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The Boundary Element Method (BEM)

Boundary element method applies surface elements on
the boundary of a 3-D domain and line elements on the
boundary of a 2-D domain. The number of elements is
O(n?) as compared to O(n3) in other domain based
methods (n = number of elements needed per dimension).

BEM is good for problems with complicated geometries,
stress concentration problems, infinite domain problems,
wave propagation problems, and many others.

Finite element method can solve a model with 1 million
DOFs on a PC with 1 GB RAM.

Fast multipole BEM can also solve a model with 1
million DOFs on a PC with 1 GB RAM. However, these
DOFs are on the boundary of the model only, which
would require 1 billion DOFs for the corresponding
domain model.




A Comparison of the FEM and BEM

- An Engine Block Model

is studied.
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FEM (363,180 volume elements)




A Comparison of the FEM and BEM
with An Engine Block Model (Cont.)

FEM
Results
(50 min.)

BEM
Results
(16 min.)
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Two Different Routes in Computational Mechanics

Engineering Problems

Y
Mathematical Models

/ \

Differential Equation (ODE/PDE) Boundary Integral Equation (BIE)
Formulations ) Formulations
Analytical Solutions Numerical Solutions Analytical Solutions Numerical Solutions
T — )
FDM FEM EFM Others BEM BNM Others




A Brief History of the BEM

Jaswon and Symm (1963)
— 2D Potential Problems

Integral equations
(Fredholm, 1903)

T. A. Cruse and F. J. Rizzo (1968)

— 2D elastodynamics _
BEM emerged in 1980°s ...

Modern numerical
solutions of BIEs
(in early 1960’s)

P. K. Banerjee (1975)
— Coined the name “boundary element method”

Frank J. Rizzo (Dissertation in 1964 at
TAM of UIUC, paper published in 1967)
— 2D Elasticity Problems
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Pioneers In the BIE/BEM Research in the US

... Others
Frank J. Rizzo Thomas A. Cruse P. K. Banerjee Subrata Mukherjee
U Washington Boeing U Wales, UK Cornell U
U Kentucky CMU SUNY - Buffalo
lowa State U Pratt & Whitney
U lllinois SWRI
Vanderhbilt U

AFRL



http://engineering.buffalo.edu/civil-structural-environmental/news-events/latest_news.host.html/content/shared/engineering/civil-structural-environmental/articles/2014/04/csee-remembers-professor-emeritus-prasanta-banerjee.detail.html
https://www.engineering.cornell.edu/faculty-directory/subrata-mukherjee

Pioneers in Early BIE/BEM Research in China

... Others
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https://baike.baidu.com/item/%E6%9D%9C%E5%BA%86%E5%8D%8E/4468024?fr=aladdin
https://baike.baidu.com/item/%E5%A7%9A%E6%8C%AF%E6%B1%89/10946937?fr=aladdin
http://www.npuicma.cn/Documents/Prof_Ye_Biography.pdf
https://baike.baidu.com/item/%E7%A5%9D%E5%AE%B6%E9%BA%9F/5845823?fr=aladdin

My Earlier BEM Research
— Analysis of Large-Deflection of Elastic Plates

| * MS thesis research at Northwestern Polytechnical
T University (NPU), Xi’an, China.

Paper published in: Applied Mathematical Modelling,
9, 183-188 (1985).
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Formulation: The Potential Problem

Governing Equation
VAu(x) =0, vxeV;

with given boundary conditions on S
The Green’s function for potential problem

G(x,y) = i InGj, in2D;

G(X,Y) :ﬁ, in3D.

Boundary integral equation formulation
COu(x) = [[6Y)ay) - FxuBS(y),  vxeVors,
S

where q=al, F=d5ln.
Comments: The BIE is exact due to the use of the Green’s function:
Note the singularity of the Green’s function G(X,y).
10




Formulation: The Potential Problem (Cont.)

Discretize boundary S using

N boundary elements:

= line elements for 2D problems;
= surface elements for 3D problems.

The BIE yields the following BEM equation

| f11 f12 le
f21 f22 sz
B le sz fNN

b
2

J

ng 922

| O
Apply the boundary conditions to obtain

a;y a, - Ay

x)

Ax=Db

Each node/element
interacts with all other
node/element directly.

The number of
operations is of order
O(N?).

Storage is also of order
O(N?).




