
R

µ δ
π ν

−

∆
= −

−∫ x y .   (A.29) 

Similar to the potential case, the second (T kernel) and third (K kernel) integrals are 
equal to the CPV integrals plus the jump terms, and the last (H kernel) integral is a HFP 
integral. 
 

A.3. 2-D Stokes Flow BIE Kernels 
For 2-D Stokes flow problems, we have the following four kernels for the CBIE 

and HBIE: 
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The integrals of these kernels over the straight-line segment ΔS shown in 
Figure A.1 can be obtained from the results for 2D elasticity problems by setting the 
Poisson’s ratio ν  = ½. In the local coordinate system, we obtain (see results in the 
previous section)  
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and all the parameters , , andI Ω Γ  are as defined earlier for the elasticity kernels in 
Eqs. (A.23)-(A.25). Once the integrals of the kernels are determined in the local n-t 
system, they need to be transformed to the global x-y system. 
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When the source point x is on the element of integration, we have the following 
results for the four integrals: 
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Similar to the potential and elasticity cases, the second (T kernel) and third (K kernel) 
integrals are equal to the CPV integrals plus the jump terms, whereas the last (H kernel) 
integral is a HFP integral. 
 

A.4. 3-D Potential BIE Kernels 
For 3-D potential problems, we have the following four kernels for the CBIE and 

HBIE: 
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     (A.47) 

For constant elements in either triangular or quadrilateral shapes, we provide the 
analytical integration results reported by Fukui in Ref. [72] in the following, with some 
corrections of the errors and typos in  [72]. These analytical integration formulas are 
straightforward, accurate, numerically stable and efficient in the BEM computation for 
3-D potential, elasticity, and Stokes flow problems. 

To evaluate the integrals of the four kernels, a local coordinate system 1 2 3ox x x  is 
established for each element, with 1 2ox x  plane aligned within the plane of the element 
surface and 3ox  axis along the normal direction of the element surface (Figure A.2). 
All the integrals of the four kernels are evaluated using this local coordinate system 
first on the element, and then transformed back to the global coordinate system (if 
necessary) before they are assembled in the BEM system of equations. 
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(a) Local coordinates based on the element                                (b) Edge k of the element 

Figure A.2.  Analytical integration on a surface element. 
 

Let S∆  be the area of element under consideration (Figure A.2(a)). The integrals 
of the four kernels for 3-D potential problems can be evaluated as follows: 
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where  

 
in which the summation over k is taken over all edges of the element, that is, k = 1, 2, 
3 for a triangular element, and k = 1, 2, 3, 4 for a quadrilateral element. 
 

A.5. 3-D Elastostatic BIE Kernels 
For 3-D elasticity, we have the following four kernels for the CBIE and HBIE: 
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Let S∆  be the area of the element under consideration (Figure A.2). The integrals 

of the four kernels in the local coordinate system 1 2 3ox x x can be expressed as follows: 
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where the subscript 3 indicates the 3x  direction (normal direction of the element). The 

six auxiliary integrals are defined by: 
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in which  
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Referring to Figure A.2(b) for the definition of the parameters, we can derive the 

following formulas for evaluating the six auxiliary integrals in Eq. (A.57): 
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where 2 1a s s= −  is the length of the edge, the summation over k is taken over all edges 

of the element, that is, k = 1, 2, 3 for a triangular element, and k = 1, 2, 3, 4 for a 

quadrilateral element; n̂  and t̂  are the normal and tangent unit vectors within the plane 

of the element for edge k (Figure A.2(b)), and the range of indices , , 1, 2α β γ = .  

 

A.6. 3-D Stokes Flow BIE Kernels 
As in the 2-D cases, for 3-D Stokes flow problems, we can obtain the analytical 

expressions of the integrals for the kernels on 3-D constant elements (see Figure A.2) 
by simply setting the Poisson’s ratio 1

2ν =  in the results for 3-D elasticity problems in 
the previous section (Appendix A.5). This does not cause any problems in the Stokes 
flow BIE/BEM formulations and solutions. Therefore, the analytical integration results 
of all the kernels for 3-D Stokes flow problems will not be listed here explicitly. 
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Appendix B. Sample Computer Programs 

B.1. Fortran Code of the Conventional BEM for 2-D Potential Problems 
The following is a list of the source code written in Fortran for the program 

discussed in Section 2.11 for 2D potential problems using the conventional BEM. The 
direct solver dgesv from LAPACK can be downloaded from the website 
www.netlib.org. 
 
c--------------------------------------------------------------------------- 
c Program:    2D_Potential - A boundary element method (BEM) code in Fortran 
c             for analyzing general 2D potential problems (governed by  
c             Laplace equation) using constant elements. 
c 
c Developer:  Dr. Yijun Liu at the University of Cincinnati, USA. 
c 
c Version:    V.1.20. 
c Released:   October 1, 2008. 
c 
c Copyright(c)2004-2008  By University of Cincinnati. 
c             This code is intended for educational use only. No part of  
c             the code can be used for any commercial applications/  
c             distributions without prior written permission of the 
c             original developer. 
c 
c--------------------------------------------------------------------------- 
 
      implicit real*8(a-h,o-z) 
 
 character*80 Prob_Title 
 
      allocatable :: a(:,:),u(:),x(:,:),y(:,:),node(:,:),bc(:,:), 
     &               dnorm(:,:),xfield(:,:),f(:),atu(:),itemp(:) 
 
      open (5, file='input.dat',          status='old') 
      open (6, file='output.dat',         status='unknown') 
      open (7, file='phi_boundary.plt',   status='unknown') 
      open (8, file='xy.plt',             status='unknown') 
      open (9, file='phi_domain.plt',     status='unknown') 
 
      call CPU_Time(time0) 
 
c Read in initial data 
 
 read(5,1) Prob_Title 
 read(5,*) n, nfield 
1     format(A80) 
 
 write(6,1) Prob_Title 
 write(*,1) Prob_Title 
 write(6,*) ' Total number of elements =', n 
 write(*,*) ' Total number of elements =', n 
 write(6,*) 
 write(*,*) 
 
c Allocate the arrays 
 
      allocate (a(n,n),u(n),x(2,n),y(2,n),node(2,n),bc(2,n),dnorm(2,n), 
     &          xfield(2,nfield),f(nfield),atu(n),itemp(n)) 
 
c Input and prepare the BEM model 
 
      call prep_model(n,x,y,bc,dnorm,node,xfield,nfield) 

http://www.netlib.org/


Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 180 

 
c Compute the right-hand-side vector b 
 
 call bvector(u,x,y,bc,node,dnorm,n) 
 
c Computer the coefficient matrix A 
 
 call coefficient(a,n,x,y,bc,node,dnorm) 
 
c Solve the system of equations Ax = b 
 
c Use LAPACK direct solver (double precision, available at www.netlib.org) 
 
     write(6,*) '   LAPACK direct solver is called ......' 
     write(*,*) '   LAPACK direct solver is called ......' 
     call dgesv(n,1,a,n,itemp,u,n,info) 
          write(6,*) '   LAPACK solver info =   ', info 
          write(*,*) '   LAPACK solver info =   ', info 
 
c Output the boundary solution 
 
      write(6,*) 
      write(6,*) ' Boundary Solution:' 
      do i=1,n 
        write(6,*) i, u(i) 
        write(7,*) i, u(i) 
 enddo 
 
c Evaluate the potential field inside the domain and output the results 
 
 call domain_field(nfield,xfield,f,n,x,y,bc,node,dnorm,u) 
 
c Estimate the total CPU time 
 
      call CPU_Time(time) 
 write(*,*) 
      write(*,*) ' Total CPU time used =', time-time0, '(sec)' 
 write(6,*) 
      write(6,*) ' Total CPU time used =', time-time0, '(sec)' 
 
      stop 
      end 
 
c--------------------------------------------------------------------------- 
c Definition of the Variables: 
c 
c n                = total number of (middle) nodes (elements) 
c x(2,n)           = coordinates of the nodes 
c y(2,n)           = coordinates of the end points defining the elements 
c node(2,n)        = element connectivity 
c bc(2,n)          = bc(1,i) contains BC type, bc(2,i) BC value, for element 
i 
c dnorm(2,n)       = normal of the elements 
c a(n,n)           = matrix A 
c u(n)             = first stores b vector; then solution vector of Ax = b 
c nfield           = total number of the field points inside the domain 
c xfield(2,nfield) = coordinates of the field points inside the domain 
c f(nfield)        = values of potential at field points inside the domain 
c atu(n)           = temp array for the solver  
c itemp(n)         = temp array for the solver 
c 
c--------------------------------------------------------------------------- 
 
      subroutine prep_model(n,x,y,bc,dnorm,node,xfield,nfield) 
 
      implicit real*8(a-h,o-z) 
 
      dimension x(2,*),y(2,*),bc(2,*),xfield(2,*),dnorm(2,*),node(2,*) 
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c Input the mesh data 
 
 read(5,*) 
 do i=1,n 
   read(5,*) itemp, y(1,i), y(2,i) 
 enddo 
 
 read(5,*) 
 do i=1,n 
   read(5,*) itemp, node(1,i), node(2,i), bc(1,i), bc(2,i) 
 enddo 
 
c Input the field points inside the domain 
 
 if (nfield .gt. 0) then 
   read(5,*) 
   do i=1,nfield 
     read(5,*) itemp, xfield(1,i), xfield(2,i) 
   enddo 
 endif 
 
c Compute mid-nodes and normals of the elements 
 
      do i=1,n 
        x(1,i) = (y(1,node(1,i))+y(1,node(2,i)))*0.5d0 
        x(2,i) = (y(2,node(1,i))+y(2,node(2,i)))*0.5d0 
        h1 =  y(2,node(2,i)) - y(2,node(1,i)) 
        h2 = -y(1,node(2,i)) + y(1,node(1,i)) 
        el = sqrt(h1**2 + h2**2) 
        dnorm(1,i) = h1/el 
        dnorm(2,i) = h2/el 
 enddo 
 
c Output nodal coordinates for plotting/checking 
 
      do i = 1,n 
   write(8,*) x(1,i), x(2,i) 
 enddo 
 
      return 
      end 
 
c--------------------------------------------------------------------------- 
 
 subroutine bvector(u,x,y,bc,node,dnorm,n) 
 
      implicit real*8(a-h,o-z) 
 
      dimension u(*),x(2,*),y(2,*),bc(2,*),node(2,*),dnorm(2,*) 
 
      data pi/3.141592653589793D0/ 
 
 pi2 = pi*2 
 
 do i=1,n 
        u(i) = 0.d0 
 enddo 
 
      do j=1,n          ! Loop on field points (Column) 
 
   al   = sqrt((y(1,node(2,j))-y(1,node(1,j)))**2 + 
     &              (y(2,node(2,j))-y(2,node(1,j)))**2)      ! Element 
length 
 
 do i=1,n          ! Loop on source points (Row) 
 
c Compute parameters used in the formulas for the two integrals 
 
        x11 = y(1,node(1,j)) - x(1,i) 
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        x21 = y(2,node(1,j)) - x(2,i) 
        x12 = y(1,node(2,j)) - x(1,i) 
        x22 = y(2,node(2,j)) - x(2,i) 
 
        r1 =  sqrt(x11**2 + x21**2) 
        r2 =  sqrt(x12**2 + x22**2) 
        d  =  x11*dnorm(1,j) + x21*dnorm(2,j) 
        t1 = -x11*dnorm(2,j) + x21*dnorm(1,j) 
        t2 = -x12*dnorm(2,j) + x22*dnorm(1,j) 
 
   ds = abs(d) 
   theta1 = datan2(t1,ds) 
   theta2 = datan2(t2,ds) 
   dtheta = theta2 - theta1 
 
        aa = (-dtheta*ds + al + t1*log(r1)-t2*log(r2))/pi2 
   if(d .lt. 0.d0) dtheta = -dtheta 
   bb = -dtheta/pi2 
   if(i .eq. j) bb = 0.5 
 
   if(bc(1,j).eq.1.) u(i) = u(i) - bb*bc(2,j)      ! Potential is given 
   if(bc(1,j).eq.2.) u(i) = u(i) + aa*bc(2,j)      ! Derivative is 
given 
 
 enddo 
 enddo 
 
 return 
 end  
 
c--------------------------------------------------------------------------- 
 
      subroutine coefficient(a,n,x,y,bc,node,dnorm) 
 
      implicit real*8(a-h,o-z) 
 
      dimension a(n,n),x(2,*),y(2,*),bc(2,*),node(2,*),dnorm(2,*) 
 
      data pi/3.141592653589793D0/ 
 
 pi2 = pi*2 
 
 do j=1,n 
 do i=1,n 
        a(i,j) = 0.d0 
 enddo 
 enddo 
 
      do j=1,n          ! Loop on field points (Column) 
 
   al   = sqrt((y(1,node(2,j))-y(1,node(1,j)))**2 + 
     &              (y(2,node(2,j))-y(2,node(1,j)))**2)     ! Element length 
 
 do i=1,n          ! Loop on source points (Row) 
 
        x11 = y(1,node(1,j)) - x(1,i) 
        x21 = y(2,node(1,j)) - x(2,i) 
        x12 = y(1,node(2,j)) - x(1,i) 
        x22 = y(2,node(2,j)) - x(2,i) 
 
        r1 =  sqrt(x11**2 + x21**2) 
        r2 =  sqrt(x12**2 + x22**2) 
        d  =  x11*dnorm(1,j) + x21*dnorm(2,j) 
        t1 = -x11*dnorm(2,j) + x21*dnorm(1,j) 
        t2 = -x12*dnorm(2,j) + x22*dnorm(1,j) 
 
   ds = abs(d) 
   theta1 = datan2(t1,ds) 
   theta2 = datan2(t2,ds) 
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   dtheta = theta2 - theta1 
 
