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Preface 
 This is a basic introduction to the finite element method (FEM) for undergraduate 
students in engineering or other readers who have no previous experience with the FEM. The 
lecture notes cover the basic concepts in the FEM using the simplest mechanics problems as 
examples, and lead to the discussions and applications of the one-dimensional (1-D) bar and 
beam, 2-D plane stress and plane strain, plate and shell, and 3-D solid elements in the analyses of 
structural stresses, vibrations and dynamics. The understanding of the FEM principles and 
procedures, and correct usage of the FEM software are emphasized throughout the notes. 

These lecture notes have been developed by the author for the undergraduate courses on 
the FEM in the Mechanical Engineering Department at the University of Cincinnati since 1997. 
The materials in these notes are aimed for students in mechanical, civil and aerospace 
engineering, who need a general background in the FEM so that they can apply the FEM in their 
design and analysis of components, structures or systems using available commercial FEM 
software. For students who will conduct research on the FEM, these lecture notes should only 
serve as an introduction and they should consult to the references listed at the end of the notes for 
more rigorous treatment of the subject in order to have the necessary theoretical background and 
programming skills in developing new capabilities in the FEM. 

The lecture notes include eight chapters and can be used for an undergraduate FEM 
course in one semester (15 weeks with three one-hour lectures each week) or in two quarters (20 
weeks with three one-hour lectures each week, with four or five accompanying computer 
laboratory sessions each quarter). Chapter 1 gives a basic introduction to the concept of the FEM 
using the spring system as examples. It also reviews the matrix algebra that is essential for the 
FEM. Chapter 2 introduces the bar and beam elements and outlines the general procedures in the 
formulations and application of the FEM. Chapter 3 covers 2-D problems in elasticity, that is, 
plane stress and plane strain elements. Chapter 4 discusses various modeling techniques in the 
FEM and related topics, such as error indicators and how to evaluate the FEM results. Chapter 5 
gives an introduction to the plate and shell elements, emphasizing the correct use of these types 
of elements. Chapter 6 provides the formulations and applications of the FEM in general 3-D 
elasticity problems. Chapter 7 is an introduction of the FEM in structural vibration and dynamics 
analysis, covering normal modes, harmonic and transient responses of structures using the FEM. 
Chapter 8 covers the basics in thermal analysis of structures using the FEM. Exercise problems 
and/or projects using FEM software packages are provided at the end of each chapter. Further 
readings are provided in the Reference section to conclude the lecture notes. 

The author thanks many of his former undergraduate and graduate students at the 
University of Cincinnati for their suggestions on the earlier versions of these lecture notes and 
for their contributions to many of the examples used in the lecture notes.  
 
Yijun Liu 
Cincinnati, Ohio, USA 
Winter 2007
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Chapter 1.  Introduction 
I. Some Basic Concepts 

A Simple Idea 
 The finite element method (FEM), or finite element analysis (FEA), is based on the idea 
of building a complicated object with simple blocks, or, dividing a complicated object into small 
and manageable pieces. Application of this simple idea can be found everywhere in everyday life 
(see, e.g., Figure 1.1), as well as in engineering. For example, children play the toy Lego by 
using many small pieces of simple geometries to build various objects such as trains, ships or 
buildings. With more and smaller pieces, these objects often look more realistic. As another 
example, a digital image, which looks smooth and colorful, is in fact composed of millions of 
dots that just have one simple color.  

    
 (a)       (b)  

Figure 1.1.  Objects built with simple and small pieces: (a) a fire engine built with Lego®; and 
(b) a house built with many elements – bricks, beams, columns, panels and so on. 

 
 In mathematical terms, this is simply the use of the limit concept, that is, to approach or 
represent a smooth objects with a finite number of simple pieces and increasing the number of 
such pieces will increase the accuracy of this representation. For example, ancient people used 
this concept to estimate the area of a circle well before the formula 2RA π=  was established 
(where R is the radius of the circle). In doing so, a circle is approximated by a polygon or divided 
into many triangles (Figure 1.2).  The area of one triangle is given by: 

iii LRS
2
1

= , 

where iR  is the height and iL  the base length of the triangle. The area A of the circle can be 
therefore obtained in the following manner: 

∞→==→

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== ∑

=

NasARRLLRNSS totalii
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i
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where N is the total number of triangles (or elements) and itotal NLL =  is, in the limit, the 
circumference of the circle, which is Rπ2  as it is known now. 
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“Element” Si 

Li 
Ri 

R 

 
Figure 1.2.  Approximation of the area of a circle using a finite number of triangles. 

 
From the above mentioned examples, one can conclude that objects with complicated 

geometries can be represented by many small pieces (or elements) with simple geometries. As 
the number of such pieces increase, the representation becomes more accurate. This is exactly 
the same concept used in the development of the FEM as one will see in later chapters. 

 

Why the Finite Element Method? 
 Computers have revolutionized the practice of engineering. Design of a product that used 
to be done by tedious hand drawings has been replaced by computer-aided design (CAD) using 
computer graphics. Analysis of a design used to be done by hand calculations and many of the 
testing have been replaced by computer simulations using computer-aided engineering (CAE) 
software. Together, CAD, CAE and CAM (computer-aided manufacturing) have dramatically 
changed the landscape of engineering. For example, a car, that used to take five to six years from 
design to product, can now be produced starting from the concept design to the manufacturing 
within about 18 months using the CAD/CAE/CAM technologies. A company without adopting 
the CAD/CAE technologies is deemed to lose ground in the competitive market place. FEM is 
the most widely applied simulation tool in CAE or one of the most powerful calculators available 
for engineering students. 
 

Applications of the FEM in Engineering 
 There are numerous applications of the FEM in industries today and below is only a very 
short list: 

• Mechanical/Aerospace/Automobile/Civil/Electrical Engineering 

• Structure stress and dynamic analysis 

• Thermal/fluid flows 

• Electrostatics/Electromagnetics 

• Geomechanics 

• Biomechanics 
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Figure 1.3. Modeling of gear coupling using the FEM. 

 

A Brief History of the FEM 
 An account of the historical development of finite element method and the computational 
mechanics in general was given by O. C. Zienkiewicz recently, which can be found in Ref. [1]. A 
few major milestones are as follows: 

1943  -----  Courant (Variational methods which laid the foundation for FEM) 
1956  -----  Turner, Clough, Martin and Topp (Stiffness method) 
1960  -----  Clough (Coined “Finite Element”, solved plane problems) 
1970s -----  Applications on “mainframe” computers 
1980s -----  Microcomputers, development of pre- and postprocessors (GUI) 
1990s -----  Analysis of large structural systems, nonlinear and dynamic problems 

 

 
Figure 1.4.  Simulating a can drop with dynamic FEM. 

 

http://urbana.mie.uc.edu/yliu/Showcase_FEA/Can_Drop/Can_Drop.htm�
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FEM in Structural Analysis (The Procedure in Using the FEM) 

• Divide structure into pieces (elements with nodes, Figure 1.5) 

• Describe the behavior of the physical quantities on each element 

• Connect (assemble) the elements at the nodes to form an approximate system of 
equations for the whole structure 

• Solve the system of equations involving unknown quantities at the nodes (for example, 
the displacements) 

• Calculate desired quantities (for example, strains and stresses) at selected elements 

 
 

   
(a)       (b) 

Figure 1.5.  (a) A plate with a hole; and (b) A FEM discretization (mesh). 

 

Computer Implementations 
 A typical FEM software has the following three key components: 

• Preprocessor (used to build FE models, apply loads and constraints) 

• FEA solver (assemble and solve the FEM system of equations) 

• Postprocessor (sort and display the results) 

The computer graphical-user interface (GUI) of the ANSYS software is shown in 
Figure 1.6. Other FEM packages have similar interfaces. 
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Figure 1.6. GUI of the ANSYS software. 

 

Available Commercial FEM Software Packages 
 There are many commercial FEM packages, or CAD/CAE software in general, available 
for conducting FEA in nearly all fields of engineering. The following is only a short list: 

• ANSYS  (General purpose, PCs and workstations) 

• UG/NX  (Complete CAD/CAM/CAE package) 

• NASTRAN  (General purpose FEA on mainframes and PCs) 

• ABAQUS  (Nonlinear and dynamic analyses) 

• COSMOS  (General purpose FEA) 

• ALGOR  (PCs and workstations) 

• PATRAN  (Pre/Post Processor) 

• HyperWorks/HyperMesh  (Pre/Post Processor) 

• Dyna-3D  (Crash/impact analysis) 

• Others 

 

Graphics 
window 

Main 
menu 

Quick 
tool 

menu 

File 
menu 
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Objectives of This Course 

• Understand the fundamental ideas of the FEM 

• Know the behavior and usage of each type of elements covered in this course 

• Be able to prepare a suitable FE model for a given problem 

• Can interpret and evaluate the quality of the results (know the physics of the problems) 

• Be aware of the limitations of the FEM (do not misuse the FEM) 

 

 

II.  Review of Matrix Algebra 

Linear System of Algebraic Equations 
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where x1, x2, ..., xn are the unknowns. 
In matrix form: 
  bAx =             (1.2) 

where  
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A is called a n×n (square) matrix, and x and b are (column) vectors with dimension n. 

Row and Column Vectors 
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Matrix Addition and Subtraction 
For two matrices A and B, both of the same size (m×n), the addition and subtraction are 

defined by 
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Scalar Multiplication 

  [ ]ijaλλ =A                     (1.6) 

Matrix Multiplication 
For two matrices A (of size l×m) and B (of size m×n), the product of AB is defined by 

  kj

m

k
ikij bac ∑

=

==
1

 withABC                   (1.7) 

where i = 1, 2, ..., l;  j = 1, 2, ..., n. 

Note that, in general, BAAB ≠ , but )()( BCACAB =  (associative). 

Transpose of a Matrix 
If A = [aij], then the transpose of A is  

  [ ]ji
T a=A                  (1.8) 

Notice that 
TTT ABAB =)(                 (1.9) 

Symmetric Matrix 
A square (n×n) matrix A is called symmetric, if 

  TAA =             or          jiij aa =              (1.10) 

Unit (Identity) Matrix 
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Note that AI = A, Ix = x. 

Determinant of a Matrix 
The determinant of square matrix A is a scalar number denoted by det A  or  |A|.  For 

2×2 and 3×3 matrices, their determinants are given by 

bcad
dc
ba

−=






det                (1.12) 

and 
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Singular Matrix 
A square matrix A is singular if det A = 0, which indicates problems in the system 

(nonunique solutions, degeneracy, etc.) 