Advantages and Disadvantages of the BEM

Advantages:

* Accuracy — due to the semi-analytical nature and use of integrals in the BIES
» More efficient in meshing due to the reduction of dimensions

* Good for stress concentration and infinite domain problems

* Good for modeling thin shell-like structures/models of materials
* Neat ... (integration, superposition, boundary solutions for BVPs)

Disadvantages:

e Conventional BEM matrices are dense and nonsymmetrical
e Solution time is long and memory size is large (Both are O(N?))
 Used to be limited to for solving small-scale BEM models (Not anymore!)

The Solution:
* Various fast solution methods to improve the computational efficiencies of the BEM
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Overview of the Fast BEM

Methods: \

« Fast multipole method (FMM) (Rokhlin 3
and Greengard, 1980s; Nishimura, 2001) 3 BEM

» Adaptive cross approximation (ACA) < —
method (Bebendorf, et al., 2000) Solver BEM

o [Fast direct solvers (Martinsson, Rokhlin,

Greengard, Darve, et al.)

Techniques:

 Domain decomposition (new multidomain m
BEM, Liu & Huang, 2016) o

« Parallel computing on CPU or GPU Efficiency

Reference: Y.J. Liu, S. Mukherjee, N. Nishimura, M. Schanz, W. Ye, A. Sutradhar, E. Pan, N. A. Dumont,
A. Frangi and A. Saez, “Recent advances and emerging applications of the boundary element method,” ASME
Applied Mechanics Review, 64, No. 5 (May), 1-38 (2011).
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http://yijunliu.com/Publications/2011/AMR_BEM_Review_Paper_2011.pdf

Fast Multipole Method (FMM)

FMM can reduce the cost (CPU time & storage) for BEM to O(N)
Pioneered by Rokhlin and Greengard (mid of 1980°s)

Ranked among the top ten algorithms of the 20th century (with FFT,
QR, ...) in computing

Greengard’s book: The Rapid Evaluation of Potential Fields in
Particle Systems, MIT Press, 1988

An earlier review by Nishimura: ASME Applied Mechanics
Review, July 2002

A newer review by Liu, Mukherjee, Nishimura, Schanz, Ye, et al,
ASME Applied Mechanics Review, May 2011

A book by Liu: Fast Multipole Boundary Element Method — Theory
and Applications in Engineering, Cambridge University Press, 2009
14
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http://gspsun1.gee.kyoto-u.ac.jp/nchml/pamphlet.html
http://wcchew.ece.illinois.edu/chew/
https://www.math.nyu.edu/faculty/greengar/
https://cpsc.yale.edu/people/vladimir-rokhlin

Fast Multipole Method (FMM): The Simple Idea

Apply iterative solver (GMRES) and accelerate matrix-vector multiplications by replacing
element-element interactions with cell-cell interactions.

a;y a, - Qy X b1

d fr=2 "% or Ax=Db

Conventional BEM approach (O(N?)) FMM BEM approach (O(N) for large N)
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Adaptive Cross Approximation (ACA)

Hierarchical decomposition of a BEM matrix:

20| 8 2R

38 9 s 120 9 8”?,1 9

20| 8

9 | 38 9 <120 9 . B

73

(from Rjasanow and Steinbach, 2007)

A lower-rank submatrix A away from the main diagonal can be represented by a few
selected columns (u) and rows (v') (crosses) based on error estimates:

k
A, zziuv , with ¥ = A(, j), u=AG, j), v=A(,)
The process is mdepeﬂ’dent of the kernels (or 2-D/3-D)

Can be integrated with iterative solvers (GMREYS)
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Fast Direct Solver

K Fras K3 K K Ko
.—}— Full rank; |:|—|-— Liovw-rank: E—b— Identity matrix; D—I— Lero matrix;
K~ K" =K, KKy, Kx=b ‘ X:Kal"'KEnl—lKﬂqlb
. I O (V|_+1 )T
Sherman-Morrison-Woodbury formula: K' = Al ta
— i I "1+ 141\
(1+Uv7) " =1-U(1+VTU) VT U (va) '

~ +1 T
which is efficient if . :, {U';ﬁl 0 } 0 (Vi)
T+
p< N forUand V e R"*P 0 Ui (Vz'Tl)T 0

;
See reference for application to the BEM matrices. =1+U;(V/)

Reference: S. Huang and Y. J. Liu, “A new fast direct solver for the boundary element method,”
Computational Mechanics, 60, No. 3, 379-392 (2017).
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https://link.springer.com/article/10.1007/s00466-017-1407-2

Some Applications of the Fast Multipole
Boundary Element Method

2-D/3-D potential problems.
2-D/3-D elasticity problems.
2-D/3-D Stokes flow problems.
2-D/3-D acoustics problems.

