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The Boundary Element Method (BEM)

n

n

n

• Boundary element method applies surface elements on 
the boundary of a 3-D domain and line elements on the 
boundary of a 2-D domain. The number of elements is 
O(n2) as compared to O(n3) in other domain based 
methods (n = number of elements needed per dimension).

• BEM is good for problems with complicated geometries, 
stress concentration problems, infinite domain problems, 
wave propagation problems, and many others.

• Finite element method can solve a model with 1 million 
DOFs on a PC with 1 GB RAM.

• Fast multipole BEM can also solve a model with 1 
million DOFs on a PC with 1 GB RAM. However, these 
DOFs are on the boundary of the model only, which 
would require 1 billion DOFs for the corresponding 
domain model.

ANSYS
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A Comparison of the FEM and BEM
- An Engine Block Model

• Heat conduction of a V6 engine model is studied.

• ANSYS is used in the FEM study.

• Fast multipole BEM is used in the BEM study.

• A linear temperature distribution is applied on the six 
cylindrical surfaces

FEM (363,180 volume elements) BEM (42,169 surface elements)
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FEM 
Results

(50 min.)

BEM 
Results

(16 min.)

A Comparison of the FEM and BEM
with An Engine Block Model (Cont.)
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Two Different Routes in Computational Mechanics

Engineering Problems

Mathematical Models

Differential Equation (ODE/PDE) 
Formulations

Boundary Integral Equation (BIE) 
Formulations

Analytical Solutions Analytical SolutionsNumerical Solutions Numerical Solutions

FDM FEM EFM Others BEM OthersBNM
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A Brief History of the BEM

BEM emerged in 1980’s …
Integral equations

(Fredholm, 1903)

Modern numerical 
solutions of BIEs 
(in early 1960’s)

Jaswon and Symm (1963) 
– 2D Potential Problems

Frank J. Rizzo (Dissertation in 1964 at 
TAM of UIUC, paper published in 1967)
– 2D Elasticity Problems

T. A. Cruse and F. J. Rizzo (1968) 
– 2D elastodynamics

P. K. Banerjee (1975)
– Coined the name “boundary element method”



Frank J. Rizzo
U Washington
U Kentucky
Iowa State U
U Illinois

P. K. Banerjee
U Wales, UK
SUNY - Buffalo

Subrata Mukherjee
Cornell U

Thomas A. Cruse
Boeing
CMU
Pratt & Whitney
SwRI
Vanderbilt U
AFRL

Pioneers in the BIE/BEM Research in the US

7

… Others

http://engineering.buffalo.edu/civil-structural-environmental/news-events/latest_news.host.html/content/shared/engineering/civil-structural-environmental/articles/2014/04/csee-remembers-professor-emeritus-prasanta-banerjee.detail.html
https://www.engineering.cornell.edu/faculty-directory/subrata-mukherjee
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Pioneers in Early BIE/BEM Research in China

杜庆华

清华大学

姚振汉

清华大学

叶天麒

西北工业大学

祝家麟

重庆大学

… Others

https://baike.baidu.com/item/%E6%9D%9C%E5%BA%86%E5%8D%8E/4468024?fr=aladdin
https://baike.baidu.com/item/%E5%A7%9A%E6%8C%AF%E6%B1%89/10946937?fr=aladdin
http://www.npuicma.cn/Documents/Prof_Ye_Biography.pdf
https://baike.baidu.com/item/%E7%A5%9D%E5%AE%B6%E9%BA%9F/5845823?fr=aladdin


My Earlier BEM Research 
– Analysis of Large-Deflection of Elastic Plates

MS thesis research at Northwestern Polytechnical 
University (NPU), Xi’an, China.
Paper published in: Applied Mathematical Modelling, 
9, 183-188 (1985).

9
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Formulation: The Potential Problem
• Governing Equation

 with given boundary conditions on S
• The Green’s function for potential problem

• Boundary integral equation formulation

 where
• Comments:   The BIE is exact due to the use of the Green’s function;  
   Note the singularity of the Green’s function G(x,y).