        aa = (-dtheta*ds + al + t1*log(r1)-t2*log(r2))/pi2 
   if(d .lt. 0.d0) dtheta = -dtheta 
   bb = -dtheta/pi2 
 
   if(i.ne.j) then 
     if(bc(1,j).eq.1.) a(i,j) = a(i,j) - aa 
     if(bc(1,j).eq.2.) a(i,j) = a(i,j) + bb 
   endif 
 
   if(i.eq.j) then 
     if(bc(1,j).eq.1.) a(i,j) = a(i,j) - aa 
     if(bc(1,j).eq.2.) a(i,j) = a(i,j) + 0.5d0 
   endif 
 
 enddo 
 enddo 
 
 return 
 end  
 
c--------------------------------------------------------------------------- 
 
      subroutine domain_field(nfield,xfield,f,n,x,y,bc,node,dnorm,u) 
 
      implicit real*8(a-h,o-z) 
 
      dimension xfield(2,*), f(*), x(2,*),y(2,*),bc(2,*),node(2,*), 
     &          dnorm(2,*),u(*) 
 
      data      pi/3.141592653589793D0/ 
 
 pi2 = pi*2.d0 
 
 do i=1,nfield 
        f(i) = 0.d0 
 enddo 
 
      do j=1,n      ! Loop over all elements 
 
   if(bc(1,j).eq.1) then 
     f0  = bc(2,j) 
     df0 = u(j) 
   else if(bc(1,j).eq.2) then 
     f0  = u(j) 
     df0 = bc(2,j) 
   endif 
 
   al   = sqrt((y(1,node(2,j))-y(1,node(1,j)))**2 + 
     &              (y(2,node(2,j))-y(2,node(1,j)))**2)     ! Element length 
 
 do i=1,nfield     ! Loop over all field points inside the domain 
 
        x11 = y(1,node(1,j)) - xfield(1,i) 
        x21 = y(2,node(1,j)) - xfield(2,i) 
        x12 = y(1,node(2,j)) - xfield(1,i) 
        x22 = y(2,node(2,j)) - xfield(2,i) 
 
        r1 =  sqrt(x11**2 + x21**2) 
        r2 =  sqrt(x12**2 + x22**2) 
        d  =  x11*dnorm(1,j) + x21*dnorm(2,j) 
        t1 = -x11*dnorm(2,j) + x21*dnorm(1,j) 
        t2 = -x12*dnorm(2,j) + x22*dnorm(1,j) 
 
   ds = abs(d) 
   theta1 = datan2(t1,ds) 
   theta2 = datan2(t2,ds) 
   dtheta = theta2 - theta1 
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        aa = (-dtheta*ds + al + t1*log(r1)-t2*log(r2))/pi2 
   if(d .lt. 0.d0) dtheta = -dtheta 
   bb = -dtheta/pi2 
 
   f(i) = f(i) + aa*df0 - bb*f0 
 
 enddo 
 enddo 
 
c Output results 
 
 do i=1,nfield 
   write(9,20) xfield(1,i), f(i) 
 enddo 
20    format(1x, 4E18.8) 
 
      return 
      end 
 
c--------------------------------------------------------------------------- 
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B.2. Fortran Code of the Fast Multipole BEM for 2-D Potential Problems 
The following is a list of the source code written in Fortran for the program 

discussed in Section 3.3 for 2D potential problems using the fast multipole BEM. The 
GMRES iterative solver dgmres from the SLATEC package can be downloaded from 
the website www.netlib.org. 
 
c--------------------------------------------------------------------------- 
c Program:    2D_Potential_FMM - A fast multipole boundary element  
c             Method (BEM) code for analyzing large-scale, general 2D  
c             potential problems (governed by Laplace equation) 
c             using constant elements. 
c 
c Developers: Dr. Naoshi Nishimura at Kyoto University, Japan; 
c             Dr. Yijun Liu at the University of Cincinnati, USA. 
c 
c Version:    V.1.20. 
c Released:   October 1, 2008. 
c 
c Copyright(c)2004-2008 By Kyoto University and University of Cincinnati. 
c             This code is intended for educational use only. No part of  
c             the code can be used for any commercial applications/  
c             distributions without prior written permissions of the 
c             original developers. 
c 
c--------------------------------------------------------------------------- 
 
      implicit real*8(a-h,o-z) 
 
 integer, allocatable    :: ia(:) 
      complex*16, allocatable :: am(:) 
 
 character*80 Prob_Title 
 
      call CPU_Time(time0) 
 
      open (4, file='input.fmm',        status='old') 
      open (5, file='input.dat',        status='old') 
      open (3, file='output.dat',       status='unknown') 
      open (7, file='phi_boundary.plt', status='unknown') 
      open (8, file='xy.plt',           status='unknown') 
      open (9, file='phi_domain.plt',   status='unknown') 
 
c Input the parameters 
 
      read(4,*)        maxl, levmx, nexp, ntylr, tolerance  
      read(4,*)        maxia, ncellmx, nleafmx, mxl, nwksz 
 read(5,'(a80)')  Prob_Title 
 read(5,*)        n, nfield 
 write(3,'(a80)') Prob_Title 
 write(*,'(a80)') Prob_Title 
 
c Estimate the maximum numbers of the cells and leaves,  
c and size of the preconditioning matrix, etc. 
 
      if(ncellmx.le.0) ncellmx = max(4*n/maxl,100) 
      if(nleafmx.le.0) nleafmx = max(ncellmx/2,100) 
      if(nwksz.le.0)   nwksz   = maxl*maxl*nleafmx 
 ligw  = 20 
 lrgw  = 1+n*(mxl+6)+mxl*(mxl+3) 
 iwksz = n+3*nleafmx+1 
 
 allocate (ia(maxia)) 
 
c Load the addresses (pointers) associated with the locations of the  
c variables to be stored in the large array "am" 

http://www.netlib.org/
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 call lpointer(lp, ln, maxia, ia, n, nexp, ntylr, ncellmx, 
     &        levmx, ligw, lrgw, nwksz, iwksz, nfield, 
     &        l_n,       l_x,       l_y,     l_node,  l_dnorm, 
     &        l_bc,      l_a,       l_b,     l_xmax, 
     &        l_xmin,    l_ymax,    l_ymin,  l_ielem, l_itree, 
     &        l_level,   l_loct,    l_numt,  l_ifath, l_lowlev, 
     &        l_maxl,    l_levmx,   l_nexp,  l_ntylr, l_tolerance, 
     &        l_ncellmx, l_nleafmx, l_mxl,   l_u,     l_ax, 
     &        l_sb,      l_sx,      l_ligw,  l_lrgw,  l_igwk, 
     &        l_rgwk,    l_nwksz,   l_iwksz, l_rwork, l_iwork, 
     &        l_xfield,  l_nfield,  l_f) 
 
c Estimate the memory usage 
 
      maxa = lp 
      write(3,100) maxa*16/1.D6 
      write(*,100) maxa*16/1.D6 
100   format('  Memory size of the large block am  =', f12.1,' Mb'/) 
 
c Allocate the large block 'am' 
 
 allocate (am(maxa)) 
 
c Assign the parameters to the array am() 
 
      call assigni(n,         am(l_n     )) 
 call assigni(maxl,      am(l_maxl  )) 
 call assigni(levmx,     am(l_levmx )) 
 call assigni(nexp,      am(l_nexp  )) 
 call assigni(ntylr,     am(l_ntylr )) 
 call assignd(tolerance, am(l_tolerance)) 
 call assigni(ncellmx,   am(l_ncellmx)) 
 call assigni(nleafmx,   am(l_nleafmx)) 
 call assigni(mxl,       am(l_mxl   )) 
 call assigni(ligw,      am(l_ligw  )) 
 call assigni(lrgw,      am(l_lrgw  )) 
 call assigni(nwksz,     am(l_nwksz )) 
 call assigni(iwksz,     am(l_iwksz )) 
 call assigni(nfield,    am(l_nfield)) 
 
c Call the FMM BEM main program 
 
 call fmmmain(maxa,   maxia,         am,           ia, 
     &      am(l_n),       am(l_x),       am(l_y),      am(l_node), 
     &      am(l_dnorm),   am(l_bc),      am(l_a),      am(l_b),  
     &      am(l_xmax),    am(l_xmin),    am(l_ymax),   am(l_ymin), 
     &      am(l_ielem),   am(l_itree),   am(l_level),  am(l_loct),  
     &      am(l_numt),    am(l_ifath),   am(l_lowlev), am(l_maxl),  
     &      am(l_levmx),   am(l_nexp),    am(l_ntylr),  am(l_tolerance), 
     &      am(l_ncellmx), am(l_nleafmx), am(l_mxl),    am(l_u),  
     &      am(l_ax),      am(l_nfield),  am(l_xfield), am(l_f), 
     &      am(l_sb),      am(l_sx),      am(l_igwk),   am(l_rgwk),  
     &      am(l_ligw),    am(l_lrgw),    am(l_nwksz),  am(l_iwksz),    
     &      am(l_rwork),   am(l_iwork)) 
 
c Estimate the total CPU time 
 
 call CPU_Time(time) 
 write(3,*) 
 write(*,*) 
      write(3,*) ' Total CPU time used =', time-time0, '(sec)' 
      write(*,*) ' Total CPU time used =', time-time0, '(sec)' 
 
      stop 
      end 
 
c--------------------------------------------------------------------------- 
c Definition of Variables: 
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c 
c maxa      = maximum size of the array am 
c maxia     = maximum number of variables allowed 
c am        = a large array storing the variables for the SLATEC GMRES 
solver 
c ia        = an array storing the locations of the variables in the array 
am 
c 
c n         = number of elements (= number of nodes) 
c x         = coordinates of the nodes 
c y         = coordinates of the end points of the elements 
c node      = element connectivity 
c dnorm     = normal at each node 
c bc        = BC type and value 
c 
c a         = multipole expansion moments 
c b         = local expansion coefficients 
c xmax,xmin = maximum and minimum x coordinate 
c ymax,ymin = maximum and minimum y coordinate 
c ielem     = ielem(i) gives the original element number for i-th element in  
c             the quad-tree structure 
c itree     = itree(c) gives the cell location of c-th cell within each  
c             tree level 
c loct      = elements included in the c-th cell are listed starting at  
c             the loct(c)-th place in the array ielem 
c numt      = numt(c) gives the number of elements included in the c-th cell 
c ifath     = ifath(c) gives the number of the parent cell of the c-th cell 
c level     = level l cells start at the level(l)-th cell in the tree 
c lowlev    = number of the tree levels 
c 
c maxl      = maximum number of elements allowed in a leaf 
c levmx     = maximum number of levels allowed in the tree structure 
c nexp      = number of terms in multipole expansion 
c ntylr     = number of terms in local expansion 
c tolerance = GMRES solution convergence tolerance 
c ncellmx   = maximum number of cells allowed in the tree 
c nleafmx   = maximum number of leaves allowed in the tree 
c mxl       = maximum dimension of Krylov subspace (used in GMRES) 
c 
c u         = first stores b vector; then solution vector of system Ax = b 
c ax        = resulting vector of multiplication Ax 
c nfield    = number of the field points inside the domain 
c xfield    = coordinates of the field points inside the domain 
c f         = values of the potential at the field points inside the domain 
c 
c The following variables and arrays are used in the SLATEC GMRES solver: 
c   sb,sx,igwk,rgwk,ligw,lrgw,nwksz,iwksz,rwork,iwork 
c 
c--------------------------------------------------------------------------- 
 
 subroutine lpointer(lp, ln, maxia, ia, n, nexp, ntylr, ncellmx, 
     &              levmx, ligw, lrgw, nwksz, iwksz, nfield, 
     &              l_n,       l_x,       l_y,     l_node,  l_dnorm,  
     &              l_bc,      l_a,       l_b,     l_xmax,   
     &              l_xmin,    l_ymax,    l_ymin,  l_ielem, l_itree,  
     &              l_level,   l_loct,    l_numt,  l_ifath, l_lowlev,  
     &              l_maxl,    l_levmx,   l_nexp,  l_ntylr, l_tolerance, 
     &              l_ncellmx, l_nleafmx, l_mxl,   l_u,     l_ax, 
     &              l_sb,      l_sx,      l_ligw,  l_lrgw,  l_igwk,  
     &              l_rgwk,    l_nwksz,   l_iwksz, l_rwork, l_iwork,  
     &              l_xfield,  l_nfield,  l_f) 
 
 dimension ia(maxia) 
 