Applications in modeling porous materials, fiber-reinforced composites and micro-electro-
mechanical systems (MEMS).

All software packages used here can be downloaded from www.yijunliu.com.




2-D Potential: Accuracy and Efficiency of the
Fast Multipole BEM

Results for a simple potential
problem in an annular region V

N d.

Conventional
FMM BEM BEM
36 -401.771619 -401.771546
72 -400.400634 -400.400662
360 -400.014881 -400.014803
720 -400.003468 -400.003629
1440 -400.000695 -400.000533
2400 -400.001929 -400.000612
4800 -400.001557 -400.000561
7200 -399.997329 -399.998183
9600 -399.997657 -399.996874
Analytical
Solution -400.0

Total CPU time (sec.)
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3-D Potential: Modeling of Fuel Cells

Thermal Analysis of Fuel
Cell (SOFC) Stacks

There are 9,000 small
side holes in this model

Total DOFs = 530,230,
solved on a desktop PC
with 1 GB RAM)

ANSYS can only model
one cell on the same PC
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Ic Analysis

3-D Electrostat

« 11 conducting spheres.

* Forces can be found with the charge density

* Largest model has 118,800 DOFs

Applied potential (£5)

Computed charge density

One BEM mesh

o,
SRS OSEER




3-D Electrostatic Analysis (Cont.)

Applications
iIn MEMS

A comb drive

» Beams are applied with +/- voltages.
* Forces can be found with the charge density.
* Model shown has 55 beams (179,300 DOFs).

g -12 1 -08-0604-02 0 02040608 1 12




2-D Elasticity: Modeling of Perforated Plates

A BEM model of a perforated plate
(with 1,600 holes)
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Computed effective Young’s modulus
for the perforated plate (x E)

Uniformly
Distributed
Holes

Randomly
Distributed
Holes

No. Holes DOFs

2x2 3,680 0.697892 0.678698

4x4 13,120 0.711998 0.682582

6x6 28,320 0.715846 0.659881

8x8 49,280 0.717643 0.651026

12x12 108,480 0.719345 0.672084

20x20 296,000 0.720634 0.676350

30x30 660,000 0.721255 0.676757

40x40 0.721558 0.675261

1,168,000




3-D Elasticity: Modeling of Scaffold Materials

»|  Preliminary
: BEM

models and
results

by Scaffold Molds after de-waxing SB
. 2 Baa : 06
Frede y . h, 04
g - . - . ) 02
' S ke e e e ‘e
. o e o owm w9 - -0.2
o @ 3 N . . 1o 08
ST BT o ik ) - Lt -08
() Final Sintered HA Scaffolds | = . I p @ Y r

(Hollister, et al, 2002)




2-D Stokes Flow: Multiple Cylinders
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(c) A larger model with 13 x 13 elliptic cylinders and @ = 0.024, b = 0.5a, DOFs = 103,000,
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3-D Stokes Flow: Modeling of RBCs

An exterior Stokes flow problem.

Total DOFs =900 K: Solved on a
laptop PC.

£0




3-D Stokes Flow: MEMS Analysis

BEM model with
362,662 elements
(1,087,986 total

DOFs)

An angular velocity
is applied

Drag forces are
computed

Solved on a desktop

RIS

PC

;
]
T
]
5
= |
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g I -
-t

L
11 T
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Modeling CNT Composites

Fiber (Linear,

CNT fibers : . :
elastic, anisotropic)

Cohesive interface

\ (Linear/nonlinear)

Matrix (Linear,
elastic, isotropic)

_ _ (b) Models for the CNTs and
(a) An RVE with many CNT fibers (to interfaces (to be extracted from
be solved by the fast multipole BEM) MD simulations)

28




A Multiscale Model for CNT Composites

 Arigid-inclusion model is applied to represent the CNT fibers in polymer matrix.
» The cohesive model from MD study is applied for the CNT/polymer interfaces.

Interface . _
CNT (rigid inclusion) A cohesive interface model:
(CNT) _
/________________,7( _____ 75\ u _U—Ct, vyesai
( u(CNT) lk) . . .
e ___ s with C being the compliance
u N ’ matrix (determined by MD)
Matrix (elastic)

 The fast multipole BEM is applied to solve the large BEM systems.