;,0)(2 Vu ∈∀=∇ xx

[ ] ,or),()(),()(),()()( SVdSuFqGuC
S

∈∀−= ∫ xyyyxyyxxx

;2Din,1ln
2
1),( 






=

r
G

π
yx

., nG/Fnu/q ∂∂∂∂ ==

r

S
x

y

n

V

.3Din,
4
1),(

r
G

π
=yx



11

Formulation: The Potential Problem (Cont.)
• Discretize boundary S using 
 N boundary elements: 

 line elements for 2D problems; 
 surface elements for 3D problems.

• The BIE yields the following BEM equation

• Apply the boundary conditions to obtain 
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Each node/element 
interacts with all other 
node/element directly.

The number of 
operations is of order 

O(N2).

Storage is also of order 
O(N2).



Advantages and Disadvantages of the BEM
Advantages:

• Accuracy – due to the semi-analytical nature and use of integrals in the BIEs
• More efficient in meshing due to the reduction of dimensions
• Good for stress concentration and infinite domain problems
• Good for modeling thin shell-like structures/models of materials
• Neat … (integration, superposition, boundary solutions for BVPs)

Disadvantages:
• Conventional BEM matrices are dense and nonsymmetrical
• Solution time is long and memory size is large (Both are O(N2))
• Used to be limited to for solving small-scale BEM models (Not anymore!)

The Solution:
• Various fast solution methods to improve the computational efficiencies of the BEM

12



Methods:
• Fast multipole method (FMM) (Rokhlin 

and Greengard, 1980s; Nishimura, 2001)
• Adaptive cross approximation (ACA) 

method (Bebendorf, et al., 2000)
• Fast direct solvers (Martinsson, Rokhlin, 

Greengard, Darve, et al.)
Techniques:
• Domain decomposition (new multidomain 

BEM, Liu & Huang, 2016) 
• Parallel computing on CPU or GPU

Overview of the Fast BEM

Efficiency

A
cc

ur
ac

y Conventional 
BEM

Fast Multipole 
BEM

ACA BEM

Fast Direct 
Solver BEM

Reference:   Y. J. Liu, S. Mukherjee, N. Nishimura, M. Schanz, W. Ye, A. Sutradhar, E. Pan, N. A. Dumont, 
A. Frangi and A. Saez, “Recent advances and emerging applications of the boundary element method,”  ASME 
Applied Mechanics Review, 64, No. 5 (May), 1–38 (2011).

13

http://yijunliu.com/Publications/2011/AMR_BEM_Review_Paper_2011.pdf
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Fast Multipole Method (FMM)

• FMM can reduce the cost (CPU time & storage) for BEM to O(N)

• Pioneered by Rokhlin and Greengard (mid of 1980’s)

• Ranked among the top ten algorithms of the 20th century (with FFT, 
QR, …) in computing

• Greengard’s book: The Rapid Evaluation of Potential Fields in 
Particle Systems, MIT Press, 1988

• An earlier review by Nishimura: ASME Applied Mechanics 
Review, July 2002

• A newer review by Liu, Mukherjee, Nishimura, Schanz, Ye, et al, 
ASME Applied Mechanics Review, May 2011

• A book by Liu: Fast Multipole Boundary Element Method – Theory 
and Applications in Engineering, Cambridge University Press, 2009

Rokhlin

Greengard

Chew

Nishimura

http://gspsun1.gee.kyoto-u.ac.jp/nchml/pamphlet.html
http://wcchew.ece.illinois.edu/chew/
https://www.math.nyu.edu/faculty/greengar/
https://cpsc.yale.edu/people/vladimir-rokhlin
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Fast Multipole Method (FMM): The Simple Idea

Conventional BEM approach (O(N2)) FMM BEM approach (O(N) for large N)

Apply iterative solver (GMRES) and accelerate matrix-vector multiplications by replacing 
element-element interactions with cell-cell interactions.
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Adaptive Cross Approximation (ACA)

• Hierarchical decomposition of a BEM matrix:

(from Rjasanow and Steinbach, 2007)

• A lower-rank submatrix A away from the main diagonal can be represented by a few 
selected columns (u) and rows (vT) (crosses) based on error estimates:

• The process is independent of the kernels (or 2-D/3-D)
• Can be integrated with iterative solvers (GMRES)
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Fast Direct Solver

Reference:   S. Huang and Y. J. Liu, “A new fast direct solver for the boundary element method,” 
Computational Mechanics, 60, No. 3, 379–392 (2017).
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Sherman-Morrison-Woodbury formula:

which is efficient if                                         .