Matrix Inversion 
For a square and nonsingular matrix A ( 0det ≠A ), its inverse A-1 is constructed in such 

a way that 

  IAAAA == −− 11                (1.14) 
 The cofactor matrix C of matrix A is defined by 

  ij
ji

ij MC +−= )1(                (1.15) 

where Mij is the determinant of the smaller matrix obtained by eliminating the ith row and jth 
column of A. 
 Thus, the inverse of A can be determined by 

  TC
A

A
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 We can show that 111)( −−− = ABAB . 
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 If det A = 0 (i.e., A is singular), A-1 does not exist. 
 The solution of the linear system of equations (Eq. (1.1)) can be expressed as (assuming 
the coefficient matrix A is nonsingular) 

  bAx 1−=  

Thus, the main task in solving a linear system is to find the inverse of the coefficient matrix. 

Solution Techniques for Linear Systems of Equations 

• Gauss elimination methods 

• Iterative methods 
We will briefly review the two methods in Chapter 4. 

Positive Definite Matrix 
A square (n×n) matrix A is said to be positive definite, if for all nonzero vector x of 

dimension n, 

  0>AxxT  

Note that positive definite matrices are nonsingular. Later on we will see that all stiffness 
matrices are positive definite and the above condition is a statement that the strain energy in a 
structure should be positive if the structure is constrained and the stiffness matrix is nonsingular. 

Differentiation and Integration of a Matrix 

 Let ( ) ( )ijt a t =  A , then the differentiation is defined by 

  







=

dt
tda

t
dt
d ij )(

)(A                (1.17) 

and the integration by 

  ( ) ( )ijt dt a t dt =  ∫ ∫A                (1.18) 
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Types of Finite Elements 
 We are now ready to study the various finite elements. All the elements developed in the 
FEM can be categorized into the following three types according to their geometries. 

1-D (Line) Elements: 

 

 

Figure 1.6.  1-D elements: Springs, trusses, beams, pipes, etc. 

 

2-D (Plane) Elements: 

 

 

Figure 1.7.  2-D elements: Membranes, plates, shells, etc. 

 

3-D (Solid) Elements: 

 

 Figure 1.8.  3-D elements for 3-D fields (temperature, displacement, stress, velocity, etc.). 
 
 We will start with the 1-D spring element as an example to study the basic concept and 
ingredients in the FEM. 



Lecture Notes:  Introduction to the Finite Element Method                         

© 1997-2013 Yijun Liu, University of Cincinnati     11 

III.  Spring Element 

 

 “Everything important is simple!” 
 

One Spring Element 
 We first study a single spring element (Figure 1.9) and then a system of spring elements. 
 

 

k 

i j 

uj ui fi fj 

x 

 

Figure 1.9.  One spring element. 

Two nodes:   i, j 

Nodal displacements:  ui,  uj (m, mm) 

Nodal forces:   fi,  fj (Newton) 

Spring constant (stiffness): k  (N/m, N/mm) 

Relationship between spring force F and elongation Δ is shown in Figure 1.10. 

 

∆ 

F 

Nonlinear 

Linear 

k 

 

Figure 1.10.  Force-displacement relation in a spring. 

We only consider linear problems in this introductory course. In the linear portion of the 
curve shown in Figure 1.10, we have 

  ∆= kF ,  with  ij uu −=∆ .       (1.19) 
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where ∆= /Fk   (> 0) is the stiffness of the spring (the force needed to produce a unit stretch). 

Consider the equilibrium of forces for the spring.  At node i, we have 

  jiiji kukuuukFf −=−−=−= )(  

and at node j, 

  jiijj kukuuukFf +−=−== )(  

In matrix form, 
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


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
−

−

j

i

j

i

f
f

u
u

kk
kk

             (1.20) 

or, 
  fku =                 (1.21) 

where 
  k = (element) stiffness matrix 
  u = (element) nodal displacement vector 
  f  = (element) nodal force vector 

From the derivation, we see that the first equation in (1.20) represents the equilibrium of 
forces at node i, while the second equation in (1.20) that of forces at node j. Note also that k is 
symmetric.  Is k singular or nonsingular?  That is, can we solve the equation in (1.20)?  If not, 
why? 

Spring System 
 

k1 

u1, F1 

x 
k2 

u2, F2 u3, F3 

1 2 3 

 

Figure 1.11. A system of two spring elements. 

 For a system of multiple spring elements, we first write down the stiffness equation for 
each spring and then “assemble” them together to form the stiffness equation for the whole 
system. For example, for the two-spring system shown in Figure 1.11, we proceed as follows: 

For element 1, we have 

fi   i    F 

F   j    fj 
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and for element 2, 
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where m
if  is the (internal) force acting on local node i of element m (i = 1, 2). 

Assemble the stiffness matrix for the whole system: 

Consider the equilibrium of forces at node 1, 

  1
11 fF =  

at node 2, 

  2
1

1
22 ffF +=  

and at node 3, 

  2
23 fF =  

Using (1.22) and (1.23), we obtain 
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In matrix form, we have 
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=































−
−+−

−

3

2

1

3

2

1

22

2211

11

0

0

F
F
F

u
u
u

kk
kkkk

kk
            (1.24) 

or  

  FKu =                (1.25) 

in which, K is the stiffness matrix (structure matrix) for the entire spring system. 

An alternative way of assembling the whole stiffness matrix: 

F1  1    f1
1 

f2
1  2    f1

2 

F2 

  f2
2  3  F3 
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“Enlarging” the stiffness matrices for elements 1 and 2, we have 

  
















=





























−

−

0000
0
0

1
2

1
1

3

2

1

11

11

f
f

u
u
u

kk
kk

,       

and 

       













=































−
−

2
2

2
1

3

2

1

22

22

0

0
0

000

f
f

u
u
u

kk
kk  

Adding the two matrix equations (i.e., using superposition), we have 

  
















+=






























−
−+−

−

2
2

2
1

1
2

1
1

3

2

1

22

2211

11

0

0

f
ff

f

u
u
u

kk
kkkk

kk
 

This is the same equation we derived by using the force equilibrium concept. 

Energy approach: 

 We can also obtain the result using an energy method, for example, the principle of 
minimum potential energy. In fact, the energy approach is more general and considered the 
foundation of the FEM. To proceed, we consider the strain energy U stored in the spring system 
shown in Figure 1.11. 

  222111
2

22
2

11 2
1

2
1

2
1

2
1

∆∆+∆∆=∆+∆= kkkkU TT  

However, 

  [ ] [ ]








−=−=∆








−=−=∆
3

2
232

2

1
121 11,11

u
u

uu
u
u

uu  

We have 

  [ ] [ ]
















−

−
+

















−

−
=

3

2

22

22
32

2

1

11

11
21 2

1
2
1

u
u

kk
kk

uu
u
u

kk
kk

uuU  = (enlarging…) 
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  [ ]






























−
−+−

−
=

3

2

1

22

2211

11

321

0

0

2
1

u
u
u

kk
kkkk

kk
uuu        (1.26) 

The potential of the external forces is 

  [ ]













−=−−−=Ω

3

2

1

321332211

F
F
F

uuuuFuFuF            (1.27) 

Thus, the total potential energy of the system is 

 [ ] [ ]













−































−
−+−

−
=Ω+=Π

3

2

1

321

3

2

1

22

2211

11

321

0

0

2
1

F
F
F

uuu
u
u
u

kk
kkkk

kk
uuuU         (1.28) 

which is a function of the three nodal displacements ( 321 ,, uuu ). According to the principle of 
minimum potential energy, for a system to be in equilibrium, the total potential energy must be 
minimum, that is, 0=Πd , or equivalently, 

  ,0,0,0
321

=
∂

Π∂
=

∂
Π∂

=
∂

Π∂
uuu

            (1.29) 

which yield the same three equations as in (1.24). 

Boundary and load conditions: 

Assuming that node 1 is fixed, and same force P is applied at node 2 and node 3, that is 

  PFFu === 321      and0  

we have from Eq. (1.24) 

  













=































−
−+−

−

P
P
F

u
u

kk
kkkk

kk 1

3

2

22

2211

11 0

0

0
 

which reduces to 

  








=
















−

−+
P
P

u
u

kk
kkk

3

2

22

221  
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and  

  211 ukF −=  

Unknowns are 









=
3

2

u
u

U   and the reaction force 1F  (if desired). 

Solving the equations, we obtain the displacements 

  








+
=









21

1

3

2

//2
/2

kPkP
kP

u
u

 

and the reaction force 

  PF 21 −=  

Checking the Results 

• Deformed shape of the structure 

• Equilibrium of the external forces 

• Order of magnitudes of the obtained values 

Notes About the Spring Elements 

• Spring elements are only suitable for stiffness analysis 

• They are not suitable for stress analysis of the spring itself 

• There are spring elements with stiffness in the lateral direction, spring elements for 
torsion, etc. 

Example 1.1 
 

k1 

x 

k2 

1 2 3 

k3 

4 

P 

 

Given: For the spring system shown above, 
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0u  N, 500

N/mm 100  N/mm, 200  N/mm, 100

41

321

===
===

uP
kkk

 

Find: (a) the global stiffness matrix 

(b) displacements of nodes 2 and 3 

(c) the reaction forces at nodes 1 and 4 

(d) the force in the spring 2 

Solution: 

(a)  The element stiffness matrices are (make sure to put proper unit after each number) 

  







−

−
=

100100
100100

1k     (N/mm) 

  







−

−
=

200200
200200

2k    (N/mm) 

  







−

−
=

100100
100100

3k     (N/mm) 

Applying the superposition concept, we obtain the global stiffness matrix for the spring system 

  



















−
−+−

−+−
−

=

10010000
1001002002000
0200200100100
00100100
4321

K

uuuu

 

or 

  



















−
−−

−−
−

=

10010000
1003002000
0200300100
00100100

K  

which is symmetric and banded. 

Equilibrium (FE) equation for the whole system is  
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

















=





































−
−−

−−
−

4

3

2

1

4

3

2

1

10010000
1003002000
0200300100
00100100

F
F
F
F

u
u
u
u

  

 (b)  Applying the BCs 041 == uu , 02 =F  and PF =3 , and “deleting” the 1st and 4th 
rows and columns, we have 

  








=
















−

−
Pu

u 0
300200
200300

3

2  

Solving this equation, we obtain 

  )mm(
3
2

500/3
250/

3

2









=








=








P
P

u
u

 

(c) From the 1st and 4th equations system FE equation, we obtain the reaction forces 

  N)(200100 21 −=−= uF  

  )N(300100 34 −=−= uF  

(d) The FE equation for spring (element) 2 is 

  








=
















−

−

j

i

j

i

f
f

u
u

200200
200200

 

Here i = 2, j = 3 for element 2.  Thus we can calculate the spring force as 

  [ ] [ ] (N)200
3
2

200200200200
3

2 =








−=








−=−==
u
u

ffF ij  

Check the results: 

 Draw the free-body diagram (FBD) of the system and consider the equilibrium of the 
forces. 

 

 Equilibrium of the forces is satisfied! 