 lp   = 1 
 
 l_n         = l_address( 1,maxia,ia,lp,4,1) 
 l_x         = l_address( 2,maxia,ia,lp,8,n*2) 
 l_y         = l_address( 3,maxia,ia,lp,8,n*2) 
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 l_node      = l_address( 4,maxia,ia,lp,4,n*2) 
 l_dnorm     = l_address( 5,maxia,ia,lp,8,n*2) 
 l_bc        = l_address( 6,maxia,ia,lp,8,n*2) 
 l_a         = l_address( 7,maxia,ia,lp,16,(nexp+1)*ncellmx) 
 l_b         = l_address( 8,maxia,ia,lp,16,(ntylr+1)*ncellmx) 
 l_xmax      = l_address( 9,maxia,ia,lp,8,1) 
 l_xmin      = l_address(10,maxia,ia,lp,8,1) 
 l_ymax      = l_address(11,maxia,ia,lp,8,1) 
 l_ymin      = l_address(12,maxia,ia,lp,8,1) 
 l_ielem     = l_address(13,maxia,ia,lp,4,n) 
 l_itree     = l_address(14,maxia,ia,lp,4,ncellmx) 
 l_level     = l_address(15,maxia,ia,lp,4,levmx+1) 
 l_loct      = l_address(16,maxia,ia,lp,4,ncellmx) 
 l_numt      = l_address(17,maxia,ia,lp,4,ncellmx) 
 l_ifath     = l_address(18,maxia,ia,lp,4,ncellmx) 
 l_lowlev    = l_address(19,maxia,ia,lp,4,1) 
 l_maxl      = l_address(20,maxia,ia,lp,4,1) 
 l_levmx     = l_address(21,maxia,ia,lp,4,1) 
 l_nexp      = l_address(22,maxia,ia,lp,4,1) 
 l_ntylr     = l_address(23,maxia,ia,lp,4,1) 
 l_tolerance = l_address(24,maxia,ia,lp,8,1) 
 l_ncellmx   = l_address(25,maxia,ia,lp,4,1) 
 l_nleafmx   = l_address(26,maxia,ia,lp,4,1) 
 l_mxl       = l_address(27,maxia,ia,lp,4,1) 
 l_u         = l_address(28,maxia,ia,lp,8,n) 
 l_ax        = l_address(29,maxia,ia,lp,8,n) 
 l_sb        = l_address(30,maxia,ia,lp,8,n) 
 l_sx        = l_address(31,maxia,ia,lp,8,n) 
 l_ligw      = l_address(32,maxia,ia,lp,4,1) 
 l_lrgw      = l_address(33,maxia,ia,lp,4,1) 
 l_igwk      = l_address(34,maxia,ia,lp,4,ligw) 
 l_rgwk      = l_address(35,maxia,ia,lp,8,lrgw) 
 l_nwksz     = l_address(36,maxia,ia,lp,4,1) 
 l_iwksz     = l_address(37,maxia,ia,lp,4,1) 
 l_rwork     = l_address(38,maxia,ia,lp,8,nwksz) 
 l_iwork     = l_address(39,maxia,ia,lp,4,iwksz) 
 l_xfield    = l_address(40,maxia,ia,lp,8,nfield*2) 
 l_nfield    = l_address(41,maxia,ia,lp,4,1) 
 l_f         = l_address(42,maxia,ia,lp,8,nfield) 
 
 return 
 end 
 
c--------------------------------------------------------------------------- 
 
      integer function l_address(ln,maxia,ia,lp,ibyte,length) 
 
      dimension ia(maxia) 
 
      l_address = lp 
      ia(ln)    = lp 
 
 iu  = 16 
      inc = (ibyte*length-1)/iu+1 
      lp  = lp+inc 
      if(ln .gt. maxia) then 
        write(*,*)'!Specified # of variables maxia',maxia,'is too small' 
   stop 
      endif 
 
      return 
      end 
 
c--------------------------------------------------------------------------- 
 
      subroutine assigni(i,ii) 
 
      integer i,ii 
      ii = i 
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      return 
      end 
 
      subroutine assignd(d,dd) 
 
      real*8 d,dd 
      dd = d 
 
      return 
      end 
 
c--------------------------------------------------------------------------- 
 
 subroutine fmmmain(maxa, maxia, am, ia, n,x,y,node,dnorm,bc,  
     &            a,b, xmax,xmin,ymax,ymin,ielem,itree,level,loct,numt, 
     &            ifath,lowlev,maxl,levmx,nexp,ntylr,tolerance,ncellmx, 
     &            nleafmx,mxl,u,ax,nfield,xfield,f,sb,sx,igwk,rgwk, 
     &            ligw,lrgw,nwksz,iwksz,rwork,iwork) 
 
      implicit real*8(a-h,o-z) 
      complex*16 am(maxa), a,b 
      dimension  ia(maxia),ja(1),a(0:nexp,ncellmx),b(0:ntylr,ncellmx), 
     &           x(2,n),y(2,n),node(2,n),dnorm(2,n),bc(2,n), 
     &           ielem(n),itree(ncellmx),level(0:levmx),loct(ncellmx), 
     &           numt(ncellmx),ifath(ncellmx), u(n),ax(n),sb(n),sx(n), 
     &           igwk(ligw),rgwk(lrgw),rwork(nwksz),iwork(iwksz), 
     &           xfield(2,nfield),f(nfield) 
 
      external  matvec, msolve 
 
c Input parameters and prepare the BEM model 
 
      call prep_model(n,x,y,node,bc,dnorm,xfield,nfield,maxl,levmx, 
     &                nexp,ntylr,tolerance,xmin,xmax,ymin,ymax) 
 
c Generate the quad-tree structure for the elements 
 
      call tree(n,x,xmax,xmin,ymax,ymin,ielem,itree,level,loct,numt, 
     &          ifath,lowlev,maxl,levmx,ncellmx,nleafmx,nwksz,iwork) 
 
c Compute the right-hand-side vector b with the FMM 
 
 call fmmbvector(n,x,y,node,dnorm,bc,u,ax,a,b,xmax,xmin,ymax,ymin, 
     &                ielem,itree,level,loct,numt,ifath, 
     &                nexp,ntylr,ncellmx,lowlev,maxl,rwork,iwork) 
 
c Solve the BEM system of equations Ax=b with the fast multipole BEM 
 
c Prepare parameters for calling the iterative solver GMRES  
c (SLATEC GMRES solver is used, which is available at www.netlib.org.  
c See the documentation for the SLATEC GMRES solver for more information   
c about the following related parameters) 
 
      nelt    = 1 
      isym    = 0 
      itol    = 0 
      tol     = tolerance 
      iunit   = 3 
      igwk(1) = mxl 
      igwk(2) = mxl 
      igwk(3) = 0 
      igwk(4) = 1 
      igwk(5) = 10 
      do i=1,n 
        ax(i) = 0.d0 
      enddo 
 
 write(*,*) 'Call Equation Solver GMRES ...' 
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      call dgmres(n,u,ax, nelt,ia,ja,am,isym, matvec,msolve,itol,tol, 
     &            itmax,iter,er,ierr,iunit,sb,sx,rgwk,lrgw,igwk,ligw, 
     &            rwork,iwork) 
      write(3,*) ' Error indicator from GMRES:', ierr 
      write(*,*) ' Error indicator from GMRES:', ierr 
 
c Output the boundary solution 
 
      do i=1,n 
        u(ielem(i)) = ax(i) 
      enddo 
 
      write(3,*) ' Fast Multipole BEM Solution:' 
      do i=1,n 
        write(3,*) i, u(i) 
        write(7,*) i, u(i) 
 enddo 
 
c Evaluate the field inside the domain and output the results 
 
 call domain_field(nfield,xfield,f,n,x,y,bc,node,dnorm,u) 
 
 return 
      end 
 
c--------------------------------------------------------------------------- 
 
      subroutine prep_model(n,x,y,node,bc,dnorm,xfield,nfield,maxl, 
     &                      levmx,nexp,ntylr,tolerance, 
     &                      xmin,xmax,ymin,ymax) 
 
      implicit real*8(a-h,o-z) 
 
      dimension x(2,*),y(2,*),node(2,*),bc(2,*),dnorm(2,*),xfield(2,*) 
 
 write(*,2) n, maxl, levmx, nexp, tolerance 
 write(3,2) n, maxl, levmx, nexp, tolerance 
2 format('  Total number of elements           =', I12 
     &      /'  Max. number of elements in a leaf  =', I12 
     &      /'  Max. number of tree levels         =', I12 
     &      /'  Number of terms used in expansions =', I12 
     &      /'  Tolerance for convergence          =', D12.3) 
 write(*,*) 
 write(3,*) 
 
c Input the mesh data 
 
 read(5,*) 
 do i=1,n 
   read(5,*) itemp, y(1,i), y(2,i) 
 enddo 
 
 read(5,*) 
 do i=1,n 
   read(5,*) itemp, node(1,i), node(2,i), bc(1,i), bc(2,i) 
 enddo 
 
c Input the field points inside the domain 
 
 if (nfield .gt. 0) then 
 read(5,*) 
 do i=1,nfield 
   read(5,*) itemp, xfield(1,i), xfield(2,i) 
 enddo 
 endif 
 
c Compute mid-nodes and normals of the elements 
 
      do i=1,n 
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        x(1,i) = (y(1,node(1,i))+y(1,node(2,i)))*0.5 
        x(2,i) = (y(2,node(1,i))+y(2,node(2,i)))*0.5 
        h1 =  y(2,node(2,i)) - y(2,node(1,i)) 
        h2 = -y(1,node(2,i)) + y(1,node(1,i)) 
        el = sqrt(h1**2 + h2**2) 
        dnorm(1,i) = h1/el 
        dnorm(2,i) = h2/el 
 enddo 
 
c Determine the square bounding the problem domain (Largest cell used in 
FMM) 
 
      xmin=x(1,1) 
      xmax=x(1,1) 
      ymin=x(2,1) 
      ymax=x(2,1) 
 
      do 10 i=2,n 
         if(x(1,i).le.xmin) then 
            xmin=x(1,i) 
         elseif(x(1,i).ge.xmax) then 
            xmax=x(1,i) 
         endif 
         if(x(2,i).le.ymin) then 
            ymin=x(2,i) 
         elseif(x(2,i).ge.ymax) then 
            ymax=x(2,i) 
         endif 
10    continue 
 
 scale = 1.05d0    ! Make the square slightly larger 
      xyd   = max(xmax-xmin,ymax-ymin)/2.d0 
 xyd   = xyd*scale 
      cx    = (xmin+xmax)/2.d0 
      cy    = (ymin+ymax)/2.d0 
      xmin  = cx-xyd 
      xmax  = cx+xyd 
      ymin  = cy-xyd 
      ymax  = cy+xyd 
 
c Output nodal coordinates for plotting 
 
      do i = 1,n 
   write(8,*) x(1,i), x(2,i) 
 enddo 
 
      return 
      end 
 
c--------------------------------------------------------------------------- 
 
      subroutine tree(n,x,xmax,xmin,ymax,ymin,ielem,itree,level,loct, 
     &                numt,ifath,lowlev,maxl,levmx,ncellmx,nleafmx, 
     &                nwksz,iwork) 
 
      implicit real*8(a-h,o-z) 
      complex*16 a,b 
 
      dimension x(2,*),ielem(*),itree(*),level(0:*),loct(*),numt(*), 
     &          ifath(*), iwork(*), nwk(4) 
 
      do i=1,n 
        ielem(i) = i        ! Store the original element numbers in ielem 
 enddo 
 
c For the level 0 cell (largest cell) 
 
      itree(1) = 0 
      level(0) = 1 
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      level(1) = 2 
      loct(1)  = 1 
      ifath(1) = 1 
      numt(1)  = n 
      ndivx    = 1 
      lowlev   = 1 
      nleaf    = 0 
      nswa     = 0 
 
c For cells on level 1 to the lowest level (leaves) 
 
      do 10 lev=1,levmx 
         levp        = lev-1 
         levn        = lev+1 
         level(levn) = level(lev) 
         if(level(lev).eq.level(levp)) goto 900 
         ndivxp = ndivx 
         ndivx  = 2*ndivxp 
         dxp    = (xmax-xmin)/ndivxp    ! Parent cell size 
         dyp    = (ymax-ymin)/ndivxp     
 
         do 11 inp=level(levp),level(lev)-1 
            itrp = itree(inp) 
            if(numt(inp).gt.maxl .or.  
     &         (lev.le.2 .and. numt(inp).ne.0) ) then  
               itrpx = mod(itrp,ndivxp) 
               itrpy = itrp/ndivxp 
               xsep  = xmin+(itrpx + 0.5d0)*dxp 
               ysep  = ymin+(itrpy + 0.5d0)*dyp 
 
               call bisec(x,ielem(loct(inp)),numt(inp),ysep,nsepy, 2) 
               call bisec(x,ielem(loct(inp)),nsepy-1,  xsep,nsepx1,1) 
               call bisec(x,ielem(loct(inp)+nsepy-1), 
     &                    numt(inp)-nsepy+1,xsep,nsepx2,1) 
               nwk(1) = nsepx1-1 
               nwk(2) = nsepy-nsepx1 
               nwk(3) = nsepx2-1 
               nwk(4) = numt(inp)-nsepy-nsepx2+2 
               locc   = loct(inp) 
               do 12 icldy=0,1 
               do 12 icldx=0,1 
                  icld = icldy*2+icldx+1 
 
                  if(nwk(icld).gt.0) then 
                     nrel = level(levn) 
                     if(nrel.gt.ncellmx) then 
        write(*,*) " ncellmx error" 
                  stop 
                endif 
                     itree(nrel) = ((itrpy*2+icldy)*ndivxp + itrpx)*2 
     &                             +icldx 
                     loct(nrel)  = locc 
                     numt(nrel)  = nwk(icld) 
                     ifath(nrel) = inp 
                     lowlev=lev 
c Leaves: 
                     if((lev.ne.1) .and. 
     &                  (numt(nrel).le.maxl .or. lev.eq.levmx)) then   
                        nleaf = nleaf+1 
                          if(nleaf.gt.nleafmx) then 
        write(*,*) " nleafmx error" 
                       stop 
                     endif 
                        nleaf3          = nleaf*3 - 1 
                        iwork(nleaf3)   = nrel ! Store cell number (icell) 
                        iwork(nleaf3+1) = nswa + 1  ! Location of pre-
cond’er 
                        iwork(nleaf3+2) = 1 ! Initial value of switch isw 
                        nswa            = nswa + numt(nrel)**2  
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                        if(nswa.gt.nwksz) then 
        write(*,*) " nwksz error" 
                     stop 
                   endif 
                     endif 
 
                     level(levn) = nrel + 1 
                     locc        = locc + nwk(icld) 
                  endif 
 12            continue 
            endif 
 11      continue 
 10   continue 
 