See reference for application to the BEM matrices.
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https://link.springer.com/article/10.1007/s00466-017-1407-2
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Some Applications of the Fast Multipole 
Boundary Element Method

• 2-D/3-D potential problems.
• 2-D/3-D elasticity problems.
• 2-D/3-D Stokes flow problems.
• 2-D/3-D acoustics problems.
• Applications in modeling porous materials, fiber-reinforced composites and micro-electro-

mechanical systems (MEMS).

• All software packages used here can be downloaded from www.yijunliu.com.
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2-D Potential: Accuracy and Efficiency of the 
Fast Multipole BEM
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Conventional BEM

FMM BEM

N

FMM BEM Conventional 
BEM

36 -401.771619 -401.771546

72 -400.400634 -400.400662

360 -400.014881 -400.014803

720 -400.003468 -400.003629

1440 -400.000695 -400.000533

2400 -400.001929 -400.000612

4800 -400.001557 -400.000561

7200 -399.997329 -399.998183

9600 -399.997657 -399.996874

Analytical 
Solution -400.0

aq
a b

O

V

Sb

Sa

Results for a simple potential 
problem in an annular region V 
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3-D Potential: Modeling of Fuel Cells

Thermal Analysis of Fuel 
Cell (SOFC) Stacks

There are 9,000 small 
side holes in this model

Total DOFs = 530,230, 
solved on a desktop PC 
with 1 GB RAM)

ANSYS can only model 
one cell on the same PC



21Computed charge density

3-D Electrostatic Analysis

Applied potential (±5)

X Y

Z

One BEM mesh

• 11 conducting spheres.

• Forces can be found with the charge density.

• Largest model has  118,800 DOFs.
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3-D Electrostatic Analysis (Cont.)

Applications 
in MEMS

A comb drive

• Beams are applied with +/- voltages.

• Forces can be found with the charge density.

• Model shown has 55 beams (179,300 DOFs).
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2-D Elasticity: Modeling of Perforated Plates

Computed effective Young’s modulus 
for the perforated plate (x E)

No. Holes DOFs
Uniformly 
Distributed 

Holes

Randomly 
Distributed 

Holes

2x2 3,680 0.697892 0.678698

4x4 13,120 0.711998 0.682582

6x6 28,320 0.715846 0.659881

8x8 49,280 0.717643 0.651026

12x12 108,480 0.719345 0.672084

20x20 296,000 0.720634 0.676350

30x30 660,000 0.721255 0.676757

40x40 1,168,000 0.721558 0.675261

A BEM model of a perforated plate 
(with 1,600 holes)
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3-D Elasticity: Modeling of Scaffold Materials

(Hollister, et al, 2002)

Preliminary 
BEM 

models and 
results
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2-D Stokes Flow: Multiple Cylinders
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3-D Stokes Flow: Modeling of RBCs

Drag force in the flow direction.

An exterior Stokes flow problem.

Total DOFs = 900 K; Solved on a 
laptop PC.



3-D Stokes Flow: MEMS Analysis

• BEM model with 
362,662 elements 
(1,087,986 total 
DOFs)

•  An angular velocity 
is applied

• Drag forces are 
computed

• Solved on a desktop 
PC

27
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Modeling CNT Composites

CNT fibers Fiber (Linear, 
elastic, anisotropic)

Cohesive interface 
(Linear/nonlinear)

Matrix (Linear, 
elastic, isotropic)

(a) An RVE with many CNT fibers (to 
be solved by the fast multipole BEM)

(b) Models for the CNTs and 
interfaces (to be extracted from 

MD simulations)
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A Multiscale Model for CNT Composites

• A rigid-inclusion model is applied to represent the CNT fibers in polymer matrix.
• The cohesive model from MD study is applied for the CNT/polymer interfaces.