P = 500 N 
F4 = -300 N F1 = -200 N 
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Example 1.2 
 

k1 

x 

k2 4 
2 

3 

k3 

5 

F2 

F1 k4 

1 

1 

2 3 

4 

 

Problem: For the spring system with arbitrarily numbered nodes and elements, as shown 
above, find the global stiffness matrix. 

Solution: First we construct the following element connectivity table 

Element Connectivity Table 

Element Node i (1) Node j (2) 
1 4 2 
2 2 3 
3 3 5 
4 2 1 

which specifies the global node numbers corresponding to the local node numbers for each 
element. 

Then we write the element stiffness matrix for each element 

 








−

−
=

11

11
1

24

kk
kk
uu

k
, 









−

−
=

22

22
2

32

kk
kk
uu

k
,     









−

−
=

33

33
3

53

kk
kk
uu

k
,     









−

−
=

44

44
4

12

kk
kk
uu

k
 

Finally, applying the superposition method, we obtain the global stiffness matrix as follows 

  























−
−

−+−
−−++−

−

=

33

11

3322

124214

44

54321

000
000

00
0
000

kk
kk

kkkk
kkkkkk

kk
uuuuu

K
 

The matrix is symmetric, banded, but singular. 
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IV. Summary 

 In this chapter, the basic concepts in the finite element method are introduced. The spring 
element is used as an example to show how to establish the element stiffness matrices, to 
assemble the finite element equations for a system from element stiffness matrices, and to solve 
the FE equations. Verifying the FE results is emphasized. The concepts and procedures 
introduced in this chapter are very simple and yet very important for studying the finite element 
analyses of other problems. 

V. Problems 

Problem 1. Answer the following questions briefly: 
(a) What is the physical meaning of the FE equations (for either an element 

or the whole structure)? 
(b) What is the procedure in using the FEM? 

 
Problem 2. For the following given matrix and vector 

   













=

















−

−
=

2
3
0

,
031
322
621

bA  

Find: 
(a) Determinant det A; 
(b) Inverse A-1; 
(c) Solution of the equation Ax = b; 
(d) Value of the quadratic form xTAx. 

 
Problem 3. A spring system is shown below 

 k1 

x 

k3 F4 

k2 

F3 

2 

1 

3 4 

 
Given: 1 2 3 3 480 N/mm,  100 N/mm,   160 N/mm, 200 N,   100 Nk k k F F= = = = = , 

and nodes 1 and 2 are fixed; 
Find:  

(a) Global stiffness matrix; 
(b) Displacements of nodes 3 and 4; 
(c) Reaction forces at nodes 1 and 2; 
(d) Forces in springs 1 and 2. 
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Chapter 2.   Bar and Beam Elements 
I. Linear Static Analysis 

 Most structural analysis problems can be treated as linear static problems, based on the 
following assumptions 

1. Small deformations (loading pattern is not changed due to the deformed shape) 
2. Elastic materials (no plasticity or failures) 
3. Static loads (the load is applied to the structure in a slow or steady fashion) 

 Linear analysis can provide most of the information about the behavior of a structure, and 
can be a good approximation for many analyses.  It is also the bases of  nonlinear analysis in 
most of the cases. 

II. Bar Element 

 Consider a uniform prismatic bar: 

 

L 

x 
fi i j fj 

ui uj 

A, E 

 

Figure 2.1. Notations for a bar element. 

L, A, E  length, cross-sectional area, and elastic modulus of the beam, respectively 

u , ε , σ  displacement, strain, and stress, respectively (all functions of x) 

Strain-displacement relation: 

  
dx
du

=ε          (2.1) 

Stress-strain relation: 

  εσ E=          (2.2) 

Equilibrium equation: 

  0=+ f
dx
dσ          (2.3) 
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where f is the body force (force per volume, such as gravitational and magnetic forces) inside the 
bar. 

Stiffness Matrix --- Direct Method 
 Assuming that the displacement u is varying linearly along the axis of the bar, that is, in 
terms of the two nodal values iu  and ju , we can write (derive this) 

  ji u
L
xu

L
xxu +






 −= 1)(        (2.4) 

we have 

  
LL

uu ij ∆
=

−
=ε   ( ∆  = elongation)    (2.5) 

  
L

EE ∆
== εσ          (2.6) 

We also have 

  
A
F

=σ     (F = force in bar)    (2.7) 

Thus, (2.6) and (2.7) lead to 

  ∆=∆= k
L

EAF  

where 
L

EAk =  is the stiffness of the bar. That is, the bar behaves like a spring in this case and 

we conclude that the element stiffness matrix is 

  
















−

−
=








−

−
=

L
EA

L
EA

L
EA

L
EA

kk
kk

k  

or 

  







−

−
=

11
11

L
EAk         (2.8) 

This can be verified by considering the equilibrium of the forces at the two nodes. 
Element equilibrium equation is 

  








=
















−

−

j

i

j

i

f
f

u
u

L
EA

11
11

       (2.9) 

Degree of Freedom (DOF):  Number of components of the displacement vector at a node. For 1-
D bar element:  one DOF at each node. 
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Physical Meaning of the Coefficients in k:  The jth column of k (here j = 1 or 2) represents the 
forces applied to the bar to maintain a deformed shape with unit displacement at node j and zero 
displacement at the other node. 

Stiffness Matrix --- A Formal Approach 
 We derive the same stiffness matrix for the bar using a formal approach which can be 
applied to many other more complicated situations. 
 Define two linear shape functions as follows  

  ξξξξ =−= )(,1)( ji NN       (2.10) 

where  

  10, ≤≤= ξξ
L
x        (2.11) 

 
Figure 2.2.  The shape of the shape functions. 

From (2.4) we can write the displacement as 

  jjii uNuNuxu )()()()( ξξξ +==  

or 

  [ ] Nu=








=
j

i
ji u

u
NNu        (2.12) 

Strain is given by (2.1) and (2.12) as 

  BuuN =



==
dx
d

dx
duε        (2.13) 

where B is the element strain-displacement matrix, which is 

  [ ] [ ]
dx
dNN

d
dNN

dx
d

jiji
ξξξ

ξ
ξξ •== )()()()(B  

that is, 

  [ ]LL /1/1−=B         (2.14) 

Stress can be written as 

i j ξ 
ξ = 0 ξ = 1 

Ni(ξ) 
  1 

i j ξ 
ξ = 0 ξ = 1 

Nj(ξ) 
  1 
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  BuEE == εσ         (2.15) 

 Consider the strain energy stored in the bar 

  

( )

( ) uBBu

BuBu

TT

TTT









=

==

∫

∫∫

dVE

dVEdVU

V

VV

2
1

2
1

2
1 εσ

      (2.16) 

where (2.13) and (2.15) have been used. 
 The potential of the external forces is written as (this is by definition, and remember the 
negative sign) 

  fuT−=−−=Ω jjii ufuf        (2.17) 

 The total potential of the system is 
  Ω+=Π U     

which yields by using (2.16) and (2.17) 

  ( ) fuuBBu TTT −







=Π ∫ dVE

V2
1       (2.18) 

 Setting 0=Πd  by the principle of minimum potential energy, we obtain (verify this) 

  ( ) fuBBT =







∫ dVE
V

 

or  

  fku =           (2.19) 

where 

  ( )dVE
V
∫= BBk T         (2.20) 

is the element stiffness matrix. 
 Expression (2.20) is a general result which can be used for the construction of other types 
of elements.  
 Now, we evaluate (2.20) for the bar element by using (2.14)  

  [ ] 







−

−
=−







−

= ∫ 11
11

/1/1
/1
/1

0 L
EAAdxLLE

L
LL

k  

which is the same as we derived earlier using the direct method. 
 Note that from (2.16) and (2.20), the strain energy in the element can be written as 
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  kuuT

2
1

=U          (2.21) 

In the future, once we obtain an expression like (2.16), we can immediately recognize that the 
matrix within the square bracket is the stiffness matrix. Recall that for a spring, the strain energy 
can be written as 

  ∆∆=∆= kkU T

2
1

2
1 2  

Thus result (2.21) goes back to the simple spring case again. 

Example 2.1 
 

L 

x 1 P 

2A,E 

L 

2 3 

A,E 1 2 

 

Problem: Find the stresses in the two-bar assembly which is loaded with force P, and 
constrained at the two ends, as shown in the above figure. 

Solution: Use two 1-D bar elements. 
For element 1, 

  








−

−
=

11
112

1

21

L
EA

uu

k
 

For element 2, 

  








−

−
=

11
11

2

32

L
EA

uu

k
 

Imagine a frictionless pin at node 2, which connects the two elements.  We can assemble the 
global FE equation as follows 

  













=































−
−−

−

3

2

1

3

2

1

110
132

022

F
F
F

u
u
u

L
EA  

Load and boundary conditions (BCs) are 

  PFuu === 231 ,0  

FE equation becomes 
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












=































−
−−

−

3

1

2

0

0

110
132

022

F
P
F

u
L

EA  

“Deleting” the 1st row and column, and the 3rd row and column, we obtain 

  [ ]{ } { }Pu
L

EA
=23  

Thus, 

  
EA
PLu

32 =  

and 

  













=















0
1
0

3
3

2

1

EA
PL

u
u
u

 

Stress in element 1 is 

  
[ ]

A
P

EA
PL

L
E

L
uuE

u
u

LLEEE

3
0

3

/1/1

12

2

1
1111

=





 −=

−
=









−=== uBεσ
 

Similarly, stress in element 2 is 

  
[ ]

A
P

EA
PL

L
E

L
uuE

u
u

LLEEE

33
0

/1/1

23

3

2
2222

−=





 −=

−
=









−=== uBεσ
 

which indicates that bar 2 is in compression. 

Check the results: Draw the FBD and check the equilibrium of the structures. 
 
 
 
 
Notes: 

• In this case, the calculated stresses in elements 1 and 2 are exact.  It will not help if 
we further divide element 1 or 2 into smaller elements. 

 

P -P/3 -2P/3  
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• For tapered bars, averaged values of the cross-sectional areas should be used for the 
elements. 

• We need to find the displacements first in order to find the stresses, and thus this 
approach is called the displacement based FEM. 

Example 2.2 
 

L 

x 1 P 

A,E 

L 

2 3 

1 2 

∆ 

 

Problem: Determine the support reaction forces at the two ends of the bar shown above, 
given the following 

  
4 4 2

2

6.0 10 N, 2.0 10 N/mm ,
250mm , 150mm, 1.2 mm

P E
A L =

= × = ×

= = ∆
 

Solution:  

We first check to see if contact of the bar with the wall on the right will occur or not.  To 
do this, we imagine the wall on the right is removed and calculate the displacement at the right 
end 

  mm2.1mm8.1
)250)(100.2(
)150)(100.6(

4

4

0 =∆>=
×
×

==∆
EA
PL  

Thus, contact occurs and the wall on the right should be accounted for in the analysis. 