900  iwork(1) = nleaf                    ! Store number of leaves in 
iwork(1) 
 
 write(3,*) ' Number of tree levels              =', lowlev 
      write(*,*) ' Number of tree levels              =', lowlev 
 write(3,*) ' Number of leaves                   =', nleaf 
      write(*,*) ' Number of leaves                   =', nleaf 
      write(3,*) ' Number of cells                    =', nrel 
      write(*,*) ' Number of cells                    =', nrel 
 write(3,*) 
      write(*,*) 
 
      return 
      end 
 
c--------------------------------------------------------------------------- 
 
      subroutine bisec(x,ielem,n,xsep,nsep,ic) 
 
      implicit real*8(a-h,o-z) 
 
      dimension x(2,*),ielem(*) 
 
      nsep = 1 
      if(n.le.0) return 
 
      do ifr=1,n 
         if(x(ic,ielem(ifr)).le.xsep) then 
            if(ifr.ne.nsep) then 
               istore      = ielem(nsep) 
               ielem(nsep) = ielem(ifr) 
               ielem(ifr)  = istore 
            endif 
            nsep = nsep + 1 
         endif 
 enddo 
 
      return 
      end 
 
c--------------------------------------------------------------------------- 
 
 subroutine fmmbvector(n,x,y,node,dnorm,bc,u,ax,a,b,xmax,xmin, 
     &              ymax,ymin,ielem,itree,level,loct,numt,ifath, 
     &              nexp,ntylr,ncellmx,lowlev,maxl,rwork,iwork) 
 
      implicit real*8(a-h,o-z) 
      complex*16 a,b 
 
      dimension a(0:nexp,ncellmx),b(0:ntylr,ncellmx), 
     &          x(2,*),y(2,*),node(2,*),dnorm(2,*),bc(2,*),u(*),ax(*), 
     &          ielem(*),itree(*),level(0:*),loct(*),numt(*),ifath(*), 
     &          rwork(*),iwork(*) 
 
c Switch the BC type 
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 do i=1,n 
   if(bc(1,i) .eq. 1.) then 
     bc(1,i) = 2.d0 
   else 
     bc(1,i) = 1.d0 
   endif 
 enddo 
 
      do i=1,n 
        u(i)  = bc(2,ielem(i)) 
        ax(i) = 0.d0 
      enddo 
 
c Apply the FMM to conpute the right-hand-side vector b 
 
      call upward(u,n,y,node,dnorm,bc,a,xmax,xmin,ymax,ymin,ielem, 
     &        itree,level,loct,numt,ifath,nexp,ncellmx,lowlev,maxl) 
 
      call dwnwrd(u,ax,n,x,y,node,dnorm,bc,a,b,xmax,xmin,ymax,ymin, 
     &        ielem,itree,level,loct,numt,ifath,nexp,ntylr,ncellmx, 
     &        lowlev,maxl,rwork,iwork) 
 
c Store b vector in u and switch the BC type back 
 
 do i=1,n 
   u(i) = - ax(i) 
   if(bc(1,i) .eq. 1.) then 
     bc(1,i) = 2.d0 
   else 
     bc(1,i) = 1.d0 
   endif 
 enddo 
 
 return 
 end 
 
c--------------------------------------------------------------------------- 
 
      subroutine matvec(n,u,ax,nelt,ia,ja,am,isym) 
 
      implicit real*8(a-h,o-z) 
      complex*16 am, a, b 
 
      dimension u(*),ax(*),ia(*),ja(*),am(*) 
 
c Retrieve the pointers 
 
 l_n         = ia(1) 
 l_x         = ia(2) 
 l_y         = ia(3) 
 l_node      = ia(4) 
 l_dnorm     = ia(5) 
 l_bc        = ia(6) 
 l_a         = ia(7) 
 l_b         = ia(8) 
 l_xmax      = ia(9) 
 l_xmin      = ia(10) 
 l_ymax      = ia(11) 
 l_ymin      = ia(12) 
 l_ielem     = ia(13) 
 l_itree     = ia(14) 
 l_level     = ia(15) 
 l_loct      = ia(16) 
 l_numt      = ia(17) 
 l_ifath     = ia(18) 
 l_lowlev    = ia(19) 
 l_maxl      = ia(20) 
 l_levmx     = ia(21) 
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 l_nexp      = ia(22) 
 l_ntylr     = ia(23) 
 l_tolerance = ia(24) 
 l_ncellmx   = ia(25) 
 l_nleafmx   = ia(26) 
 l_mxl       = ia(27) 
 l_u         = ia(28) 
 l_ax        = ia(29) 
 l_sb        = ia(30) 
 l_sx        = ia(31) 
 l_ligw      = ia(32) 
 l_lrgw      = ia(33) 
 l_igwk      = ia(34) 
 l_rgwk      = ia(35) 
 l_nwksz     = ia(36) 
 l_iwksz     = ia(37) 
 l_rwork     = ia(38) 
 l_iwork     = ia(39) 
 
c Evaluate matrix-vector multiplication Ax using the fast multipole BEM 
 
      call upward(u,       am(l_n),     am(l_y),       am(l_node),  
     &        am(l_dnorm), am(l_bc),    am(l_a),       am(l_xmax),  
     &        am(l_xmin),  am(l_ymax),  am(l_ymin),    am(l_ielem),  
     &        am(l_itree), am(l_level), am(l_loct),    am(l_numt),   
     &        am(l_ifath), am(l_nexp),  am(l_ncellmx), am(l_lowlev),  
     &        am(l_maxl)) 
 
      call dwnwrd(u,ax,    am(l_n),       am(l_x),      am(l_y),      
     &        am(l_node),  am(l_dnorm),   am(l_bc),     am(l_a),      
     &        am(l_b),     am(l_xmax),    am(l_xmin),   am(l_ymax),   
     &        am(l_ymin),  am(l_ielem),   am(l_itree),  am(l_level), 
     &        am(l_loct),  am(l_numt),    am(l_ifath),  am(l_nexp),   
     &        am(l_ntylr), am(l_ncellmx), am(l_lowlev), am(l_maxl),   
     &        am(l_rwork), am(l_iwork)) 
 
      return 
      end 
 
c--------------------------------------------------------------------------- 
 
      subroutine msolve(n,r,z,nelt,ia,ja,am,isym,rwork,iwork) 
 
      implicit real*8(a-h,o-z) 
      complex*16 am(*) 
 
      dimension  r(*),z(*),ia(*),ja(1),rwork(*),iwork(*) 
 
c Load the pointers 
 
 l_loct = ia(16) 
 l_numt = ia(17) 
 
c Compute the preconditioning matrix 
 
      call msolveinv(r,z,rwork,iwork, am(l_loct), am(l_numt)) 
 
      return 
      end 
 
c--------------------------------------------------------------------------- 
 
      subroutine msolveinv(r,z,rwork,iwork,loct,numt) 
 
      implicit real*8(a-h,o-z) 
 
      dimension  r(*),z(*),iwork(*),rwork(*),loct(*),numt(*) 
 
      nleaf = iwork(1) 
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      do l = 1,nleaf 
         l3   = l*3-1 
         inod = iwork(l3) 
         indr = iwork(l3+1) 
         indx = loct(inod) 
         indi = indx+3*nleaf+1 
         nr   = numt(inod) 
 
         call dcopy(nr,r(indx),1,z(indx),1) 
         call dluax(rwork(indr),nr,nr,z(indx),iwork(l3+2), 
     &              iwork(indi),icon) 
         if(icon.ne.0) then 
            write(*,*) " dluax error, icon =", icon 
       stop 
         endif 
         iwork(l3+2) = 2 
 enddo 
 
      return 
      end 
 
c--------------------------------------------------------------------------- 
c   This subroutine solves linear system of equations Ax=b by LU 
decomposition. 
c 
c   a   .... given regular coefficient matrix. 
c   k   .... given adjustable dimension for array a. 
c   n   .... given order of matrix a. 
c   b   .... given constant vector. 
c   isw .... given control information: 
c             if 1, solve equations entirely. 
c             if 2, solve equations with last LU-decomposed entries. 
c   ip  .... auxiliary 1 dimensioned array, size is n. 
c             transposition vector which represents 
c             row-exchanging by partial pivoting. 
c   icon.... resultant condition code. 
c 
c   Slave subroutines used (available at www.netlib.org): 
c     dgetrf, dgetrs 
c 
c--------------------------------------------------------------------------- 
 
      subroutine dluax(a,k,n,b,isw,ip,icon) 
       
      implicit real*8 (a-h,o-z) 
      dimension a(k,n),b(n),ip(n) 
      data ione/1/ 
       
      icon = 30000 
      if(isw.eq.1) go to 1000 
      if(isw.eq.2) go to 1100 
      go to 8000 
 1000 call dgetrf(n,n,a,k,ip,icon) 
      isw = 2 
 1100 call dgetrs('n',n,ione,a,k,ip,b,n,icon) 
 8000 continue 
  
      return 
      end 
 
c--------------------------------------------------------------------------- 
 
      subroutine upward(u,n,y,node,dnorm,bc,a,xmax,xmin,ymax,ymin,ielem, 
     &             itree,level,loct,numt,ifath,nexp,ncellmx,lowlev,maxl) 
 
      implicit real*8(a-h,o-z) 
      complex*16 a,b, z0,zi 
 
      dimension a(0:nexp,ncellmx), 
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     &          y(2,*),node(2,*),dnorm(2,*),bc(2,*),u(*), 
     &          ielem(*),itree(*),level(0:*),loct(*),numt(*),ifath(*) 
 
      do i=1,level(lowlev+1)-1 
      do k=0,nexp 
         a(k,i) = (0.d0,0.d0)      ! Clear multipole moments 
 enddo 
 enddo 
 
      do 10 lev=lowlev,2,-1        ! Loop from leaf to level 2 cells 
(Upward) 
 
         ndivx = 2**lev 
         dx    = (xmax-xmin)/ndivx ! Determine cell size 
         dy    = (ymax-ymin)/ndivx 
 
         do 20 icell=level(lev),level(lev+1)-1  ! Loop for level l cells 
            itr  = itree(icell) 
            itrx = mod(itr,ndivx) 
            itry = itr/ndivx                    ! Position of the cell 
            cx   = xmin+(itrx + 0.5d0)*dx 
            cy   = ymin+(itry + 0.5d0)*dy       ! Center of the cell 
 
c Multipole expansion 
 
            if(numt(icell).le.maxl .or. lev.eq.lowlev) then  ! Compute 
moment  
               call moment(a(0,icell),y,node,ielem(loct(icell)), 
     &                     numt(icell),nexp,cx,cy,u(loct(icell)), 
     &        bc,dnorm) 
            endif 
 
c M2M translation 
 
            if(lev.ne.2) then           ! Do M2M translation to form moments  
               cxp = xmin+(int(itrx/2)*2 + 1)*dx 
               cyp = ymin+(int(itry/2)*2 + 1)*dy    ! Center of parent cell 
               z0  = cmplx(cx-cxp, cy-cyp)          ! (z_c - z_c') 
               io  = ifath(icell)                   ! Cell no. of parent 
cell 
 
               zi = (1.d0,0.d0) 
               do k=0,nexp 
                  do m=k,nexp 
                     a(m,io) = a(m,io) + zi*a(m-k,icell)    ! Use M2M  
                  enddo 
                  zi = zi*z0/(k+1) 
               enddo 
            endif 
 
 20      continue 
 
 10   continue 
 
      return 
      end 
 
c--------------------------------------------------------------------------- 
 
      subroutine moment(a,y,node,ielem,num,nexp,cx,cy,u,bc,dnorm) 
 
      implicit real*8(a-h,o-y) 
      implicit complex*16(z) 
 
      complex*16 a(0:*) 
      dimension  y(2,*),node(2,*),ielem(*),u(*), bc(2,*),dnorm(2,*) 
 
      do i=1,num    ! Over elements in the leaf 
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         nelm = ielem(i)                    ! Element number 
         n1 = node(1,nelm)                  ! Two ends of the element 
         n2 = node(2,nelm)                   
         z1 = cmplx(y(1,n1)-cx, y(2,n1)-cy)  
         z2 = cmplx(y(1,n2)-cx, y(2,n2)-cy)  
         zwbar = conjg(z2 - z1)              
         zwbar = zwbar/abs(zwbar)           ! omega bar 
         zp1   = z1*zwbar                    
         zp2   = z2*zwbar                    
         znorm = cmplx(dnorm(1,nelm),dnorm(2,nelm)) ! complex normal n 
         if(bc(1,nelm) .eq. 1.d0) then      ! Assign values to phi and q 
           phi = 0.D0 
           q   = u(i) 
         else if(bc(1,nelm) .eq. 2.d0) then 
           phi = u(i) 
           q   = 0.D0 
         endif 
          
c Compute moments: 
  
         a(0) = a(0) - (zp2-zp1)*q              ! G kernel 
         do k=1,nexp 
           a(k) = a(k) + (zp2-zp1)*znorm*phi    ! F kernel 
           zp1  = zp1*z1/(k+1) 
           zp2  = zp2*z2/(k+1) 
           a(k) = a(k) - (zp2-zp1)*q            ! G kernel 
         enddo 
 
      enddo 
 
      return 
      end 
 
c--------------------------------------------------------------------------- 
 
      subroutine dwnwrd(u,ax,n,x,y,node,dnorm,bc,a,b,xmax,xmin, 
     &                  ymax,ymin,ielem,itree,level,loct,numt,ifath, 
     &                  nexp,ntylr,ncellmx,lowlev,maxl,rwork,iwork) 
 
      implicit real*8(a-h,o-z) 
      complex*16 a,b, z0,zi,zo,zp 
 
      dimension a(0:nexp,ncellmx),b(0:ntylr,ncellmx),x(2,*),y(2,*),  
     &          node(2,*),dnorm(2,*),bc(2,*),u(*),ax(*),ielem(*), 
     &          itree(*),level(0:*),loct(*),numt(*),ifath(*), 
     &          rwork(*),iwork(*) 
 