* This approach is a first step toward the more general multiscale model with
continuum BEM for matrix, and nanoscale MD for CNTs and interfaces.

29




A Typical RVE Using the BEM

3,018,678

A model containing 2,197 short CNT fibers with the total DOF

30




A Very Large BEM Model

-150

LAY ///ﬁfx/
WL
ALY

AN
AR R
AR

3,612,000 (CNT

50 nm, volume fraction = 10.48%). A larger model with 16,000 CNT fibers

(8 times of what is shown above) and 28.9M DOFs was solved successfully on a

000 CNT fibers with the total DOF

An RVE containing 2

length

FUJITSU HPC2500 supercomputer at Kyoto University
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Modeling of CN

Composites (Cont.)

Effects of the Cohesive Interface

E ./ E

Case 1:

C11=C22=C33=0

case! —X¥ / (perfect bonding)
case2 —t v :
cased K~ e C11=C22=C33=Cr =
)K’/ 1 0.02157 (large stiffness)
/"/ Case 3:
p C11=C22=C33=Cz =

3.506 (small stiffness)

Cr, Cz are interface
compliance ratios in the

radial and longitudinal
direction of the fiber,
respectively, and are

Closer to
experimental data

determined from the

0.5 1 1.5 2 2.5

3 3.5 4 . .
MD simulations.

volume fraction

Computed effective moduli of CNT/polymer composites
(same CNT and RVE dimensions as used in the previous perfect bonding case)
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BEM in Modeling of Cracks in 2-D/3-D Solids
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Constant line elements are used (equivalent to the DDM) with analytical integration of all
integrals, which is sufficiently accurate and very efficient (just need more elements ©).
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2-D Example: A Benchmark Problem

10 MPa

prttd

(a) FMM BEM (b) Conventional BEM

A plate with an inclined center crack.
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2-D Example: A Benchmark Problem

10 MPa

I A

&

40

(a) FMM BEM

A plate with two edge cracks.

35

(b) Conventional BEM




2-D Example: A Validation Problem

10 MPa

10

160

~

v

(a) (b) (©) (d)

A plate with a hole and an edge crack (a) BEM, (b)-(c) Test, (d) XFEM.
36




Propagation of Multiple Cracks

References:

e VY.J. Liu, V. X. Li,and W. Xie, “Modeling of multiple crack propagation in 2-D elastic solids by the fast
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multipole boundary element method,” Engineering Fracture Mechanics, 172, 1-16 (2017).

 VY.J. Liu, “On the displacement discontinuity method and the boundary element method for solving 3-D

crack problems,” Engineering Fracture Mechanics, 164, 35-45 (2016).
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http://www.sciencedirect.com/science/article/pii/S0013794416304635
http://www.sciencedirect.com/science/article/pii/S0013794416304635
http://dx.doi.org/10.1016/j.engfracmech.2016.07.009
http://dx.doi.org/10.1016/j.engfracmech.2016.07.009

3-D Example: A Penny-Shaped Crack

M =96 M = 2400

COD plot SIF plot
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3-D Example: A Penny-Shaped Crack (Cont.)

CODXpla)

12

10

3 'Q‘\‘\‘

06 = Analytical Solution \‘\'
+ BEM,M=3&
% BEM,M=384

04
O BEM, M=864
B BEM,M=1536

02 ® BEM, M=2400
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0.0 0.2 04 06 0.8
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Semi-elliptical Surface Crack in A Block

g

A
S :

Surface crack in a cubic
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Semi-elliptical Surface Crack in A Block

Results from 2" layers of nodes
— SIF of analytical solution is from reference [Anderson, 2005];

— SIF is calculated from FEM using a nodal-force method where no prior assumption of plane
stress or plane strain is required [Raju, 1979].