The global FE equation is found to be 

  













=































−
−−

−

3

2

1

3

2

1

110
121

011

F
F
F

u
u
u

L
EA  

The load and boundary conditions are 

  
mm2.1,0

N100.6

31

4
2

=∆==
×==

uu
PF
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FE equation becomes 

  













=















∆















−
−−

−

3

1

2

0

110
121

011

F
P
F

u
L

EA  

The 2nd equation gives 

  [ ] { }P
u

L
EA

=








∆
− 212  

that is, 

  [ ]{ }






 ∆+=

L
EAPu

L
EA

22  

Solving this, we obtain 

  mm5.1
2
1

2 =





 ∆+=

EA
PLu  

and 

  )mm(
2.1
5.1

0

3

2

1














=















u
u
u

 

 To calculate the support reaction forces, we apply the 1st and 3rd equations in the global 
FE equation. 

The 1st equation gives 

  [ ] ( ) N100.5011 4
2

3

2

1

1 ×−=−=













−= u

L
EA

u
u
u

L
EAF  

and the 3rd equation gives, 

  [ ] ( ) N100.1110 4
32

3

2

1

3 ×−=+−=













−= uu

L
EA

u
u
u

L
EAF  

Check the results.! 
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Distributed Load 
 

x 
i j 

q 

fi
q 

i j 

fj
q 

 
Figure 2.3.  Conversion of a distributed load on one element. 

 Distributed axial load q (N/mm, N/m, lb/in) can be converted to two equivalent nodal 
forces using the shape functions. Consider the work done by the distributed load q, 

  
( ) [ ]

∫

∫∫∫

=









===

L
TT

L

j

i
ji

L
T

L

q

dxxq

dxxq
xN
xN

uudxxqdxxqxuW

0

000

)(
2
1

)(
)(
)(

2
1)(

2
1)()(

2
1

Nu

Nu
 (2.22) 

The work done by the equivalent nodal forces are 

  q
T

j
q
ji

q
if ufufW

q
fu

2
1

2
1

2
1

=+=       (2.23) 

Setting 
qfq WW =  and using (2.22) and (2.23), we obtain the equivalent nodal force vector  

  ∫∫ 







==













=
L

j

i
L

T
q

j

q
i

q dxxq
xN
xN

dxxq
f
f

00

)(
)(
)(

)(Nf     (2.24) 

which is valid for any distributions of q. If q is a constant, we have 

  
0

1 / / 2
/ / 2

L

q

x L qL
q dx

x L qL
−   

= =   
   

∫f       (2.25) 

In an assembly of bar elements, equivalent forces are added at each node as shown below. 

1 3

q

qL/2

1 3

qL/2

2

2

qL

 
Figure 2.4.  Conversion of a distributed load on two elements. 
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Bar Elements in 2-D and 3-D Spaces 

2-D Case 
 x 

i 

j 

ui
’
 

y 

X 

Y 

θ 

ui 
vi 

 
Figure 2.5.  Local and global coordinates for a bar in 2-D space. 

 

Local Global 

x, y X, Y 

'' , ii vu  ii vu ,  

1 DOF at each node 2 DOFs at each node 

 
Note that lateral displacement vi

’ does not contribute to the stretch of the bar within the 
linear theory. 

Transformation 

  
[ ]

[ ]








−=+−=









=+=

i

i
iii

i

i
iii

v
u

lmvuv

v
u

mlvuu

θθ

θθ

cossin

sincos

'

'

 

where θθ sin,cos == ml . 

In matrix form, 

  
















−

=








i

i

i

i

v
u

lm
ml

v
u

'

'

       (2.26) 

or, 

ii uTu ~' =  

where the transformation matrix  
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  







−

=
lm
ml

T~         (2.27) 

is orthogonal, that is, TTT ~~ 1 =− . 
 For the two nodes of the bar element, we have 

  







































−

−
=





















j

j

i

i

j

j

i

i

v
u
v
u

lm
ml

lm
ml

v
u
v
u

00
00

00
00

'

'

'

'

      (2.28) 

or, 

Tuu ='   with 







=

T0
0T

T ~
~

     (2.29) 

The nodal forces are transformed in the same way, 

Tff ='          (2.30) 

Stiffness Matrix in the 2-D Space 
 In the local coordinate system, we have 

  








=
















−

−
'

'

'

'

11
11

j

i

j

i

f
f

u
u

L
EA  

Augmenting this equation, we write  

  





















=







































−

−

0

0

0000
0101
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0101

'

'

'

'

'

'

j

i

j

j

i

i

f

f

v
u
v
u

L
EA  

or, 

  ''' fuk =  

Using transformations given in (29) and (30), we obtain 

  TfTuk ='  

Multiplying both sides by TT and noticing that TTT = I, we obtain 

  fTukT ='T           (2.31) 



Lecture Notes:  Introduction to the Finite Element Method                         

© 1997-2013 Yijun Liu, University of Cincinnati     32 

Thus, the element stiffness matrix k in the global coordinate system is 

  TkTk 'T=           (2.32) 

which is a 4×4 symmetric matrix. 

Explicit form, 

  



















−−
−−

−−
−−

=

22

22

22

22

mlmmlm
lmllml
mlmmlm
lmllml

L
EA

vuvu jjii

k
      (2.33) 

Calculation of the directional cosines  l and m: 

  
L

YY
m

L
XX

l ijij −
==

−
== θθ sin,cos  

The structure stiffness matrix is assembled by using the element stiffness matrices in the usual 
way as in the 1-D case. 

Element Stress 

































−=









==

j

j

i

i

j

i

v
u
v
u

ml
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E

u
u

EE
00

0011
'

'

Bεσ  

That is, 

[ ]





















−−=

j

j

i

i

v
u
v
u

mlml
L
Eσ        (2.34) 

which can be used to evaluate the element stress once the nodal displacements are known. 
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Example 2.3 

X

Y P1

P2

45o

45o

3

2

1

1

2

 

 A simple plane truss is made of two identical bars (with E, A, and L), and loaded as 
shown in the above figure. 

Find: 

(a) displacement of node 2; 

(b) stress in each bar. 

Solution: 

 This simple structure is used here to demonstrate the FEA procedure using the bar 
element in 2-D space. 

In local coordinate systems, we have 

  '
2

'
1 11

11
kk =








−

−
=

L
EA  

These two matrices cannot be assembled together, because they are in different coordinate 
systems.  We need to convert them to global coordinate system OXY. 

Element 1: 
2
2,45 === mloθ  

Using formula (2.32) or (2.33), we obtain the stiffness matrix in the global system 

  



















−−
−−

−−
−−

==

1111
1111
1111
1111

21
'
111

2211

L
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vuvu

T TkTk
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Element 2: 
2
2,

2
2,135 =−== mloθ  

  





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


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





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'
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L
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T TkTk
 

Assemble the structure FE equation, 
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
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
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Load and boundary conditions (BC): 

  22123311 ,,0 PFPFvuvu YX ======  

Condensed FE equation, 

  








=










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v
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L
EA  

Solving this, we obtain the displacement of node 2, 

  








=








2
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2

2
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v
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Using formula (2.34), we calculate the stresses in the two bars, 

  [ ] ( )21

2

1
1 2
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1111
2
2 PP

A
P
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L
L
E
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


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

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−−=σ  
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  [ ] ( )21
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2 2
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

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−−=σ  

Check the results: 

Check the equilibrium conditions, symmetry, antisymmetry, etc. 

Example 2.4    (Multipoint Constraint) 

X

Y

P

45o

3
2

1

3

2

1

x’
y’

L

 

 For the plane truss shown above,  

  

3.element for 1026

2, and 1 elementsfor 100.6
,210,1    kN, 1000

24

24

mA

mA
GPaEmLP

−

−

×=

×=

===

 

 Determine the displacements and reaction forces. 
Solution: 

We have an inclined roller at node 3, which needs special attention in the FE solution.  
We first assemble the global FE equation for the truss. 

Element 1:  1,0,90 === mloθ  

  
)N/m(

1010
0000
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0000

1
)100.6)(10210( 49

1

2211



















−

−××
=

−
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vuvu

 

Element 2: 0,1,0 === mloθ  
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Element 3: 
2

1,
2

1,45 === mloθ  
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The global FE equation is, 
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101260  

Load and boundary conditions (BCs): 

  
.0,

,0 and,0

'32

'
3211

==
====

xX FPF
vvvu

 

From the transformation relation and the BC, we have 

  ,0)(
2
2

2
2

2
2

33
3
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3 =+−=














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
−= vu

v
u

v  

that is, 

  033 =− vu  

This is a multipoint constraint (MPC). 
 Similarly, we have a relation for the force at node 3, 

  ,0)(
2
2

2
2

2
2

33
3

3
'3 =+=










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X
x FF

F
F

F  

that is, 
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  033 =+ YX FF  

 Applying the load and BC’s in the structure FE equation by “deleting” the 1st, 2nd and 
4th rows and columns, we have 
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Further, from the MPC and the force relation at node 3, the equation becomes, 
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which is 
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The 3rd equation yields, 

  3
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3 101260 uF X ×−=  

Substituting this into the 2nd equation and rearranging, we have 
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Solving this, we obtain the displacements, 
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From the global FE equation, we can calculate the reaction forces, 
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Check the results! 
A general multipoint constraint (MPC) can be described as, 

  ∑ =
j

jjuA 0  
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where Aj’s are constants and uj’s are nodal displacement components.  In FE software, users only 
need to specify this relation to the software. The software will take care of the solution process. 

3-D Case 

x

i

j
y

X

Y

Z

z

 
Figure 2.6.  Local and global coordinates for a bar in 3-D space. 

 

Local Global 

x, y, z X, Y, Z 

''' ,, iii wvu  iii wvu ,,  

1 DOF at each node 3 DOFs at each node 

 
 Element stiffness matrices are calculated in the local coordinate systems and then 
transformed into the global coordinate system (X, Y, Z) where they are assembled. The 
transformation relation is 
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      (2.35) 

where ),,(),,(),,,( ZYXZYXZYX nnnandmmmlll  are the direction cosines of the local x, y and z 
coordinate axis in the global coordinate system, respectively. FEM software packages will do 
this transformation automatically.  
 
Input data for bar elements: 

• (X, Y, Z) for each node 

• E and A for each element (Length L can be computed from the coordinates of the two 
nodes) 
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III. Beam Element 

Simple Plane Beam Element 
 

L 

x 
i j 

vj, Fj 

E,I 
θi, Mi θj, Mj 

vi, Fi 

y 

 
Figure 2.7.  Notion for a simple beam element in 2-D. 