      data pi/3.141592653589793D0/ 
 
 pi2 = pi*2.d0 
 
      do i=1,level(lowlev+1)-1 
      do k=0,ntylr 
         b(k,i) = (0.d0,0.d0) 
 enddo 
 enddo 
      do i=1,n 
         ax(i) = 0.d0 
 enddo 
 
      leaf = 0 
      indr = 1 
      indi = 1 
      do 110 lev=2,lowlev       ! Downward from level 2 cells to leaf cells 
         ndivx = 2**lev 
         dx    = (xmax-xmin)/ndivx 
         dy    = (ymax-ymin)/ndivx 
         do 120 icell=level(lev),level(lev+1)-1 ! Loop for level l cells 
            itr   = itree(icell) 
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            itrx  = mod(itr,ndivx) 
            itry  = itr/ndivx                   ! Position of the cell 
            cx    = xmin+(itrx + 0.5d0)*dx 
            cy    = ymin+(itry + 0.5d0)*dy      ! Center of the cell 
            itrxp = itrx/2 
            itryp = itry/2 
 
c From the parent cell (use L2L) 
 
            if(lev.ne.2) then 
               cxp = xmin+(itrxp*2+1)*dx 
               cyp = ymin+(itryp*2+1)*dy        ! Center of the parent cell 
               z0  = cmplx(cx-cxp, cy-cyp) 
               io  = ifath(icell)               ! Cell no. of the parent 
cell 
               zi  = (1.d0,0.d0) 
               do k=0,ntylr 
                  do m=0,ntylr-k 
                     b(m,icell) = b(m,icell) + zi*b(k+m,io) ! L2L 
translation 
                  enddo 
                  zi = zi*z0/(k+1) 
               enddo 
            endif 
 
         do 130 jcell=level(lev),level(lev+1)-1 
            jtr   = itree(jcell) 
            jtrx  = mod(jtr,ndivx) 
            jtry  = jtr/ndivx 
            jtrxp = jtrx/2 
            jtryp = jtry/2 
 
c The parents must be neighbours 
 
            if(iabs(itrxp-jtrxp).gt.1 .or. iabs(itryp-jtryp).gt.1) 
     &         goto 130 
 
c For non-neighbours (cells in interaction list) (use M2L) 
 
            if(iabs(itrx-jtrx).gt.1 .or. iabs(itry-jtry).gt.1) then 
               ccx = xmin + (jtrx + 0.5d0)*dx 
               ccy = ymin + (jtry + 0.5d0)*dy   ! Center of the j cell                
z0  = cmplx(cx-ccx, cy-ccy) 
 
               b(0,icell) = b(0,icell) - log(z0)*a(0,jcell) 
          zo = 1. 
          do m=1,nexp+ntylr 
                   zo   = zo/z0 
                   kmin = max(0,m-nexp) 
                   kmax = min(m,ntylr) 
                   sgn  = (-1.0)**kmin 
                   do k=kmin,kmax 
                      b(k,icell) = b(k,icell) + sgn*zo*a(m-k,jcell) ! M2L  
                      sgn = -sgn 
                   enddo 
                   zo = zo*m 
                enddo 
 
c Contribution from neighbouring leaves (use direct) 
 
            elseif(numt(jcell).le.maxl .or. 
     &             numt(icell).le.maxl .or. lev.eq.lowlev) then 
               if(icell.eq.jcell) then 
                  leaf  = leaf+1 
                  leaf3 = leaf*3-1 
                  if(iwork(leaf3).ne.icell) then 
                     write(3,*) leaf,iwork(1),iwork(leaf3),icell,'check' 
                     write(*,*) " icell error" 
                stop 
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                  endif 
                  indr = iwork(leaf3+1) 
                  indi = iwork(leaf3+2) 
               endif 
 
                  call direct(ielem(loct(icell)),ielem(loct(jcell)), 
     &                       node,x,y,numt(icell),numt(jcell),dnorm, 
     &                       ax(loct(icell)),u(loct(jcell)),icell,jcell, 
     &                       rwork(indr),indi,bc)      ! Direct integration 
            endif 
 130     continue 
 
c Compute Ax if reach a leaf (Evaluate local expansion at each  
c collocation point) 
 
      if(numt(icell).le.maxl .or. lev.eq.lowlev) then 
         fact = 1.d0 
            do itylr=1,ntylr 
              fact = fact/itylr 
              b(itylr,icell) = b(itylr,icell)*fact 
            enddo 
         do in=1,numt(icell) 
            inax = loct(icell) + in-1       ! Element number in the tree  
            indx = ielem(inax)              ! Original element number 
            zp   = b(ntylr,icell) 
            z0   = cmplx(x(1,indx)-cx, x(2,indx)-cy) 
            do itylr=ntylr-1,0,-1 
              zp = zp*z0 + b(itylr,icell)   ! Local expansion 
      enddo 
            zp = zp/pi2 
            ax(inax) = ax(inax) + dreal(zp) ! Array Ax 
    enddo 
      endif 
 
 120  continue 
 110  continue 
 
      return 
      end 
 
c--------------------------------------------------------------------------- 
 
      subroutine direct(inod,jnod,node,x,y,ni,nj,dnorm,ax,u,icell,jcell, 
     &                  amat,isw,bc) 
 
      implicit real*8(a-h,o-z) 
 
      dimension inod(*),jnod(*),node(2,*),x(2,*),y(2,*), 
     &          dnorm(2,*),ax(*),u(*),amat(ni,*), bc(2,*) 
 
      data      pi/3.141592653589793D0/ 
 
 pi2 = pi*2.d0 
 
      do j = 1, nj 
 
        jind = jnod(j) 
 
        al = sqrt((y(1,node(1,jind))-y(1,node(2,jind)))**2 + 
     &            (y(2,node(1,jind))-y(2,node(2,jind)))**2)  ! Element 
length 
 
        do i = 1, ni 
 
          iind = inod(i) 
 
          x11 = y(1,node(1,jind)) - x(1,iind) 
          x21 = y(2,node(1,jind)) - x(2,iind) 
          x12 = y(1,node(2,jind)) - x(1,iind) 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 201 

          x22 = y(2,node(2,jind)) - x(2,iind) 
 
          r1 =  sqrt(x11**2 + x21**2) 
          r2 =  sqrt(x12**2 + x22**2) 
          d  =  x11*dnorm(1,jind) + x21*dnorm(2,jind) 
          t1 = -x11*dnorm(2,jind) + x21*dnorm(1,jind) 
          t2 = -x12*dnorm(2,jind) + x22*dnorm(1,jind) 
 
     ds = abs(d) 
            dtheta = datan2(ds*al,ds**2+t1*t2) 
 
          aa = (-dtheta*ds + al + t1*log(r1)-t2*log(r2))/pi2 
     if(d .lt. 0.d0) dtheta = -dtheta 
     bb = -dtheta/pi2 
     if(iind .eq. jind) bb = 0.5d0 
 
   if(bc(1,jind) .eq. 1.) then 
          ax(i) = ax(i) - aa*u(j) 
          if(icell.eq.jcell .and. isw.eq.1) then    ! Store coefficients in  
            amat(i,j) = - aa        ! first iteration 
          endif 
   else if(bc(1,jind) .eq. 2.) then 
          ax(i) = ax(i) + bb*u(j) 
          if(icell.eq.jcell .and. isw.eq.1) then    ! Store coefficients in  
            amat(i,j) =   bb        ! first iteration 
          endif 
   endif 
 
   enddo 
 
 enddo 
 
      return 
      end 
 
c--------------------------------------------------------------------------- 
 
      subroutine domain_field(nfield,xfield,f,n,x,y,bc,node,dnorm,u) 
 
      implicit real*8(a-h,o-z) 
 
      dimension xfield(2,*), f(*), x(2,*),y(2,*),bc(2,*),node(2,*), 
     &          dnorm(2,*),u(*) 
 
      data      pi/3.141592653589793D0/ 
 
 pi2 = pi*2.d0 
 
 do i=1,nfield 
        f(i) = 0.d0 
 enddo 
 
      do j=1,n      ! Loop over all elements 
 
   if(bc(1,j).eq.1) then 
     f0  = bc(2,j) 
     df0 = u(j) 
   else if(bc(1,j).eq.2) then 
     f0  = u(j) 
     df0 = bc(2,j) 
   endif 
 
   al   = sqrt((y(1,node(2,j))-y(1,node(1,j)))**2 + 
     &              (y(2,node(2,j))-y(2,node(1,j)))**2)      ! Element 
length 
 
 do i=1,nfield     ! Loop over all field points inside the domain 
 
        x11 = y(1,node(1,j)) - xfield(1,i) 
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        x21 = y(2,node(1,j)) - xfield(2,i) 
        x12 = y(1,node(2,j)) - xfield(1,i) 
        x22 = y(2,node(2,j)) - xfield(2,i) 
 
        r1 =  sqrt(x11**2 + x21**2) 
        r2 =  sqrt(x12**2 + x22**2) 
        d  =  x11*dnorm(1,j) + x21*dnorm(2,j) 
        t1 = -x11*dnorm(2,j) + x21*dnorm(1,j) 
        t2 = -x12*dnorm(2,j) + x22*dnorm(1,j) 
 
   ds = abs(d) 
   theta1 = datan2(t1,ds) 
   theta2 = datan2(t2,ds) 
   dtheta = theta2 - theta1 
 
        aa = (-dtheta*ds + al + t1*log(r1)-t2*log(r2))/pi2 
   if(d .lt. 0.d0) dtheta = -dtheta 
   bb = -dtheta/pi2 
 
   f(i) = f(i) + aa*df0 - bb*f0 
 
 enddo 
 enddo 
 
c Output results 
 
 do i=1,nfield 
   write(9,20) xfield(1,i), f(i) 
 enddo 
20    format(1x, 4E18.8) 
 
      return 
      end 
 
c--------------------------------------------------------------------------- 
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B.3. Sample Input File and Parameter File 
The following is a sample input file that can be used to run both the conventional 

BEM and the fast multipole BEM programs for 2D potential problems listed in the 
previous two sections. The model is for a square domain with dimensions of 1x1 and 
discretized with 20 constant line elements (five elements on each edge). A zero 
potential BC is applied on the left edge and a potential of 100 is applied on the right 
edge. The upper and lower edges are applied with flux free (q = 0) BCs. There are also 
11 field points inside the domain where the potential will be evaluated after the solution 
on the boundary is obtained. 
 
c--------------------------------------------------------------------------- 
c A Sample Input File (input.dat): 
c--------------------------------------------------------------------------- 
 
A Square Plate with Linear Temperature                                               30-MAR-04 
               20         11                    !  No. of Elements,  No. of Field Points  
# Nodes (Node No., x-coordinate, y-coordinate): 
1 0 0 
2 0.2 0 
3 0.4 0 
4 0.6 0 
5 0.8 0 
6 1 0 
7 1 0.2 
8 1 0.4 
9 1 0.6 
10 1 0.8 
11 1 1 
12 0.8 1 
13 0.6 1 
14 0.4 1 
15 0.2 1 
16 0 1 
17 0 0.8    
18 0 0.6    
19 0 0.4    
20 0 0.2    
# Elements and Boundary Conditions (Element No., Local Node 1, Local Node 2, BC Type, BC Value): 
1 1 2  2 0 
2 2 3  2 0 
3 3 4  2 0 
4 4 5  2 0 
5 5 6  2 0 
6 6 7  1 100 
7 7 8  1 100 
8 8 9  1 100 
9 9 10  1 100 
10 10 11  1 100 
11 11 12  2 0 
12 12 13  2 0 
13 13 14  2 0 
14 14 15  2 0 
15 15 16  2 0 
16 16 17  1 0 
17 17 18  1 0 
18 18 19  1 0 
19 19 20  1 0 
20 20 1  1 0 
# Field Points Inside Domain (Field Point No., x-coordinate, y-coordinate): 
1 0.01 0.5 
2 0.1 0.5 
3 0.2 0.5 
4 0.3 0.5 
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5 0.4 0.5 
6 0.5 0.5 
7 0.6 0.5 
8 0.7 0.5 
9 0.8 0.5 
10 0.9 0.5 
11 0.99 0.5 
# End of File 
c--------------------------------------------------------------------------- 

 
 

The following is the parameter file used only for the fast multipole BEM program 
for 2D potential problems. All the parameters are explained briefly in the file, which is 
used for the FMM and the iterative solver GMRES. In general, the values of these 
parameters in this file need not be changed when one is using the fast multipole BEM 
code, unless one wishes to use a different tolerance for convergence or number of terms 
in the multipole expansions. 
 
c--------------------------------------------------------------------------- 
c A Sample Parameter File (input.fmm, for 2D_Potential_FMM Program only): 
c--------------------------------------------------------------------------- 
 
    20    10    15    15     1.0E-8  ! maxl  levmx   nexp    ntylr  
tolerance 

50 50000 50000    50   90000000  ! maxia ncellmx nleafmx mxl    nwksz 
 
 
Definitions of the above parameters: 
 
maxl:  maximum number of elements in a leaf 
levmx: maximum number of tree levels 
nexp:  order of the fast multipole expansions (p) 
ntylr: order of the local expansions (= p, in general) 
tolerance:  tolerance for convergence used in the iterative solver 
maxia: maximum number of parameters 
ncellmx: maximum number of cells allowed in the tree 
nleafmx: maximum number of leaves allowed in the tree 
mxl:  maximum dimension of Krylov subspace used in the iterative 
solver 
nwksz: size of the space used to store coefficients in preconditioner 

(use default in the code, if value = 0) 
c--------------------------------------------------------------------------- 
 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 205 

References 

1. M. A. Jaswon, “Integral equation methods in potential theory. I,” Proc. Royal Soc. 
London A., 275, No. 23-32 (1963). 

2. G. T. Symm, “Integral equation methods in potential theory. II,” Proc. Royal Soc. 
London A., 275, No. 33-46 (1963). 

3. M. A. Jaswon and A. R. Ponter, “An integral equation solution of the torsion 
problem,” Proc. Royal Soc. London A., 273, No. 237-246 (1963). 