• The fast multipole BEM is applied to solve the large BEM systems.
• This approach is a first step toward the more general multiscale model with 
continuum BEM for matrix, and nanoscale MD for CNTs and interfaces.

Interface
CNT (rigid inclusion)

Matrix (elastic)
u
u(CNT)

,,)(
αSCNT ∈∀=− yCtuu

A cohesive interface model:

with C being the compliance 
matrix (determined by MD)αS
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A Typical RVE Using the BEM

A model containing 2,197 short CNT fibers with the total DOF = 3,018,678 
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A Very Large BEM Model

An RVE containing 2,000 CNT fibers with the total DOF = 3,612,000 (CNT 
length = 50 nm, volume fraction = 10.48%). A larger model with 16,000 CNT fibers 

(8 times of what is shown above) and 28.9M DOFs was solved successfully on a 
FUJITSU HPC2500 supercomputer at Kyoto University
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Modeling of CNT Composites (Cont.)
Effects of the Cohesive Interface

Computed effective moduli of CNT/polymer composites 
(same CNT and RVE dimensions as used in the previous perfect bonding case)

Case 1: 
C11=C22=C33=0 
(perfect bonding)

Case 2: 
C11=C22=C33=Cr = 
0.02157 (large stiffness)

Case 3: 
C11=C22=C33=Cz = 
3.506 (small stiffness)

Cr, Cz are interface 
compliance ratios in the 
radial and longitudinal 
direction of the fiber, 
respectively, and are 
determined from the 
MD simulations.

Closer to 
experimental data



BEM in Modeling of Cracks in 2-D/3-D Solids

Constant line elements are used (equivalent to the DDM) with analytical integration of all 
integrals, which is sufficiently accurate and very efficient (just need more elements ).

33



2-D Example: A Benchmark Problem

A plate with an inclined center crack.

34



2-D Example: A Benchmark Problem

A plate with two edge cracks.
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2-D Example: A Validation Problem

A plate with a hole and an edge crack (a) BEM, (b)-(c) Test, (d) XFEM.
36



Propagation of Multiple Cracks

References:
•  Y. J. Liu, Y. X. Li, and W. Xie, “Modeling of multiple crack propagation in 2-D elastic solids by the fast 
multipole boundary element method,”  Engineering Fracture Mechanics, 172, 1-16 (2017).

•  Y. J. Liu, “On the displacement discontinuity method and the boundary element method for solving 3-D 
crack problems,” Engineering Fracture Mechanics, 164, 35-45 (2016).

37

http://www.sciencedirect.com/science/article/pii/S0013794416304635
http://www.sciencedirect.com/science/article/pii/S0013794416304635
http://dx.doi.org/10.1016/j.engfracmech.2016.07.009
http://dx.doi.org/10.1016/j.engfracmech.2016.07.009


3-D Example: A Penny-Shaped Crack

COD plot   SIF plot

M = 96    M = 2400

38



3-D Example: A Penny-Shaped Crack (Cont.)

COD plot             SIF plot

39



Semi-elliptical Surface Crack in A Block

• Surface crack in a cubic
– Side length = 100 mm;
– Major axis length = 5 mm;
– Minor axis length = 2.5 mm.

• Load
– Fixed on one end;
– Traction load = 1 MPa on other.

• Material
– E = 1 MPa;
– Poisson’s ratio = 0.25.

40



Semi-elliptical Surface Crack in A Block
• Results from 2nd layers of nodes

– SIF of analytical solution is from reference [Anderson, 2005];
– SIF is calculated from FEM using a nodal-force method where no prior assumption of plane 

stress or plane strain is required [Raju, 1979].

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

3.00E+00

4.40E+01 4.60E+01 4.80E+01 5.00E+01 5.20E+01 5.40E+01 5.60E+01

K1

Y coordinate

K1_stress

K1_ANSYS

K1_analytical
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Semi-elliptical Surface Crack in A Block

No. Elements No. Nodes CPU time (s) Elapsed time (s)

FEM (ANSYS) 5,068,305 6,802,492 9709.47 12,224.00

BEM 27,204 13,604 1778.20 264.10

42



Multiple Semi-elliptical Surface Cracks in A Hollow Cylinder
• Surface crack in a hollow cylinder

– External radius = 100 mm;
– Internal radius = 50mm;
– Cracks

• Major axis length = 5 mm;
• Minor axis length = 2.5 mm;
• 12 cracks evenly distributed along hollow cylinder

• Load
– Fixed on one end;
– Traction load = 1 MPa on other.