 L, I, E   length, moment of inertia of the cross-sectional area and elastic modulus 

)(xvv =  deflection (lateral displacement) of the neutral axis of the beam 

dx
dv

=θ   rotation of the beam about the z-axis 

)(xQQ =  (internal) shear force 

)(xMM =  (internal) bending moment about z-axis 

jjii MFMF ,,,  applied (external) lateral forces and moments at node i and j, respectively 

 

Elementary Beam Theory: 
 We have the following results from the simple beam theory 

)(2

2

xM
dx

vdEI =         (2.36) 

)(),( xq
dx
dQxQ

dx
dM

==        (2.37) 

where )(xq  is the distributed load in the lateral direction. Combining (2.36) and (2.37), we have  

  )(4

4

xq
dx

vdEI =         (2.38) 

Bending stress in the beam is given by 

I
My

−=σ          (2.39) 

Simple beam theory and thus the simple beam elements are valid for “long” slender beams, for 
example, for beams with aspect ratios (length/height) larger than 10. 
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Direct Method 
 We first apply the direct method to establish the beam stiffness matrix using the results 
from elementary beam theory. The FE equation for a beam takes the form 
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Recall that each column in the stiffness matrix represents the forces needed to keep the structure 
in a special deformed shape. For example, the first column represents the forces/moments to 
keep the shape with 0,1 ==== jjii vv θθ  as shown in Figure 2.8 (a). Thus, using the results 
from strength of materials for a cantilever beam with a force 11k  and moment 21k  applied at the 
free end, we have 

  0
2

and1
23

21
2

11
2

21
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11 =+−==−=
EI

Lk
EI
Lk

EI
Lk

EI
Lkv ii θ  

Solving this system of equations, we obtain 11k  and 21k . Using the equilibrium conditions of the 
beam, we obtain 31k  and 41k , and thus the first column of the stiffness matrix. 

0

0.5
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0 0.5 1
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0 0.5 1
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0.5
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0 0.5 1

 
-0.15

-0.1

-0.05
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0 0.5 1

 
(a) 1( )N x    (b) 2 ( )N x   (c) 3 ( )N x   (d) 4 ( )N x  

Figure 2.8.  The shape of the shape function for the simple beam element. 

Element stiffness equation (local node:  i, j or 1, 2): 
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    (2.40) 

Formal Approach 
To derive the stiffness matrix in (2.40), we introduce four shape functions (Figure 2.8), 
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Then, we can represent the deflection as, 
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which is a cubic function.  Notice that, 

  
xNLNN

NN
=++
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432

31 1
 

which implies that the rigid-body motion is represented correctly by the assumed deformed 
shape of the beam. 
Curvature of the beam is, 

  BuNu == 2

2
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vd         (2.43) 

where the strain-displacement matrix B is given by, 
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Strain energy stored in the beam element is 
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We conclude that the stiffness matrix for the simple beam element is 

  ∫=
L

T dxEI
0

BBk         (2.45) 
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Applying the result in (2.44) and carrying out the integration, we arrive at the same stiffness 
matrix as given in (2.40). 
 Combining the axial stiffness (from the bar element), we obtain the stiffness matrix of a 
general 2-D beam element, 
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   (2.46) 

3-D Beam Element 
 The element stiffness matrix is formed in the local (2-D) coordinate system first and then 
transformed into the global (3-D) coordinate system to be assembled. Details for 3-D beam 
elements can be found in the references listed at the end of the lecture notes. 

Example 2.5 

L

X1 2

P

E,I

Y

L
3

M
1 2

 
Given: The beam shown above is clamped at the two ends and acted upon by the force P 

and moment M in the mid-span. 
Find:    The deflection and rotation at the center node and the reaction forces and 

moments at the two ends. 
Solution: Element stiffness matrices are 
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Global FE equation is 
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Loads and constraints (BC’s) are 

  0,, 313122 =====−= θθvvMMPF Y  

Reduced FE equation 
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Solving this, we obtain 

  






−

=








M
PL

EI
Lv

324

2

2

2

θ
 

From the global FE equation, we obtain the reaction forces and moments 
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Stresses in the beam at the two ends can be calculated using the formula 
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Note that the FE solution is exact for this problem according to the simple beam theory, since no 
distributed load is present between the nodes.  Recall that (Eq. (2.38)) 
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xq
dx

vdEI =  

If q(x)=0, then exact solution for the deflection v is a cubic function of x, which is exactly what 
described by the shape functions given in (2.42). 
 

Equivalent Nodal Loads of Distributed Transverse Load 
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Figure 2.9. Conversion of the distributed lateral load to nodal forces and moments. 

 
To convert a distributed load to nodal forces and moments, we consider again the work 

done by the distributed load q 
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The work done by the equivalent nodal forces (and moments) is 
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By equating 
qfq WW = , we obtain the equivalent nodal force vector as 

 ∫=
L

T
q dxxq

0

)(Nf         (2.47) 

which is valid for arbitrary distributions of )(xq . For constant q, we have the results shown in 
Figure 2.10 (verify this). An example of this result is given in Figure 2.11. 
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Figure 2.10. Conversion of a constant distributed lateral load to nodal forces and moments. 
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Figure 2.11. Conversion of a constant distributed lateral load on two beam elements. 
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Example 2.6 
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Given: A cantilever beam with distributed lateral load p as shown above. 
Find: The deflection and rotation at the right end, the reaction force and moment at the 

left end. 
Solution: The work-equivalent nodal loads are shown below, 
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Applying the FE equation, we have 
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Load and constraints (BCs) are 
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Reduced equation is 
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Solving this, we obtain 
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These nodal values are the same as the exact solution.  Note that the deflection v(x) (for 0 
< x< L) in the beam by the FEM is, however, different from that by the exact solution. The exact 
solution by the simple beam theory is a 4th order polynomial of x, while the FE solution of v is 
only a 3rd order polynomial of x. 

If the equivalent moment m is ignored, we have, 
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The errors in (B) will decrease if more elements are used.  The equivalent moment m is often 
ignored in the FEM applications.  The FE solutions still converge as more elements are applied. 
 From the FE equation, we can calculate the reaction force and moment as, 

  








=













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−
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

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


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26
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2
2

2
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1

1
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pLv
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L

L
EI

M
F Y

θ
 

where the result in (A) has been used.  This force vector gives the total effective nodal forces 
which include the equivalent nodal forces for the distributed lateral load p given by, 

  








−
−

12/
2/

2pL
pL

 

The correct reaction forces can be obtained as follows, 

  








=








−
−

−






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=

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



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2/12/
2/

12/5
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1

1

pL
pL
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pL
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M
F Y  

Check the results: 
 Draw the FBD for the FE model (with the equivalent nodal force vector) and the check 
the equilibrium condition. 
 

 pL/2 

5pL2/12 pL2/12 

pL/2 
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Example 2.7 

L

X1
2

P

E,I

Y

L
3

1 2

k

4
 

Given: P = 50 kN,  k = 200 kN/m,  L = 3 m,  E = 210 GPa,  I = 2×10-4 m4. 
Find: Deflections, rotations and reaction forces. 
Solution: 

The beam has a roller (or hinge) support at node 2 and a spring support at node 3.  We 
use two beam elements and one spring element to solve this problem. 

The spring stiffness matrix is given by 

 








−

−
=

kk
kk
vv

sk

43

 

Adding this stiffness matrix to the global FE equation (see Example 2.5), we have 
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−
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M
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M
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M
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L
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L
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L
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3

3

2

2

1

1

4

3

3

2

2

1

1
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22
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4332211

'
0

'
0
0
0
0

4
6'12

268
612024
00264
00612612

θ

θ

θ

θθθ

 

in which 

  k
EI
Lk

3

'=  

is used to simplify the notation. 
 We now apply the boundary conditions 

  
PFMM

vvv

Y −===
====

332

4211

,0
,0θ
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‘Deleting’ the first three and seventh equations (rows and columns), we have the following 
reduced equation 

  













−=





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L
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θ
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Solving this equation, we obtain the deflection and rotations at node 2 and node 3, 

  














+
−=
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

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9
7
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2

L
kEI
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θ
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The influence of the spring k is easily seen from this result. Plugging in the given numbers, we 
can calculate 

  














−
−

−
=














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3
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2

θ

θ
v  

 From the global FE equation, we obtain the nodal reaction forces as, 

  


















⋅−

−

=






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


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
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1

Y

Y

Y

F
F
M
F

 

Checking the results:  Draw free body diagram of the beam 
 

1 2 

50 kN 

3 

3.488 kN 116.2 kN 

69.78 kN 

69.78 kN⋅m 

 
Sum the forces and moments to verify that equilibrium of the beam is satisfied. 
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 FE Analysis of Frame Structures 
 Members in a frame are considered to be rigidly connected (for example, welded 
together). Both forces and moments can be transmitted through their joints.  We need the general 
beam element (combinations of bar and simple beam elements) to model frames. 
 

Example 2.8 
   

12 ft 

X 

1 2 
3000 lb 

E, I, A 

Y 

3 

1 

2 3 
8 ft 

500 lb/ft 

4 

 
Given: 246 .in8.6,in. 65  psi,1030 ==×= AIE  

Find: Displacements and rotations of the two joints 1 and 2. 
Solution:  

For this example, we first convert the distributed load to its equivalent nodal loads to 
obtain the following FE mode. 

   

1 2 
3000 lb 

3 

1 

2 3 

3000 lb 

4 

3000 lb 

72000 lb-in. 

72000 lb-in. 
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In local coordinate system, the stiffness matrix for a general 2-D beam element is 





































−

−−−

−

−

−

−

=

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EA

L
EA

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
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22

2323
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k
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Element Connectivity Table 

Element Node i (1) Node j (2) 

1 1 2 
2 3 1 
3 4 2 

For element 1, we have 


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
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
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−
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−
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−
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For elements 2 and 3, the stiffness matrix in local system is 


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where i = 3, j = 1 for element 2, and I = 4, j = 2 for element 3. 
The transformation matrix T is 

  



















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
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T  

We have l = 0,  m = 1 for both elements 2 and 3.  Thus, 

  







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
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

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−
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=
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010000
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Using the transformation relation 

  TkTk 'T=  
we obtain the stiffness matrices in the global coordinate system for elements 2 and 3 
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and 
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Assembling the global FE equation and noticing the following boundary conditions 

  
3 3 3 4 4 4

1 2 1 2

1 2

0
3000lb, 0, 3000lb,
72000lb in., 72000lb in.

X X Y Y

u v u v
F F F F
M M

θ θ= = = = = =
= = = = −
= − ⋅ = ⋅

 

we obtain the condensed FE equation 
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Solving this, we obtain 
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To calculate the reaction forces and moments at the two ends, we employ the element FE 
equations for element 2 and element 3 with known nodal displacement vectors.  We obtain 
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Check the results: 
 Draw the free-body diagram of the frame as shown below. Equilibrium is maintained 
with the calculated forces and moments. Recall that the problem we solved is the one with the 
equivalent loads, not the one with the distributed load. Thus the corresponding FBD for the FE 
model should be applied for verifying the results. 
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3000 lb

3000 lb 3000 lb

72000 lb-in.

72000 lb-in.