4. F. J. Rizzo, “An integral equation approach to boundary value problems of 
classical elastostatics,” Quart. Appl. Math., 25, No. 83-95 (1967). 

5. F. J. Rizzo and D. J. Shippy, “A formulation and solution procedure for the general 
non-homogeneous elastic inclusion problem,” International Journal of Solids and 
Structures, 4, No. 1161-1179 (1968). 

6. T. A. Cruse and F. J. Rizzo, “A direct formulation and numerical solution of the 
general transient elastodynamic problem - I,” J. Math. Anal. & Appl., 22, No. 1, 
244-259 (1968). 

7. T. A. Cruse, “A direct formulation and numerical solution of the general transient 
elastodynamic problem - II,” J. Math. Anal. & Appl., 22, No. 2, 341-355 (1968). 

8. T. A. Cruse, “Numerical solutions in three dimensional elastostatics,” 
International Journal of Solids and Structures, 5, No. 1259-1274 (1969). 

9. F. J. Rizzo and D. J. Shippy, “A method for stress determination in plane 
anisotropic elastic bodies,” Journal of Composite Materials, 4, No. 36-61 (1970). 

10. F. J. Rizzo and D. J. Shippy, “A method of solution for certain problems of 
transient heat conduction,” AIAA Journal, 8, No. 11, 2004-2009 (1970). 

11. F. J. Rizzo and D. J. Shippy, “An application of the correspondence principle of 
linear viscoelasticity theory,” SIAM Journal of Applied Mathematics, 21, No. 2, 
321-330 (1971). 

12. T. A. Cruse and W. V. Buren, “Three-dimensional elastic stress analysis of a 
fracture specimen with an edge crack,” International Journal of Fracture 
Mechanics, 7, No. 1, 1-16 (1971). 

13. T. A. Cruse and J. L. Swedlow, “Formulation of boundary integral equations for 
three-dimensional elasto-plastic flow,” International Journal of Solids and 
Structures, 7, No. 1673-1683 (1971). 

14. T. A. Cruse, “Application of the boundary-integral equation method to three-
dimensional stress analysis,” Comput Struct, 3, No. 509-527 (1973). 

15. T. A. Cruse, “An improved boundary-integral equation method for three 
dimensional elastic stress analysis,” Comput Struct, 4, No. 741-754 (1974). 

16. T. A. Cruse and F. J. Rizzo, eds. Boundary-Integral Equation Method: 
Computational Applications in Applied Mechanics. Vol. 11 (AMD-ASME,  1975). 

17. J. C. Lachat and J. O. Watson, “Effective numerical treatment of boundary integral 
equations: a formulation for three-dimensional elastostatics,” International 
Journal for Numerical Methods in Engineering, 10, No. 991-1005 (1976). 

18. F. J. Rizzo and D. J. Shippy, “An advanced boundary integral equation method 
for three-dimensional thermoelasticity,” International Journal for Numerical 
Methods in Engineering, 11, No. 1753-1768 (1977). 

19. M. Stippes and F. J. Rizzo, “A note on the body force integral of classical 
elastostatics,” Zeits Ang. Math. Physik (ZAMP), 28, No. 339-341 (1977). 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 206 

20. R. B. Wilson and T. A. Cruse, “Efficient implementation of anisotropic three 
dimensional boundary-integral equation stress analysis,” International Journal for 
Numerical Methods in Engineering, 12, No. 1383-1397 (1978). 

21. P. K. Banerjee and R. Butterfield, “Boundary element methods in geomechanics”,  
in: ed. G. Gudehus,  Finite Elements in Geomechanics (Chapter 16),  529-570 
(John Wiley and Sons (U.K.), London,  1976). 

22. P. K. Banerjee and et al., eds. Developments in Boundary Element Methods. Vol. 
I to VII (Elsevier Applied Science Publishers,  London,  1979-1991). 

23. C. A. Brebbia, The Boundary Element Method for Engineers (Pentech Press,  
London,  1978). 

24. P. K. Banerjee, The Boundary Element Methods in Engineering, 2nd ed  (McGraw-
Hill,  New York,  1994). 

25. S. Mukherjee, Boundary Element Methods in Creep and Fracture (Applied 
Science Publishers,  New York,  1982). 

26. T. A. Cruse, Boundary Element Analysis in Computational Fracture Mechanics 
(Kluwer Academic Publishers,  Dordrecht, The Netherlands,  1988). 

27. C. A. Brebbia and J. Dominguez, Boundary Elements - An Introductory Course 
(McGraw-Hill,  New York,  1989). 

28. J. H. Kane, Boundary Element Analysis in Engineering Continuum Mechanics 
(Prentice Hall,  Englewood Cliffs, NJ,  1994). 

29. M. Bonnet, Boundary Integral Equation Methods for Solids and Fluids (John 
Wiley & Sons,  Chichester,  1995). 

30. L. C. Wrobel, The Boundary Element Method - Vol.1 Applications in Thermo-
Fluids and Acoustics (Wiley,  Chichester,  2002). 

31. M. H. Aliabadi, The Boundary Element Method - Vol.2 Applications in Solids and 
Structures (Wiley,  Chichester,  2002). 

32. S. Mukherjee and Y. X. Mukherjee, Boundary Methods: Elements, Contours, and 
Nodes (CRC,  Boca Raton,  2005). 

33. V. Rokhlin, “Rapid solution of integral equations of classical potential theory,” J. 
Comp. Phys., 60, No. 187-207 (1985). 

34. L. F. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” 
Journal of Computational Physics, 73, No. 2, 325-348 (1987). 

35. L. F. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems 
(The MIT Press,  Cambridge,  1988). 

36. A. P. Peirce and J. A. L. Napier, “A spectral multipole method for efficient 
solution of large-scale boundary element models in elastostatics,” International 
Journal for Numerical Methods in Engineering, 38, No. 4009-4034 (1995). 

37. J. E. Gomez and H. Power, “A multipole direct and indirect BEM for 2D cavity 
flow at low Reynolds number,” Engineering Analysis with Boundary Elements, 
19, No. 17-31 (1997). 

38. Y. Fu, K. J. Klimkowski, G. J. Rodin, E. Berger, J. C. Browne, J. K. Singer, R. A. 
V. D. Geijn, and K. S. Vemaganti, “A fast solution method for three-dimensional 
many-particle problems of linear elasticity,” International Journal for Numerical 
Methods in Engineering, 42, No. 1215-1229 (1998). 

39. N. Nishimura, K. Yoshida, and S. Kobayashi, “A fast multipole boundary integral 
equation method for crack problems in 3D,” Engineering Analysis with Boundary 
Elements, 23, No. 97-105 (1999). 

40. A. A. Mammoli and M. S. Ingber, “Stokes flow around cylinders in a bounded 
two-dimensional domain using multipole-accelerated boundary element methods,” 
International Journal for Numerical Methods in Engineering, 44, No. 897-917 
(1999). 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 207 

41. N. Nishimura, “Fast multipole accelerated boundary integral equation methods,” 
Applied Mechanics Reviews, 55, No. 4 (July), 299-324 (2002). 

42. A. H. Zemanian, Distribution Theory and Transform Analysis - An Introduction 
to Generalized Functions, with Applications (Dover,  New York,  1987). 

43. Y. C. Fung, A First Course in Continuum Mechanics, 3rd ed  (Prentice Hall,  
Englewood Cliffs,  1994). 

44. J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential 
Equations (Yale University Press,  New Haven, CT, USA,  1923). 

45. P. A. Martin and F. J. Rizzo, “Hypersingular integrals:  how smooth must the 
density be?,” International Journal for Numerical Methods in Engineering, 39, 
No. 687-704 (1996). 

46. Y. J. Liu and T. J. Rudolphi, “Some identities for fundamental solutions and their 
applications to weakly-singular boundary element formulations,” Engineering 
Analysis with Boundary Elements, 8, No. 6, 301-311 (1991). 

47. Y. J. Liu and T. J. Rudolphi, “New identities for fundamental solutions and their 
applications to non-singular boundary element formulations,” Computational 
Mechanics, 24, No. 4, 286-292 (1999). 

48. Y. J. Liu, “On the simple-solution method and non-singular nature of the 
BIE/BEM - A review and some new results,” Engineering Analysis with Boundary 
Elements, 24, No. 10, 787-793 (2000). 

49. G. Krishnasamy, F. J. Rizzo, and Y. J. Liu, “Boundary integral equations for thin 
bodies,” International Journal for Numerical Methods in Engineering, 37, No. 
107-121 (1994). 

50. Y. J. Liu and F. J. Rizzo, “A weakly-singular form of the hypersingular boundary 
integral equation applied to 3-D acoustic wave problems,” Computer Methods in 
Applied Mechanics and Engineering, 96, No. 271-287 (1992). 

51. Y. J. Liu and S. H. Chen, “A new form of the hypersingular boundary integral 
equation for 3-D acoustics and its implementation with C0 boundary elements,” 
Computer Methods in Applied Mechanics and Engineering, 173, No. 3-4, 375-386 
(1999). 

52. Y. J. Liu and F. J. Rizzo, “Hypersingular boundary integral equations for radiation 
and scattering of elastic waves in three dimensions,” Computer Methods in 
Applied Mechanics and Engineering, 107, No. 131-144 (1993). 

53. Y. J. Liu, D. M. Zhang, and F. J. Rizzo, “Nearly singular and hypersingular 
integrals in the boundary element method”,   in: eds. C. A. Brebbia and J. J. Rencis,  
Boundary Elements XV (Computational Mechanics Publications,  Worcester, MA,  
1993)  453-468. 

54. X. L. Chen and Y. J. Liu, “An advanced 3-D boundary element method for 
characterizations of composite materials,” Engineering Analysis with Boundary 
Elements, 29, No. 6, 513-523 (2005). 

55. P. W. Partridge, C. A. Brebbia, and L. C. Wrobel, The Dual Reciprocity Boundary 
Element Method (Computational Mechanics Publications,  Southampton,  1992). 

56. X.-W. Gao, “The radial integration method for evaluation of domain integrals with 
boundary-only discretization,” Engineering Analysis with Boundary Elements, 26, 
No. 10, 905-916 (2002). 

57. O. D. Kellogg, Foundations of Potential Theory (Dover Publications, Inc.,  New 
York,  1953). 

58. Y. J. Liu, “Dual BIE approaches for modeling electrostatic MEMS problems with 
thin beams and accelerated by the fast multipole method,” Engineering Analysis 
with Boundary Elements, 30, No. 11, 940-948 (2006). 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 208 

59. W. H. Hayt and J. A. Buck, Engineering Electromagnetics (McGraw Hill,  
London,  2001). 

60. Y. J. Liu and L. Shen, “A dual BIE approach for large-scale modeling of 3-D 
electrostatic problems with the fast multipole boundary element method,” 
International Journal for Numerical Methods in Engineering, 71, No. 7, 837–855 
(2007). 

61. H. Cheng, L. Greengard, and V. Rokhlin, “A fast adaptive multipole algorithm in 
three dimensions,” Journal of Computational Physics, 155, No. 468-498 (1999). 

62. L. Shen and Y. J. Liu, “An adaptive fast multipole boundary element method for 
three-dimensional potential problems,” Computational Mechanics, 39, No. 6, 
681-691 (2007). 

63. Y. J. Liu and N. Nishimura, “The fast multipole boundary element method for 
potential problems: a tutorial,” Engineering Analysis with Boundary Elements, 30, 
No. 5, 371-381 (2006). 

64. K. Yoshida, “Applications of Fast Multipole Method to Boundary Integral 
Equation Method”, Ph.D. Dissertation, Department of Global Environment 
Engineering, Kyoto University (2001). 

65. W. H. Beyer, CRC Standard Mathematical Tables and Formulae, 29th ed  (CRC 
Press,  Boca Raton, Florida,  1991). 

66. L. Greengard and V. Rokhlin, “A new version of the fast multipole method for the 
Laplace equation in three dimensions,” Acta Numerica, 6, No. 229, 229-269 
(1997). 

67. K. Yoshida, N. Nishimura, and S. Kobayashi, “Application of new fast multipole 
boundary integral equation method to crack problems in 3D,” Engineering 
Analysis with Boundary Elements, 25, No. 239-247 (2001). 

68. X. L. Chen and H. Zhang, “An integrated imaging and BEM for fast simulation of 
freeform objects,” Computer-Aided Design and Applications, 5, No. 1-4, 371-380 
(2008). 

69. L. F. Greengard, M. C. Kropinski, and A. Mayo, “Integral equation methods for 
Stokes flow and isotropic elasticity in the plane,” Journal of Computational 
Physics, 125, No. 403-414 (1996). 

70. L. F. Greengard and J. Helsing, “On the numerical evaluation of elastostatic fields 
in locally isotropic two-dimensional composites,” J. Mech. Phys. Solids, 46, No. 
8, 1441-1462 (1998). 

71. J. D. Richardson, L. J. Gray, T. Kaplan, and J. A. Napier, “Regularized spectral 
multipole BEM for plane elasticity,” Engineering Analysis with Boundary 
Elements, 25, No. 297-311 (2001). 

72. T. Fukui, “Research On the Boundary Element Method - Development and 
Applications of Fast and Accurate Computations”, Ph.D. Dissertation (in 
Japanese), Department of Global Environment Engineering, Kyoto University 
(1998). 