• Material
– E = 1 MPa;
– Poisson’s ratio = 0.25.

43



Multiple Semi-elliptical Surface Cracks in A Hollow Cylinder

Results: KI along the crack front

KI of the highlighted crack is 
used for comparing the 
results

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120 140 160 180 200

K1

theta (degree)

K1_stress

K1_ANSYS

K1_BEM_CTOD-corrected
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Multiple Semi-elliptical Surface Cracks in A Hollow Cylinder

No. Elements No. Nodes CPU time (s) Elapsed time (s)

FEM (ANSYS) 1,945,990 2,649,016 5356.05 8274.00

BEM 42,780 128,340 6865.09 958.97

45



Modeling Acoustic Wave Problems

• Helmholtz equation:

• - acoustic pressure,                 - wavenumber
• BEM for solving 3-D full-/half-space, interior/exterior, 

radiation/scattering problems

/k cω=φ

  

S 

V 

E 

Qx  

Iφ  

n 

Infinite half-space/symmetry 
plane (no elements are needed) 

2 2 ( , ) 0,Qk Q Eφ φ δ∇ + + = ∀ ∈x x x
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Examples: A Radiating Sphere

47



O(N) Computing Efficiencies

48



Windmill Turbine Analysis

Plot of the SPL on the field due to 5 windmills (with 557,470 DOFs)

49



FEM/BEM Coupled Analysis (Freq. Response)

50



Noise Prediction in Airplane Landing/Taking Off

Noise propagation on the ground  
during the landing of an airplane, BEM 

model with 539,722  elements and 
solved with the FMM BEM in 8940 sec 

on a PC (ka = 61.5 or f = 90 Hz).

51



Bio-Medical Applications

Pressure plots at 11 kHz 
with a plane wave in –x direction

A human head model 
with 90,000 elements

52



Bio-Medical Applications (Cont.)

53

With Dr. J. Kim at UC



Applications in Computer Animation

Work done by the Group of Professor Doug James at Cornell 
University, Using the FastBEM Acoustics code

(Click on the images to play the YouTube video and hear the computed sound)

54

http://www.cs.cornell.edu/projects/HarmonicShells/
http://www.cs.cornell.edu/projects/FractureSound/


Fast Multipole Boundary Element Method (FastBEM) Software
for Education, Research and Further Development

(http://yijunliu.com/Software) 

55

http://yijunliu.com/Software/


Summary

• BEM is very efficient for solving large-scale problems with complicated geometries 
or in infinite domains.

• Fast multipole method has re-energized the BEM research and dramatically 
expanded its range of applications.

• More large-scale, realistic engineering problems can be, and should be, solved by the 
fast multipole BEM.

• Other developments in fast multipole BEM: fracture mechanics, elastodynamic and 
electromagnetic wave propagation problems, time-domain problems, black-box fast 
multipole method (bbFMM), coupled field and nonlinear problems.

• Other fast solution methods for solving BIE/BEM equations include: adaptive cross 
approximation (ACA) method, precorrected FFT method, wavelet method, and 
others.

56



A Bigger Picture of the CM
– A Numerical Toolbox

FEM: Large-scale structural, nonlinear, 
and transient problems

BEM: Large-scale continuum, linear, 
and steady state (wave) problems

Meshfree: Large deformation, fracture 
and moving boundary problems “If the only tool 

you have is a 
hammer, then 

every problem you 
can solve looks 

like a nail!”

57

http://images.google.com/imgres?imgurl=www.tu-bs.de/rz/software/fem/ls_com/images/Car.gif&imgrefurl=http://www.tu-bs.de/rz/software/fem/ls_com/&h=440&w=764&prev=/images?q%3Dcar%2BFEM%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8
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 (or Google search “fast multipole BEM”)
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