2210 lb
672.7 lb

3825 lb

2338 lb

60364 lb-in. 112641 lb-in.

 
 

IV. Summary 

In this chapter, we studied the bar elements which can be used in truss analysis and the 
beam elements which are used in frame analysis. The concept of the shape functions is further 
explored and the derivations of the stiffness matrices using the energy approach are emphasized. 
Treatment of distributed loads is discussed and several examples are studied. 
 

V. Problems 

Problem 1. Using (2.47) derive the results of the equivalent nodal forces and moments for a 
beam element with uniformly distributed lateral load. 

Problem 2. The plane truss is loaded with force P as shown below. Constants E and A for 
each bar are as shown in the diagram. Determine: 
(a) the nodal displacement; 
(b) the reaction forces; 
(c) the stresses in bar elements. 

X

Y

P

45o

3

21

L

45o

E A,2 2

E, A

E, A

L

4
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Problem 3. The plane truss is loaded with force P as shown below. Constants E and A for 
each bar are as shown in the diagram.   Determine: 
(a) the nodal displacements, 
(b) the stresses in each bar elements. 

X

Y
P

45o

3

21

L

45o

E A,2 2

E, A

E, A

 

Problem 4. The plane truss is supported as shown below.  The Young’s modulus E is the 
same for all the bars.   The cross-sectional areas are shown in the figure.  Suppose 
that the node 2 settles by an amount of δ as shown.  Determine the stresses in each 
bar element using the FEM. 

 

X 

Y 

3 

2 1 

L 
2 2A  

L 

A 

A 

δ 

 
Problem 5. The cantilever beam is supported by a spring at the end as shown in the figure. 

Using FEM, determine the deflection and rotation at the node 2. 

L
X1 2

PE,I

Y

3
k

 
Problem 6. Determine the nodal displacement, rotations and reaction forces for the propped 

cantilever beam shown below.  The beam is assumed to have constant EI and 
length 2L.  It is supported by a roller at midlength and is built in at the right end. 
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L 

X 
1 2 

P 
E,I 

Y 

L 

3 

1 2 

 
Problem 7. The 2-D frame is supported as shown in the figure. Constants E, A, I of the beam 

and the length L are given. Determine the displacement and rotation at node 2. 

L X1 2

M

Y

3

L

 

Problem 8. The plane frame is subjected to the uniformly distributed load and is fixed at the 
ends as shown in the figure.  Assume E = 30×106 psi, A= 100 in.2 and 
I = 1000 in.4 for both elements of the frame.  Find: 
(a) the displacement and rotation of node 2; 
(b) the reaction forces and moments at both ends. 

40 ft

X
1

1000 lb/ft

Y

30 ft

45o

32

 
Problem 9. Using an FEM software package (ANSYS, NASTRAN, or ABAQUS), solve the 

frame problem in Example 2.8. 
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Chapter 3.   Two-Dimensional Elasticity Problems 
 The finite element method for deformation and stress analyses of two-dimensional (2-D) 
structural models will be discussed in this chapter. First, the basic equations in elasticity theory 
(see Refs. [9, 10] for more details) for stress analysis are reviewed. Then several types of 2-D 
finite elements are introduced. Applications of these elements are demonstrated and their 
accuracies and efficiencies are discussed. 
 

I. Stress State in Structures 

 In general, the stresses and strains in a structure consist of six components, that is 
(Figure 3.1), 

  zxyzxyzyx τττσσσ ,,,,,   for stresses, 

and 

  zxyzxyzyx γγγεεε ,,,,,   for strains. 

 

x 

z 

y 

σ x  

σ y
 

σ z  

τ yz
 

τ zx  

τ xy
 

 

Figure 3.1. Stress components at a point in a structure. 

Under certain conditions, the state of stresses and strains can be simplified. A general 3-D 
structure analysis can, therefore, be reduced to a 2-D analysis. 

 

II. 2-D (Plane) Elasticity Problems 

Plane stress 
 In the plane stress case, any stress component related to the z direction is zero, that is, 

)0(0 ≠=== zzxyzz εττσ       (3.1) 
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A thin planar structure with constant thickness and loading within the plane of the structure (xy-
plane) can be regarded as a plane stress case (Figure 3.2). 

 

p 

y 

x 

y 

z 

 

Figure 3.2. An example of a plane stress case. 

Plane strain 
 In the plane strain case, any strain component related to the z direction is zero, that is, 

)0(0 ≠=== zzxyzz σγγε      (3.2) 

A long structure with a uniform cross section and transverse loading along its length (z-
direction), such as a tunnel, can be regarded as a plane strain case (Figure 3.3). 

p

y

x

y

z

 

Figure 3.3. An example of a plane strain case. 

Stress-Strain-Temperature (Constitutive) Relations 
 For elastic and isotropic materials, we have the following stress-strain relation for 2-D 
cases 
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    (3.3) 

or, 

  0
1 εσε += −E  
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where  0ε  is the initial strain (for example, due to a temperature change), E the Young’s 
modulus, ν  the Poisson’s ratio and G the shear modulus.  Note that 

  
)1(2 ν+

=
EG          (3.4) 

which means that there are only two independent materials constants for homogeneous and 
isotropic materials. 

 We can also express stresses in terms of strains by solving the above equation 
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or, 

  0σεσ += E  

where 00 εσ E−=  is the initial stress. 

 The above relations are valid for plane stress case.  For plane strain case, we need to 
replace the material constants in the above equations in the following fashion 

  GGEE →
−

→
−

→ ;
1

;
1 2 ν

νν
ν

     (3.6) 

For example, the stress is related to strain by 
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in the plane strain case. 

Initial strain due to a temperature change (thermal loading) is given by the following for 
the plane stress case 
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where α  is the coefficient of thermal expansion, T∆  the change of temperature.  For the plane 
strain case, α  should be replaced by αν )1( +  in (3.7). Note that if the structure is free to deform 
under thermal loading, there will be no (elastic) stresses in the structure. 

Strain and Displacement Relations 
 For small strains and small rotations, we have, 
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In matrix form, we write 
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 From this relation, we know that the strains (and thus stresses) are one order lower than 
the displacements, if the displacements are represented by polynomials. 

Equilibrium Equations 
 In elasticity theory, the stresses in the structure must satisfy the following equilibrium 
equations 
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where fx and fy are body forces per unit volume (such as gravity forces). In the FEM, these 
equilibrium conditions are satisfied in an approximate sense. 

Boundary Conditions 
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y
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tx
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Figure 3.4. Boundary conditions for a structure. 
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 The boundary S of the body can be divided into two parts, Su and St (Figure 3.4).  The 
boundary conditions (BCs) can be described as 

tyyxx

u

Stttt
Svvuu

on,,
on,,

==
==

       (3.10) 

in which tx and ty are tractions (stresses on the boundary) and the barred quantities are those with 
known values. In the FEM, all types of loads (distributed surface loads, body forces, 
concentrated forces and moments, etc.) are converted to point forces acting at the nodes. 

Exact Elasticity Solution 
 The exact solution (displacements, strains and stresses) of a given problem must satisfy 
the equilibrium equations (9), the given boundary conditions (10) and compatibility conditions 
(structures should deform in a continuous manner, no cracks or overlaps in the obtained 
displacement fields). 

Example 3.1 
 

x 

y 

p 

 

 A plate is supported and loaded with distributed force p as shown in the figure.  The 
material constants are E and ν. 

 The exact solution for this simple problem can be found easily as follows. 

Displacement:  y
E
pvx

E
pu ν−== ,  

Strain:   0,, =−== xyyx E
p

E
p γνεε  

Stress:   0,0, === xyyx p τσσ  

 Exact (or analytical) solutions for simple problems are numbered (suppose there is a hole 
in the plate or the roller support are replaced by clamped ones!).  That is why we need the FEM! 
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III.  Finite Elements for 2-D Problems 

A General Formula for the Stiffness Matrix 
 Displacements (u, v) in a plane element are interpolated from nodal displacements (ui, vi) 
using shape functions Ni as follows, 
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where N is the shape function matrix, u the displacement vector and d the nodal displacement 
vector.  Here we have assumed that u depends on the nodal values of u only, and v on nodal 
values of v only. 

 From strain-displacement relation (Eq.(3.8)), the strain vector is, 

  BdDNdDu === εε or,    (3.12) 

where B = DN is the strain-displacement matrix. 

 Consider the strain energy stored in an element, 
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From this, we obtain the general formula for the element stiffness matrix 

  dV
V

T∫= EBBk         (3.13) 

Note that unlike the 1-D cases, E here is a matrix which is given by the stress-strain relation 
(e.g., Eq.(3.5) for plane stress). 

The stiffness matrix k defined by (3.13) is symmetric since E is symmetric. Also note 
that given the material property, the behavior of k depends on the B matrix only, which in turn 
on the shape functions. Thus, the quality of finite elements in representing the behavior of a 
structure is mainly determined by the choice of shape functions. Most commonly employed 2-D 
elements are linear or quadratic triangles and quadrilaterals.  
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Constant Strain Triangle (CST or T3) 
 This is the simplest 2-D element (Figure 3.5), which is also called linear triangular 
element. 
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(x3, y3) 
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(x, y) 

u1 

v1 
u2 
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u3 

v3 

 

Figure 3.5. Linear triangular element (T3). 

 For this element, we have three nodes at the vertices of the triangle, which are numbered 
around the element in the counterclockwise direction. Each node has two degrees of freedom 
(can move in the x and y directions).  The displacements u and v are assumed to be linear 
functions within the element, that is, 

  ybxbbvybxbbu 654321 , ++=++=      (3.14) 

where bi (i = 1, 2, ..., 6) are constants.  From these, the strains are found to be, 

  5362 ,, bbbb xyyx +=== γεε      (3.15) 

which are constant throughout the element. Thus, we have the name “constant strain triangle” 
(CST). 

 Displacements given by (3.14) should satisfy the following six equations 

  

363543

232212

131211

ybxbbv

ybxbbu
ybxbbu

++=

++=
++=



 

Solving these equations, we can find the coefficients b1, b2, ..., and b6 in terms of nodal 
displacements and coordinates. Substituting these coefficients into (3.14) and rearranging the 
terms, we obtain 
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where the shape functions (linear functions in x and y) are  
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and 
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is the area of the triangle (Prove this!). 

 Using the strain-displacement relation (3.8), results (3.16) and (3.17), we have 
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where xij = xi - xj and yij = yi - yj (i, j = 1, 2, 3).  Again, we see constant strains within the element.  
From stress-strain relation (Eq.( 3.5), for example), we see that stresses obtained using the CST 
element are also constant. 

 Applying formula (3.13), we obtain the element stiffness matrix for the CST element 

  )( EBBEBBk T

V

T tAdV == ∫        (3.20) 
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in which t is the thickness of the element. Notice that k for CST is a 6 by 6 symmetric matrix. 