73. T. Fukui, T. Mochida, and K. Method, “Crack extension analysis in system of 
growing cracks by fast multipole boundary element method (in Japanese)”,   
Seventh BEM Technology Conference (JASCOME,  Tokyo,  1997)  25-30. 

74. Y. J. Liu, “A new fast multipole boundary element method for solving large-scale 
two-dimensional elastostatic problems,” International Journal for Numerical 
Methods in Engineering, 65, No. 6, 863-881 (2005). 

75. Y. J. Liu, “A fast multipole boundary element method for 2-D multi-domain 
elastostatic problems based on a dual BIE formulation,” Computational 
Mechanics, 42, No. 5, 761-773 (2008). 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 209 

76. P. Wang and Z. Yao, “Fast multipole DBEM analysis of fatigue crack growth,” 
Computational Mechanics, 38, No. 223-233 (2006). 

77. Y. Yamada and K. Hayami, “A multipole boundary element method for two 
dimensional elastostatics”, Report METR 95-07, Department of Mathematical 
Engineering and Information Physics, University of Tokyo (1995). 

78. V. Popov and H. Power, “An O(N) Taylor series multipole boundary element 
method for three-dimensional elasticity problems,” Engineering Analysis with 
Boundary Elements, 25, No. 1, 7-18 (2001). 

79. K. Yoshida, N. Nishimura, and S. Kobayashi, “Application of fast multipole 
Galerkin boundary integral equation method to crack problems in 3D,” 
International Journal for Numerical Methods in Engineering, 50, No. 525-547 
(2001). 

80. Y.-S. Lai and G. J. Rodin, “Fast boundary element method for three-dimensional 
solids containing many cracks,” Engineering Analysis with Boundary Elements, 
27, No. 8, 845-852 (2003). 

81. Y. J. Liu, N. Nishimura, and Y. Otani, “Large-scale modeling of carbon-nanotube 
composites by the boundary element method based on a rigid-inclusion model,” 
Comp Mater Sci, 34, No. 2, 173-187 (2005). 

82. Y. J. Liu, N. Nishimura, Y. Otani, T. Takahashi, X. L. Chen, and H. Munakata, 
“A fast boundary element method for the analysis of fiber-reinforced composites 
based on a rigid-inclusion model,” Journal of Applied Mechanics, 72, No. 1, 115-
128 (2005). 

83. Y. J. Liu, N. Nishimura, D. Qian, N. Adachi, Y. Otani, and V. Mokashi, “A 
boundary element method for the analysis of CNT/polymer composites with a 
cohesive interface model based on molecular dynamics,” Engineering Analysis 
with Boundary Elements, 32, No. 4, 299–308 (2008). 

84. V. Sladek and J. Sladek, eds. Singular Integrals in Boundary Element Methods, 
Advances in Boundary Element Series, ed. C. A. Brebbia and M. H. Aliabadi 
(Computational Mechanics Publications,  Boston,  1998). 

85. S. Mukherjee, “Finite parts of singular and hypersingular integrals with irregular 
boundary source points,” Engineering Analysis with Boundary Elements, 24, No. 
767-776 (2000). 

86. Y. J. Liu and F. J. Rizzo, “Scattering of elastic waves from thin shapes in three 
dimensions using the composite boundary integral equation formulation,” Journal 
of the Acoustical Society America, 102 (2), No. Pt.1,  August, 926-932 (1997). 

87. N. I. Muskhelishvili, Some Basic Problems of Mathematical Theory of Elasticity 
(Noordhoff,  Groningen,  1958). 

88. I. S. Sokolnikoff, Mathematical Theory of Elasticity, 2nd ed  (McGraw-Hill,  New 
York,  1956). 

89. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed  (McGraw-Hill,  
New York,  1987). 

90. D. Gross and T. Seelig, Fracture Mechanics with an Introduction to 
Micromechanics (Springer,  The Netherlands,  2006). 

91. M. S. Ingber and T. D. Papathanasiou, “A parallel-supercomputing investigation 
of the stiffness of aligned, short-fiber-reinforced composites using the boundary 
element method,” International Journal for Numerical Methods in Engineering, 
40, No. 3477-3491 (1997). 

92. I. G. Currie, Fundamental Mechanics of Fluids (McGraw-Hill Book Company,  
New York,  1974). 

93. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous 
Flow (Cambridge University Press,  New York,  1992). 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 210 

94. H. Power and L. C. Wrobel, Boundary Integral Methods in Fluid Mechanics 
(Computational Mechanics Publications,  Southampton,  1995). 

95. J. Ding and W. Ye, “A fast integral approach for drag force calculation due to 
oscillatory slip stokes flows,” International Journal for Numerical Methods in 
Engineering, 60, No. 9, 1535-1567 (2004). 

96. A. Frangi, “A fast multipole implementation of the qualocation mixed-velocity-
traction approach for exterior Stokes flows,” Engineering Analysis with Boundary 
Elements, 29, No. 11, 1039-1046 (2005). 

97. A. Frangi and A. d. Gioia, “Multipole BEM for the evaluation of damping forces 
on MEMS,” Computational Mechanics, 37, No. 1, 24 - 31 (2005). 

98. A. Frangi and J. Tausch, “A qualocation enhanced approach for Stokes flow 
problems with rigid-body boundary conditions,” Engineering Analysis with 
Boundary Elements, 29, No. 9, 886 (2005). 

99. A. Frangi, G. Spinola, and B. Vigna, “On the evaluation of damping in MEMS in 
the slip–flow regime,” International Journal for Numerical Methods in 
Engineering, 68, No. 1031–1051 (2006). 

100. Y. J. Liu, “A new fast multipole boundary element method for solving 2-D Stokes 
flow problems based on a dual BIE formulation,” Engineering Analysis with 
Boundary Elements, 32, No. 2, 139-151 (2008). 

101. A. Frangi and G. Novati, “Symmetric BE method in two-dimensional elasticity: 
evaluation of double integrals for curved elements,” Computational Mechanics, 
19, No. 58-68 (1996). 

102. J. J. Perez-Gavilan and M. H. Aliabadi, “Symmetric Galerkin BEM for multi-
connected bodies,” Communications in Numerical Methods in Engineering, 17, 
No. 761-770 (2001). 

103. L. Shen and Y. J. Liu, “An adaptive fast multipole boundary element method for 
three-dimensional acoustic wave problems based on the Burton-Miller 
formulation,” Computational Mechanics, 40, No. 3, 461-472 (2007). 

104. C. Pozrikidis, Fluid Dynamics - Theory, Computation and Numerical Simulation 
(Kluwer Academic Publishers,  Boston,  2001). 

105. H. Power, “The interaction of a deformable bubble with a rigid wall at small 
Reynolds number: A general approach via integral equations,” Engineering 
Analysis with Boundary Elements, 19, No. 4, 291 (1997). 

106. G. Zhu, A. A. Mammoli, and H. Power, “A 3-D indirect boundary element method 
for bounded creeping flow of drops,” Engineering Analysis with Boundary 
Elements, 30, No. 10, 856 (2006). 

107. S. Mukherjee, S. Telukunta, and Y. X. Mukherjee, “BEM modeling of damping 
forces on MEMS with thin plates,” Engineering Analysis with Boundary Elements, 
29, No. 1000-1007 (2005). 

108. H. A. Schenck, “Improved integral formulation for acoustic radiation problems,” 
J. Acoust. Soc. Am., 44, No. 41-58 (1968). 

109. A. J. Burton and G. F. Miller, “The application of integral equation methods to the 
numerical solution of some exterior boundary-value problems,” Proc. R. Soc. 
Lond. A, 323, No. 201-210 (1971). 

110. F. Ursell, “On the exterior problems of acoustics,” Proc. Cambridge Philos. Soc., 
74, No. 117-125 (1973). 

111. R. E. Kleinman and G. F. Roach, “Boundary integral equations for the three-
dimensional Helmholtz equation,” SIAM Rev., 16, No. 214-236 (1974). 

112. D. S. Jones, “Integral equations for the exterior acoustic problem,” Q. J. Mech. 
Appl. Math., 27, No. 129-142 (1974). 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 211 

113. W. L. Meyer, W. A. Bell, B. T. Zinn, and M. P. Stallybrass, “Boundary integral 
solutions of three dimensional acoustic radiation problems,” J. Sound Vib., 59, No. 
245-262 (1978). 

114. A. F. Seybert, B. Soenarko, F. J. Rizzo, and D. J. Shippy, “An advanced 
computational method for radiation and scattering of acoustic waves in three 
dimensions,” Journal of the Acoustical Society America, 77, No. 2, 362-368 
(1985). 

115. R. Kress, “Minimizing the condition number of boundary integral operators in 
acoustic and electromagnetic scattering,” Quart. J. Mech. Appl. Math., 38, No. 2, 
323-341 (1985). 

116. A. F. Seybert and T. K. Rengarajan, “The use of CHIEF to obtain unique solutions 
for acoustic radiation using boundary integral equations,” J. Acoust. Soc. Am., 81, 
No. 1299-1306 (1987). 

117. K. A. Cunefare and G. Koopmann, “A boundary element method for acoustic 
radiation valid for all wavenumbers,” Journal of the Acoustical Society America, 
85, No. 1, 39-48 (1989). 

118. G. C. Everstine and F. M. Henderson, “Coupled finite element/boundary element 
approach for fluid structure interaction,” Journal of the Acoustical Society 
America, 87, No. 5, 1938-1947 (1990). 

119. R. Martinez, “The thin-shape breakdown (TSB) of the Helmholtz integral 
equation,” Journal of the Acoustical Society America, 90, No. 5, 2728-2738 
(1991). 

120. K. A. Cunefare and G. H. Koopmann, “A boundary element approach to 
optimization of active noise control sources on three-dimensional structures,” 
Journal of Vibration and Acoustics, 113, No. July, 387-394 (1991). 

121. R. D. Ciskowski and C. A. Brebbia, Boundary Element Methods in Acoustics 
(Kluwer Academic Publishers,  New York,  1991). 

122. G. Krishnasamy, T. J. Rudolphi, L. W. Schmerr, and F. J. Rizzo, “Hypersingular 
boundary integral equations: some applications in acoustic and elastic wave 
scattering,” Journal of Applied Mechanics, 57, No. 404-414 (1990). 

123. S. Amini, “On the choice of the coupling parameter in boundary integral 
formulations of the exterior acoustic problem,” Appl. Anal., 35, No. 75-92 (1990). 

124. T. W. Wu, A. F. Seybert, and G. C. Wan, “On the numerical implementation of a 
Cauchy principal value integral to insure a unique solution for acoustic radiation 
and scattering,” Journal of the Acoustical Society America, 90, No. 1, 554-560 
(1991). 

125. Y. J. Liu, “Development and Applications of Hypersingular Boundary Integral 
Equations for 3-D Acoustics and Elastodynamics”, Ph.D., Department of 
Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign 
(1992). 

126. S.-A. Yang, “Acoustic scattering by a hard and soft body across a wide frequency 
range by the Helmholtz integral equation method,” Journal of the Acoustical 
Society America, 102 (5), Pt. 1, No. November, 2511-2520 (1997). 

127. V. Rokhlin, “Rapid solution of integral equations of scattering theory in two 
dimensions,” J. Comput. Phys., 86, No. 2, 414-439 (1990). 

128. V. Rokhlin, “Diagonal forms of translation operators for the Helmholtz equation 
in three dimensions,” Appl. Comput. Harmon. Anal., 1, No. 1, 82-93 (1993). 

129. M. Epton and B. Dembart, “Multipole translation theory for the three dimensional 
Laplace and Helmholtz equations,” SIAM J Sci Comput, 16, No. 865-897 (1995). 

130. S. Koc and W. C. Chew, “Calculation of acoustical scattering from a cluster of 
scatterers,” J. Acoust. Soc. Am., 103, No. 2, 721-734 (1998). 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 212 

131. L. Greengard, J. Huang, V. Rokhlin, and S. Wandzura, “Accelerating fast 
multipole methods for the Helmholtz equation at low frequencies,” IEEE Comput. 
Sci. Eng., 5, No. 3, 32-38 (1998). 

132. M. A. Tournour and N. Atalla, “Efficient evaluation of the acoustic radiation using 
multipole expansion,” International Journal for Numerical Methods in 
Engineering, 46, No. 6, 825-837 (1999). 

133. N. A. Gumerov and R. Duraiswami, “Recursions for the computation of multipole 
translation and rotation coefficients for the 3-D Helmholtz equation,” SIAM J. Sci. 
Comput., 25, No. 4, 1344-1381 (2003). 

134. E. Darve and P. Havé, “Efficient fast multipole method for low-frequency 
scattering,” J. Comput. Phys., 197, No. 1, 341-363 (2004). 

135. M. Fischer, U. Gauger, and L. Gaul, “A multipole Galerkin boundary element 
method for acoustics,” Engineering Analysis with Boundary Elements, 28, No. 
155-162 (2004). 

136. J. T. Chen and K. H. Chen, “Applications of the dual integral formulation in 
conjunction with fast multipole method in large-scale problems for 2D exterior 
acoustics,” Engineering Analysis with Boundary Elements, 28, No. 6, 685-709 
(2004). 

137. N. A. Gumerov and R. Duraiswami, Fast Multipole Methods for the Helmholtz 
Equation in Three Dimensions (Elsevier,  Amsterdam,  2004). 

138. H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge, J. 
Huang, V. Rokhlin, N. Yarvin, and J. Zhao, “A wideband fast multipole method 
for the Helmholtz equation in three dimensions,” Journal of Computational 
Physics, 216, No. 1, 300-325 (2006). 

139. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with 
Formulas, Graphs, and Mathematical Tables, 10th ed  (United States Department 
of Commerce: U.S. Government Printing Office,  Washington, D.C.,  1972). 