3.00E+00

2.50E+00
2.00E+00

< 1.50E+00 @K1 _stress
® K1_ANSYS
1.00E+00 @ K1_analytical
5.00E-01
0.00E+00
4.40E+01 4.60E+01 4.80E+01 5.00E+01 5.20E+01 5.40E+01 5.60E+01

Y coordinate
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Semi-elliptical Surface Crack in A Block

FEM (ANSYS) 5,068,305 6,802,492 9709.47 12,224.00

BEM 27,204 13,604 1778.20 264.10
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Multiple Semi-elliptical Surface Cracks in A Hollow Cylinder

Surface crack in a hollow cylinder
— External radius = 100 mm:; = e
— Internal radius = 50mm; e '

— Cracks

* Major axis length =5 mm;
* Minor axis length = 2.5 mm;

» 12 cracks evenly distributed along hollow cylinder
Load

— Fixed on one end;

— Traction load = 1 MPa on other.
Material

— E=1MPa;
— Poisson’s ratio = 0.25.
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Multiple Semi-elliptical Surface Cracks in A Hollow Cylinder

Results: K, along the crack front

3

2.5
000088 338
° ®e °
2 .:...E.: 1 o ° ..f...:
° °
g 15 ® ®K1_stress
®KI_ANSYS
® K1_BEM_CTOD-corrected
1
0.5
K, of the highlighted crack is
0 .
0 20 40 60 80 100 120 140 160 180 200 used for comparing the
theta (degree) resu ItS
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Multiple Semi-elliptical Surface Cracks in A Hollow Cylinder

FEM (ANSYS) 1,945,990 2,649,016 5356.05 8274.00

BEM 42,780 128,340 6865.09 958.97
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Modeling Acoustic Wave Problems

B @
e o

Infinite half-space/symmetry

/ plane (no elements are needed)

Helmholtz equation:
Vip+k’p+Q5(x,Xy) =0, vxeE

¢ - acoustic pressure, K = @/ € - wavenumber

BEM for solving 3-D full-/half-space, interior/exterior,
radiation/scattering problems
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Examples: A Radiating Sphere

Relative Errors

2.0%

4.0%

3.0%

2.0%

1.0%

0.0%

-1.0%

-2.0%

-3.0%

-4.0%

-2.0%

| —8—FError in p_max with fast mulipole BEM
. ——FError in p_maxwith ACA BEM
—@=—Frror in p_max with conventional BEM
|
i 3
]
gty o L L bl oy
100 1,000 10,000 100,000 1,000,000

DOFs
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O(N) Computing Efficiencies

Total Wall-Clock Time (sec.)

10000

1000

100

10

0.1

0.01

—  e=#==Fast multipole BEM (ka = 2)
| | —m—ACABEM (ka=2) a
+— == Conventional BEM (ka = 2) = ”:
— —m— Fast multipole BEM (ka = 20) _ . r V.:
L ACABEM (ka = 20) ' z ﬂ}
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Windmill Turbine Analysis

P

Plot of the SPL on the field due to 5 windmills (with 557,470 DOFs5)
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FEM/BEM Coupled Analysis (Freq. Response)
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Noise Prediction in Airplane Landing/Taking Off

Noise propagation on the ground
during the landing of an airplane, BEM
model with 539,722 elements and
solved with the FMM BEM in 8940 sec
onaPC (ka=61.5or f=90 Hz).

Sfasthem.com
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Bio-Medical Applications
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3i0-Medical Applications (Cont.)
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Applications in Computer Animation

Work done by the Group of Professor Doug James at Cornell
University, Using the FastBEM Acoustics code

(Click on the images to play the YouTube video and hear the computed sound)



http://www.cs.cornell.edu/projects/HarmonicShells/
http://www.cs.cornell.edu/projects/FractureSound/

Fast Multipole Boundary Element Method (FastBEM) Software
for Education, Research and Further Development
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Fast Multipole BEM Software Packages for Download
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http://yijunliu.com/Software/

Summary

BEM is very efficient for solving large-scale problems with complicated geometries
or in infinite domains.

Fast multipole method has re-energized the BEM research and dramatically
expanded its range of applications.

More large-scale, realistic engineering problems can be, and should be, solved by the
fast multipole BEM.

Other developments in fast multipole BEM: fracture mechanics, elastodynamic and
electromagnetic wave propagation problems, time-domain problems, black-box fast
multipole method (bbFMM), coupled field and nonlinear problems.

Other fast solution methods for solving BIE/BEM equations include: adaptive cross
approximation (ACA) method, precorrected FFT method, wavelet method, and
others.
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A Bigger Picture of the CM

— A Numerical Toolbox

FEM: Large-scale structural, nonlinear, = BEM: Large-scale continuum, linear,
and transient problems and steady state (wave) problems

Meshfree: Large deformation, fracture
and moving boundary problems “If the only tool
you have is a
hammer, then
every problem you
can solve looks
like a nail!”
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