 Both the expressions of the shape functions in (3.17) and their derivations are lengthy and 
offer little insight into the behavior of the element. 
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Figure 3.6. The natural coordinate system defined on the triangle. 

We introduce the natural coordinates ),( ηξ  on the triangle (Figure 3.6). Then the shape 
functions can be represented simply by 

  ηξηξ −−=== 1,, 321 NNN        (3.21) 

Notice that, 

  1321 =++ NNN         (3.22) 

which ensures that the rigid-body translation is represented by the chosen shape functions.  Also, 
as in the 1-D case, 
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iN      (3.23) 

and varies linearly within the element.  The plot for shape function N1 is shown in Figure 3.7.  N2 
and N3 have similar features. 
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Figure 3.7. Plot of the shape function 1N  for T3 element. 



Lecture Notes:  Introduction to the Finite Element Method                         

© 1997-2013 Yijun Liu, University of Cincinnati     66 

 We have two coordinate systems for the element: the global coordinates (x, y) and the 
natural (local) coordinates ),( ηξ .  The relation between the two is given by 
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or, 
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where xij = xi - xj and yij = yi - yj (i, j = 1, 2, 3) as defined earlier. 

 Displacement u or v on the element can be viewed as functions of (x, y) or ),( ηξ .  Using 
the chain rule for derivatives, we have, 
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where J is called the Jacobian matrix of the transformation. 

From (3.25), we calculate 
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where Ayxyx 2det 13232313 =−=J  has been used (A is the area of the triangle. Prove this!). 

 From (3.26), (3.27), (3.16) and (3.21) we have 
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Similarly, 
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Using the results in (3.28) and (3.29), and the relations BdDNdDu ===ε , we obtain the 
strain-displacement matrix, 
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which is the same as we derived earlier in (3.19). 

Applications of the CST Element: 

• Use in areas where the strain gradient is small. 

• Use in mesh transition areas (fine mesh to coarse mesh). 

• Avoid using CST in stress concentration or other crucial areas in the structure, such as 
edges of holes and corners. 

• Recommended for quick and preliminary FE analysis of 2-D problems. 

Linear Strain Triangle (LST or T6) 
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Figure 3.8. Quadratic triangular element (T6). 

 This type of elements (Figure 3.8) is also called quadratic triangular element. There are 
six nodes on this element: three corner nodes and three mid-side nodes.  Each node has two 
degrees of freedom (DOFs) as before.  The displacements (u, v) are assumed to be quadratic 
functions of (x, y), 
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where bi (i = 1, 2, ..., 12) are constants.  From these, the strains are found to be 
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which are linear functions. Thus, we have the “linear strain triangle” (LST), which provides 
better results than the CST. 

 In the natural coordinate system we defined earlier, the six shape functions for the LST 
element are 
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in which ηξζ −−= 1 .  Each of these six shape functions represents a quadratic form on the 
element as shown in Figure 3.9. 
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Figure 3.9. Plot of the shape function 1N  for T6 element. 

Displacements can be written as, 
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The element stiffness matrix is still given by dV
V

T∫= EBBk , but here BTEB is quadratic 

in x and y.  In general, the integral has to be computed numerically. 
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Linear Quadrilateral Element (Q4) 
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Figure 3.10. Linear quadrilateral element (Q4). 

There are four nodes at the corners of the quadrilateral element (Figure 3.10).  In the 
natural coordinate system ),( ηξ , the four shape functions are, 
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Note that 1
4

1
=∑

=i
iN  at any point inside the element, as expected. 

The displacement field is given by 
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which are bilinear functions over the element. The stress and strain fields are constant on this 
type of elements. 

Quadratic Quadrilateral Element (Q8) 
 This is the most widely used element for 2-D problems due to its high accuracy in 
analysis and flexibility in modeling. 
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Figure 3.11. Quadratic quadrilateral element (Q8). 

 There are eight nodes for this element (Figure 3.11), four corners nodes and four midside 
nodes.  In the natural coordinate system ),( ηξ , the eight shape functions are, 
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Again, we have 1
8

1
=∑

=i
iN  at any point inside the element. 

The displacement field is given by 
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which are quadratic functions over the element. Strains and stresses over a quadratic 
quadrilateral element are linear functions, which are better representations. A model of fiber-
reinforced composite materials using the Q8 elements is shown in Figure 3.12. 

Notes: 

• Q4 and T3 are usually used together in a mesh with linear elements. 

• Q8 and T6 are usually applied in a mesh composed of quadratic elements. 

• Quadratic elements are preferred for stress analysis, because of their high accuracy and 
the flexibility in modeling complex geometry, such as curved boundaries. 

 

 

Figure 3.12. Analysis of composite materials (mesh and contour stress plots). 
 

Transformation of Loads 
 Concentrated load (point forces), surface traction (pressure loads) and body force 
(weight) are the main types of loads applied to a structure.  Both traction and body forces need to 
be converted to nodal forces in the FE model, since they cannot be applied to the FE model 
directly. The conversions of these loads are based on the same idea (the equivalent-work 
concept) which we have used for the cases of bar and beam elements. 
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Figure 3.13. Traction applied on the edge of a Q4 element. 

 Suppose, for example, we have a linearly varying traction q on a Q4 element edge, as 
shown in the Figure 3.13. The traction is normal to the boundary. Using the local (tangential) 
coordinate s, we can write the work done by the traction q as 
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where t is the thickness, L the side length and un the component of displacement normal to the 
edge AB. 

For the Q4 element (linear displacement field), we have 
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The traction q(s), which is also linear, is given in a similar way 
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and hence the equivalent nodal force vector is 
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Note, for constant q, we have 
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For quadratic elements (either triangular or quadrilateral), the traction is converted to 
forces at three nodes along the edge, instead of two nodes. Traction tangent to the boundary, as 
well as body forces, are converted to nodal forces in a similar way. 

Stress Calculation 
 The stress in an element is determined by the following relation, 
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       (3.39) 

where B is the strain-nodal displacement matrix and d is the nodal displacement vector which is 
known for each element once the global FE equation has been solved. 

 Stresses can be evaluated at any point inside the element (such as the center) or at the 
nodes.  Contour plots are usually used in FEA software packages (during post-process) for users 
to visually inspect the stress results. 

The von Mises Stress: 

 The von Mises stress is the effective or equivalent stress for 2-D and 3-D stress analysis.  
For a ductile material, the stress level is considered to be safe, if 

  Ye σσ ≤  

where eσ  is the von Mises stress and Yσ  the yield stress of the material.  This is a generalization 
of the 1-D (experimental) result to 2-D and 3-D situations. 

 The von Mises stress is defined by 

2
13

2
32

2
21 )()()(

2
1 σσσσσσσ −+−+−=e     (3.40) 

in which 1 2 3, andσ σ σ  are the three principle stresses at the considered point in a structure. 

 For 2-D problems, the two principle stresses in the plane are determined by 
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 Thus, we can also express the von Mises stress in terms of the stress components in the xy 
coordinate system.  For plane stress conditions, we have, 

  )(3)( 22
xyyxyxe τσσσσσ −−+=       (3.42) 

Averaged Stresses: 

 Stresses are usually averaged at nodes in FEA software packages to provide more 
accurate stress values.  This option should be turned off at nodes between two materials or other 
geometry discontinuity locations where stress discontinuity does exist. 

Example 3.2 
 A square plate with a hole at the center is under a tension load p in x direction as shown 
in the figure. 

 

x 

y 

p 

B 

A 

 

 The dimension of the plate is 10 in. x 10 in., thickness is 0.1 in. and radius of the hole is 1 
in.  Assume E = 10x106 psi, v = 0.3 and p = 100 psi.  Find the maximum stress in the plate. 

FE Analysis: 

 This is a plane stress case. From the knowledge of stress concentrations, we should 
expect the maximum stresses occur at points A and B on the edge of the hole.  Value of this 
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stress should be around 3p (= 300 psi) which is the exact solution for an infinitely large plate 
with a circular hole. 

 We use the ANSYS software to do the modeling (meshing) and analysis, using quadratic 
triangular (T6), linear quadrilateral (Q4) and quadratic quadrilateral (Q8) elements. The FEM 
results by using the three different elements are compared and their accuracies and efficiencies 
are discussed. One mesh plot and one stress contour plot are shown below. 

 
An FE mesh (T6, 1518 elements) 

 
FE stress plot and deformed shape (T6, 1518 elements) 
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The stress calculations with several meshes are listed in the following table, along with 
the number of elements and DOFs used. 

Table.  FEA stress results 

Elem. Type No. of Elem. Total DOFs Max. σ  (psi) 

Q4 506 1102 312.42 
Q4 3352 7014 322.64 
Q4 31349 64106 322.38 
... ... ... ... 
T6 1518 6254 320.18 
T6 2562 10494 321.23 
T6 24516 100702 322.24 
... ... ... ... 
Q8 501 3188 320.58 
Q8 2167 13376 321.70 
Q8 14333 88636 322.24 

 
 The converged results are obtained with all three types of elements with the differences in 
the maximum stress values less than 0.05%. However, Q8 and T6 elements are more efficient 
and converge much faster than the Q4 elements which is a linear representation and cannot 
model curved boundaries accurately. If the required accuracy is set at 1%, then the mesh with 
501 Q8 elements should be sufficient. Note also that we need to check the deformed shape of the 
plate for each model to make sure the BCs are applied correctly. Less elements should be enough 
to achieve the same accuracy with a better or “smarter” mesh (mapped mesh). We will redo this 
example in the next chapter employing the symmetry features of the problem. 

Further Discussions 
(a) Know the behaviors of each type of elements: 

T3 and Q4: linear displacement, constant strain and stress; 
T6 and Q8: quadratic displacement, linear strain and stress. 

(b) Choose the right type of elements for a given problem: 
When in doubt, use higher order elements (T6 or Q8) or a finer mesh. 

(c) Avoid elements with large aspect ratios and corner angles (Figure 3.14): 
Aspect ratio = Lmax / Lmin  
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where Lmax and Lmin are the largest and smallest characteristic lengths of an element, 
respectively. 

 

Elements with distorted shapes 

Elements with normal shapes 
 

Figure 3.14. Elements with distorted (irregular) and normal (regular) shapes. 

(d) Make sure  the elements are connected properly: 

Don not leave unintended gaps or free elements in FE models (Figure 3.15). 

A

B

C

D

Improper connections (gaps along AB and CD)  

Figure 3.15. Unintended gaps in the FE mesh. 