140. R. Kress, “Minimizing the condition number of boundary integral operators in 
acoustic and electromagnetic scattering,” Quarterly Journal of Mechanics and 
Applied Mathematics, 38, No. 323-341 (1985). 

141. Y. J. Liu and F. J. Rizzo, “Application of Overhauser C(1) continuous boundary 
elements to ‘hypersingular’ BIE for 3-D acoustic wave  problems”,   in: eds. C. A. 
Brebbia and G. S. Gipson,  Boundary Elements XIII (Computation Mechanics 
Publications,  Tulsa, OK,  1991)  957-966. 

142. A. Messiah, “Clebsch-Gordan (C-G) Coefficients and ‘3j Symbols’,”  in: 
Quantum Mechanics,  Appendix C.I. 1962, North-Holland Amsterdam, 
Netherlands, 1054-1060. 

143. M. S. Bapat, L. Shen, and Y. J. Liu, “Adaptive fast multipole boundary element 
method for three-dimensional half-space acoustic wave problems,” Engineering 
Analysis with Boundary Elements, 33, No. 8-9, 1113-1123 (2009). 

144. S. H. Chen and Y. J. Liu, “A unified boundary element method for the analysis of 
sound and shell-like structure interactions. I. Formulation and verification,” 
Journal of the Acoustical Society America, 103, No. 3, 1247-1254 (1999). 

145. S. H. Chen, Y. J. Liu, and X. Y. Dou, “A unified boundary element method for 
the analysis of sound and shell-like structure interactions. II. Efficient solution 
techniques,” Journal of the Acoustical Society America, 108, No. 6, 2738-2745 
(2000). 

146. T. W. Wu, ed. Boundary Element Acoustics: Fundamentals and Computer Codes 
(WIT Press,  Southampton,  2000). 

 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 213 

Index 

A 
acoustic pressure, 142 
acoustic wave equation, 143 
analytical integration 

2-D elastostatic kernels, 171 
2-D potential kernels, 169 
2-D Stokes flow kernels, 173 

associated Legendre function, 75 

B 
boundary element method, 11 
boundary elements 

constant, 32, 37 
linear, 34, 38 
quadratic, 36, 39 

boundary integral equation, 11 
boundary node method, 11 
boundary stress calculation, 95 
Burton-Miller formulation, 149 

C 
Cauchy-principal value (CPV), 23 
cells 

adjacent, 66 
child, 63 
far, 66 
leaf, 63 
parent, 63 
well separated, 66 

complex notation, 56, 96 
G kernel, 56 
traction, 97 
U kernel, 96 

continuity equation, 118 
conventional BIE (CBIE) 

acoustics, 149 
elastostatics, 90 
potential problem, 29 
Stokes flow, 120 

D 
Dirac-δ function, 16 

sifting properties, 21 

direct BIE formulation, 87, 120 
discretization, 32 
domain integrals, 41 
double-layer potential, 43 
downward pass, 66 
dual BIE formulation, 48, 92, 122, 149 

E 
Einstein’s summation convention, 19 
equilibrium equations, 87, 118 
error estimate, 59, 60 
expansion of kernels 

2-D acoustics, 152 
2-D potential, 57 
3-D elasticity, 101 
3-D potential, 75 
3-D Stokes flow, 127 

exterior acoustic problem, 144 

F 
fast multipole BEM, 54 
fast multipole method, 13 
fictitious eigenfrequency difficulty, 

149 
finite difference method, 11 
finite element method, 11 
Fourier transform, 21 
Fredholm equation, 18 
frequency 

circular, 143 
cyclic, 144 

fundamental solution, 21 
acoustics, 146, 147, 149 
beam bending, 15, 21 
elastostatics, 89, 91 
potential problem, 26, 29 
Stokes flow, 119, 120, 121 

G 
Gauss theorem, 20 
Green’s function, 15 
Green’s identity, 24 

first, 20 
second, 16, 20, 27, 147 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 214 

H 
Hadamard-finite part (HFP), 23 
Helmholtz equation, 144 
hypersingular BIE (HBIE) 

acoustics, 149 
elastostatics, 91 
potential problem, 29 
Stokes flow, 121 

I 
indicial notation, 19 
indirect BIE formulation, 43 
infinite domain problem, 30, 148 
integral equation, 18 

first kind, 43 
second kind, 43 

integral identities 
elastostatics, 89 
potential problem, 26 

interaction list, 66 

J 
Jacobian, 35, 39 

K 
Kelvin’s solution, 88 
kernel function, 18 
Kronecker δ, 19 

L 
L2L translation 

2-D acoustics, 153 
2-D elastostatics, 99 
2-D potential, 61 
2-D Stokes flow, 125 
3-D acoustics, 156 
3-D elastostatics, 103 
3-D potential, 76 
3-D Stokes flow, 129 

Laplace equation, 25 
limit to the boundary, 27 
local expansion 

2-D acoustics, 153 
2-D elastostatics, 99 
2-D potential, 60 
2-D Stokes flow, 124 
3-D acoustics, 155 
3-D elastostatics, 103 
3-D potential, 76 

3-D Stokes flow, 128 

M 
M2L translation 

2-D acoustics, 153 
2-D elastostatics, 99 
2-D potential, 60 
2-D Stokes flow, 125 
3-D acoustics, 155 
3-D elastostatics, 103 
3-D potential, 76 
3-D Stokes flow, 128 

M2M translation 
2-D acoustics, 153 
2-D elastostatics, 99 
2-D potential, 60 
2-D Stokes flow, 124 
3-D acoustics, 155 
3-D elastostatics, 102 
3-D potential, 76 
3-D Stokes flow, 128 

mass density, 144 
meshfree method, 11 
moment 

2-D acoustics, 153 
2-D elastostatics, 98 
2-D potential, 58 
2-D Stokes flow, 124 
3-D acoustics, 155 
3-D elastostatics, 102 
3-D potential, 75 
3-D Stokes flow, 127 
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normal velocity, 144 

O 
O(N) complexity, 69 
oct tree, 75 



Yijun Liu, Fast Multipole Boundary Element Method, Online Edition, 2025 215 
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p3 complexity, 157 
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pre-conditioning, 69 
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programming 
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representation integral 
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source code 
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time harmonic wave, 143 
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wavelength, 144 
wavenumber, 143 
weakly-singular form 

CBIE for acoustics, 150 
CBIE for elastostatics, 92 
CBIE for potential problem, 31 
HBIE for acoustics, 151 
HBIE for elastostatics, 92 
HBIE for potential problem, 31 

 


	Preface To the Online Edition
	Preface To the First Edition
	Acknowledgments
	Acronyms Used in This Book
	Chapter 1. Introduction
	1.1. What Is the Boundary Element Method?
	1.2. Why the BEM?
	1.3. A Comparison of the FEM and BEM
	1.4. A Brief History of the BEM and Other References
	1.5. Fast Multipole Method
	1.6. Applications of the BEM in Engineering
	1.7. An Example – Bending of a Beam
	1.8. Some Mathematical Preliminaries
	1.8.1. Integral Equations
	1.8.2. Indicial Notation
	1.8.3. Gauss Theorem
	1.8.4. Green’s Identities
	1.8.5. Dirac δ Function
	1.8.6. Fundamental Solutions
	1.8.7. Singular Integrals

	1.9. Summary
	Problems

	Chapter 2. Conventional Boundary Element Method for Potential Problems
	2.1. The Boundary-Value Problem
	2.2. Fundamental Solution for Potential Problems
	2.3. BIE Formulations
	2.4. Weakly Singular Forms of the BIEs
	2.5. Discretization of the BIEs for 2-D Problems Using Constant Elements
	2.6. Using Higher-Order Elements
	2.6.1. Linear Elements
	2.6.2. Quadratic Elements

	2.7. Discretization of the BIEs for 3-D Problems
	2.8. Multidomain Problems
	2.9. Treatment of the Domain Integrals
	2.9.1. Numerical Integration Using Internal Cells
	2.9.2. Transformation to Boundary Integrals
	2.9.3. Use of Particular Solutions

	2.10. Indirect BIE Formulations
	2.11. Programming for the Conventional BEM
	2.12. Numerical Examples
	2.12.1. Heat Conduction in An Annular Region
	2.12.2. Potential Flow Past A Cylinder
	2.12.3. Electrostatic Fields Outside Two Conducting Beams
	2.12.3. Potential Field in a Cube
	2.12.4. Electrostatic Field Outside a Conducting Sphere

	2.13. Summary
	Problems

	Chapter 3. Fast Multipole Boundary Element Method for Potential Problems
	3.1. Basic Ideas in the Fast Multipole Method
	3.2. Fast Multipole BEM for 2-D Potential Problems
	3.2.1. Multipole Expansion (Moments)
	3.2.2. Error Estimate for the Multipole Expansion
	3.2.3. Moment-to-Moment Translation
	3.2.4. Local Expansion and Moment-to-Local Translation
	3.2.5. Local-to-Local Translation
	3.2.6. Expansions for the Integral With the F Kernel
	3.2.7. Multipole Expansions for the HBIE
	3.2.8. Fast Multipole BEM Algorithms and Procedures
	3.2.9. Preconditioning
	3.2.10. Estimate of the Computational Complexity

	3.3. Programming for the Fast Multipole BEM
	3.3.1. Subroutine fmmmain
	3.3.2. Subroutine tree
	3.3.3. Subroutine fmmbvector
	3.3.4. Subroutine dgmres
	3.3.5. Subroutine upward
	3.3.6. Subroutine dwnwrd

	3.4. Fast Multipole Formulation for 3-D Potential Problems
	3.5. Numerical Examples
	3.5.1. An Annular Region
	3.5.2. Electrostatic Fields Outside Conducting Beams
	3.5.3. Potential Field in a Cube
	3.5.4. Electrostatic Field Outside Multiple Conducting Spheres
	3.5.5. A Fuel Cell Model
	3.5.6. Image-Based Boundary Element Models and Analysis

	3.6. Summary
	Problems

	Chapter 4. Elastostatic Problems
	4.1. The Boundary-Value Problem
	4.2. Fundamental Solution for Elastostatic Problems
	4.3. BIE Formulations
	4.4. Weakly Singular Forms of the BIEs
	4.5. Discretization of the BIEs
	4.6. Recovery of the Full Stress Field On the Boundary
	4.7. Fast Multipole BEM for 2-D Elastostatic Problems
	4.7.1. Multipole Expansion for the U Kernel Integral
	4.7.2. Moment-to-Moment Translation
	4.7.3. Local Expansion and Moment-to-Local Translation
	4.7.4. Local-to-Local Translation
	4.7.5. Expansions for the T Kernel Integral
	4.7.6. Expansions for the HBIE

	4.8. Fast Multipole BEM for 3-D Elastostatic Problems
	4.9. Fast Multipole BEM for Multidomain Elasticity Problems
	4.10. Numerical Examples
	4.10.1. A Cylinder with Pressure Loads
	4.10.2. A Square Plate with a Circular Hole
	4.10.3. Multiple Inclusion Problems
	4.10.4. Modeling of Functionally Graded Materials
	4.10.5. Large-Scale Modeling of Fiber-Reinforced Composites

	4.11. Summary
	Problems

	Chapter 5. Stokes Flow Problems
	5.1. The Boundary-Value Problem
	5.2. Fundamental Solution for Stokes Flow Problems
	5.3. BIE Formulations
	5.4. Fast Multipole BEM for 2-D Stokes Flow Problems
	5.4.1. Multipole Expansion (Moments) for the U Kernel Integral
	5.4.2. Moment-to-Moment Translation
	5.4.3. Local Expansion and Moment-to-Local Translation
	5.4.4. Local-to-Local Translation
	5.4.5. Expansions for the T Kernel Integral
	5.4.6. Expansions for the HBIE

	5.5. Fast Multipole BEM for 3-D Stokes Flow Problems
	5.6. Numerical Examples
	5.6.1. Flow that is Due to a Rotating Cylinder
	5.6.2. Shear Flow Between Two Parallel Plates
	5.6.3. Flow Through a Channel with Many Cylinders
	5.6.4. A Translating Sphere
	5.6.5. Large-Scale Modeling of Multiple Particles

	5.7. Summary
	Problems

	Chapter 6. Acoustic Wave Problems
	6.1. Basic Equations in Acoustics
	6.2. Fundamental Solution for Acoustic Wave Problems
	6.3. BIE Formulations
	6.4. Weakly Singular Forms of the BIEs
	6.5. Discretization of the BIEs
	6.6. Fast Multipole BEM for 2-D Acoustic Wave Problems
	6.7. Fast Multipole BEM for 3-D Acoustic Wave Problems
	6.8. Numerical Examples
	6.8.1. Scattering From Cylinders in a 2-D Medium
	6.8.2. Radiation From a Pulsating Sphere
	6.8.3. Scattering From Multiple Scatterers
	6.8.4. Performance Study of the 3-D Fast Multipole BEM Code
	6.8.5. An Engine-Block Model
	6.8.6. A Submarine Model
	6.8.7. An Airbus A320 Model
	6.8.8. A Human-Head Model
	6.8.9. Analysis of Sound Barriers – A Half-Space Acoustic Wave Problem

	6.9. Summary
	Problems

	Appendix A. Analytical Integration of the Kernels
	A.1. 2-D Potential BIE Kernels
	A.2. 2-D Elastostatic BIE Kernels
	A.3. 2-D Stokes Flow BIE Kernels
	A.4. 3-D Potential BIE Kernels
	A.5. 3-D Elastostatic BIE Kernels
	A.6. 3-D Stokes Flow BIE Kernels

	Appendix B. Sample Computer Programs
	B.1. Fortran Code of the Conventional BEM for 2-D Potential Problems
	B.2. Fortran Code of the Fast Multipole BEM for 2-D Potential Problems
	B.3. Sample Input File and Parameter File

	References
	Index