 

IV. Summary 

 2-D elements for analyzing plane stress and plane strain problems are discussed in this 
chapter. Linear triangular (T3) and linear quadrilateral (Q4) elements are good for deformation 
analysis and not accurate for stress analysis. Quadratic triangular (T6) and quadratic quadrilateral 
(Q8) elements are good for stress concentration problems and for models with curved 
boundaries. Whenever possible (as allowed by the computing resources), higher-order elements 
(T6 or Q8) elements should be applied in FE stress analysis of 2-D structures. 
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V. Problems 

Problem 1. List the boundary conditions in Example 3.1. 
Problem 2. The plate shown below is constrained at the left end and loaded with a linearly 

varying pressure load at the right end.  Constants E, v and thickness t are given. 

x

y

h

h

L

po

 
 Suppose we have found the displacement field as follows: 
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p
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x y
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0

0 2 2

2
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Find:          
(a) strains in the plate; 
(b)  stresses in the plate; 
(c)  check if or not the equilibrium equations are satisfied by the stresses; 
(d)  check if or not the boundary conditions are satisfied by the solution. 
Optional:   
Assume E = 10x106 psi, v = 0.3,  po = 100 psi, L = 12 in., h = 4 in. and thickness 
t = 0.1 in.   Use an FEM software to check your results. 

Problem 3. Derive the shape functions in (3.17) for T3 elements and prove (3.18). 

Problem 4. From (3.27), prove Ayxyx 2det 13232313 =−=J  and discuss why “bad shaped” 
elements can cause numerical errors in the FEM. 

Problem 5. Using a FEM software, design a steel shelf bracket. Some dimensions of the 
bracket are fixed as shown in the figure, while others can be changed. The shape 
and topology near the lower part of the bracket can also be changed, including 
adding additional openings. The goal is to use as less material as possible for the 
bracket, while to support the given distributed load p. 
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(a) For steel, use E = 200 GPa, v = 0.32, and yield stress Yσ  = 250 MPa. 

(b) Use a factor of safety = 2.0 for the design. 
(c) Report the configuration, dimensions, and total volume of the bracket of your 

final design. 

 

Problem 6. Similar to the previous problem, design a steel bracket. Some dimensions of the 
bracket are fixed as shown in the figure, while others can be changed. The shape 
and topology of the bracket can also be changed. The goal of this design is to use 
least material for the bracket, while to support the given loads. 

(a) For steel, use E = 200 GPa, v = 0.32, and yield stress Yσ  = 250 MPa. 

(b) Use a safety factor of 1.5 for the design. 
(c) Report the configuration, all dimensions, and the total volume of the bracket 

of your final design. 

 

300 N 

200 mm 

60
 m

m
 

Radius of all three holes:  R = 10 mm; 
Thickness:  max. 3 mm. 

60
 m

m
 

Bolted to a frame 

300 N 

p = 250 N/cm2 

L = 20 cm 

R = 1 cm 

H
 =

 1
2 

cm
 

Bracket thickness: 

t = 0.2 cm 
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Chapter 4.  Modeling and Solution Techniques 
 In this chapter, we discuss several techniques in the modeling and solution process of 
using the FEM. Applying these techniques can greatly improve the efficiencies and accuracies of 
the finite element analysis. 

I. Symmetry 

 Symmetry features of a structure are the first thing one should look into and explore in 
the FE modeling and analysis. The model size can be cut almost in half and the solution 
efficiencies can be improved by several times. A structure possesses symmetry if its components 
are arranged in a periodic or reflective manner. Types of symmetries are (Figure 4.1): 

• Reflective (mirror, bilateral) symmetry 

• Axisymmetry 

• Rotational (cyclic) symmetry 

• Translational symmetry 

• Others (or combinations of the above) 
 

     
        (a)    (b)   (c)     (d) 

Figure 4.1. Some examples of symmetry: (a) reflective symmetry; (b) axisymmetry; 
(c) rotational symmetry; and (d) translational symmetry. 

 
 In the FEM, symmetry properties can be applied to 

• Reduce the size of the problems and thus save CPU time, disk space, post-processing 
efforts, and so on 

• Simplify the modeling task 

• Check the FEM results (make sure the results are symmetrical if the geometry and 
loading of the structure are symmetrical) 

 Symmetry properties of a structure should be fully exploited and retained in the FE model 
to ensure the efficiency and quality of FE solutions. 
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An Example 
 For the problem of a plate with a center hole as discussed in Example 3.2 of the previous 
chapter, we redo the FEA mesh using the symmetry features of the plate. To do this, we first 
model just one quarter of the plate using mapped mesh, and then reflect the model (with the 
mesh) twice to obtain the model and mesh for the entire plate, as shown in Figure 4.2. Only 896 
Q8 elements are used in this symmetrical model and the results are comparable to those in 
Chapter 3 using more elements with the free mesh. The quarter model can also be applied in the 
analysis, if the boundary conditions are also symmetrical about the xz and yz planes. 
 
 
 
 
 
 
 
 
 
 

Figure 4.2.  Results using symmetry features for Example 3.2 (mesh and stress contour plots). 

In vibration or buckling analysis, however, the symmetry concept should not be used in 
the FEA solutions (it is still applicable in the modeling stage), since symmetric structures often 
have antisymmetric vibration or buckling modes. 

 

II. Substructures (Superelements) 

 Another very useful technique for analyzing very large FEA models of mechanical 
systems is to apply the concept of substructures or superelements. Substructuring is a process of 
analyzing a large structure as a collection of (natural) components. The FEA models for these 
components are called substructures or superelements (SE). The physical meaning of a 
substructure is simply a finite element model of a portion of the structure. Mathematically, it 
presents a boundary matrix which is condensed by eliminating the interior points and keeping 
only the exterior or boundary points of the portion of the structure. In other words, instead of 
solving the FEA system of equations once, one can use partitions of the matrix so that larger 
models can be solved on relatively smaller computers. More details of the theory and 
implementations of the substructures or superelements can be found in the documentation of the 
FEA software packages (such as ANSYS or Nastran). 

 Figure 4.3 shows an FEA model of a truck used to conduct the full vehicle static or 
dynamic analysis. The entire model can have several millions of DOFs that can be beyond the 
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capabilities of some computers. Using the substructuring technique, one can build the FEA 
model for each subsystem first (such as the cab, chassis, steering system, suspension system, 
payload, and so on) and then condense the FEA equations to smaller ones relating only DOFs on 
the interfaces between the subsystems and residing on a residual structure (e.g., the chassis). The 
condensed system is much smaller than the original system and can be solved readily. 

 

Figure 4.3.  An FEA model of a truck analyzed using substructures. 

 The advantages of using the substructuring technique are: 

• Good for large problems (which will otherwise exceed your computer capabilities) 

• Less CPU time per run once the superelements have been processed (i.e., matrices have 
been condensed and saved) 

• Components may be modeled by different groups 

• Partial redesign requires only partial reanalysis (reduced cost) 

• Efficient for problems with local nonlinearities (such as confined plastic deformations) 
which can be placed in one superelement (residual structure) 

• Exact for static deformation and stress analysis 

 The disadvantages of using the substructuring technique are: 

• Increased overhead for file management 

• Increased initial time for setting up the system 

• Matrix condensations for dynamic problems introduce new approximations 
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III. Equation Solving 

 There are two types of solvers used in the FEA for solving the linear systems of algebraic 
equations, mainly, the direct methods and iterative methods.  

Direct Methods (Gauss Elimination): 

• Solution time proportional to NB2 (with N being the dimension of the matrix, B the 
bandwidth of the FEA systems) 

• Suitable for small to medium problems (with DOFs in the 100,000 range), or slender 
structures (small bandwidth) 

• Easy to handle multiple load cases 

Iterative Methods: 

• Solution time is unknown beforehand 

• Reduced storage requirement 

• Suitable for large problems, or bulky structures (large bandwidth, converge faster) 

• Need to solve the system again for different load cases 

An Example - Gauss Elimination: 
 Solve the following given system of equations: 
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Forward Elimination: 
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Back Substitutions (to obtain the solution): 
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An Example - Iterative Method: 
The Gauss-Seidel Method (as an example): 

bAx =       (A is symmetric)         (4.6) 
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In vector form, 

  [ ],)()1(1)1( kT
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k xAxAbAx −−= +−+       (4.8) 

where 

〉〈= iiD aA    is the diagonal matrix of A, 

LA is the lower triangular matrix of A, 

such that  .T
LLD AAAA ++=         (4.9) 

Iterations continue until solution x converges, i.e. 
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where ε is the tolerance for convergence control.  
 Iterative solvers with moderate selections of the tolerance are usually much faster than 
direct solvers in solving large-scale models. However, for ill-conditioned systems, direct solvers 
should be applied to ensure the accuracy of the solutions. 
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IV. Nature of Finite Element Solutions 

 Some observation of the FEA models and solutions: 

• FEA model – A mathematical model of the real structure, based on many approximations 

• Real structure -- Infinite number of nodes (physical points or particles), thus infinite 
number of DOFs 

• FEA model – finite number of nodes, thus finite number of DOFs 

In particular, one can argue that the displacement field is controlled (or constrained) by 
the values at a limited number of nodes (Figure 4.4). 
 

 

 

 

 

Figure 4.4. Elements in an FEA model 

 Therefore, we have the so called stiffening effect: 

• FEA Model is stiffer than the real structure 

• In general, displacement results are smaller in magnitudes than the exact values 

  Hence, the FEM solution of displacement is a lower bound of the exact solution. 
 
 
 
 
 
 
 
 
 

Figure 4.5. Convergence of FEM solutions with exact solution 

That is, FEA displacement solutions approach the exact solution from below, which can 
be used to monitor the FEA solutions. However, this is true for the displacement based FEA. 

4

1
Recall that on an element:   u N uα α
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V. Convergence of FEA Solutions 

As the mesh in an FEA model is “refined” (with smaller and smaller elements) 
repeatedly, the FEA solution will converge to the exact solution of the mathematical model of 
the problem (the model based on bar, beam, plane stress/strain, plate, shell, or 3-D elasticity 
theories or assumptions). Several types of refinements have been devised in the FEA, which 
include: 
h-refinement:  Reduce the size of the element (“h” refers to the typical size of the 

elements) 
p-refinement:  Increase the order of the polynomials on an element (linear to 

quadratic, etc.; “p” refers to the highest order in a polynomial) 
r-refinement:  Re-arrange the nodes in the mesh 
hp-refinement:  Combination of the h- and p-refinements (to achieve better results) 

 With any of the above type of refinements, the FEA solutions will converge to the 
analytical solutions of the mathematical models. Some FEA software can automate the process 
of refinements in the FEA solutions to achieve the so called adaptive solutions. 

 

VI. Adaptivity (h-, p-, and hp-Methods) 

 Adaptive FEA represents the future of the FEA applications. With proper error control, 
automatic refinements of an FEA mesh can be generated by the program until the converged 
FEA solutions are obtained. With the adaptive FEA capability, users’ interactions are reduced, in 
the sense that a user only need to provide a good initial mesh for the model (even this step can be 
done by the software automatically). 
 Error estimates are crucial in the adaptive FEA. Interested readers can refer to Ref. [2] for 
more details. In the following, we introduce one type of the error estimates. 

We first define two stress fields: 

σ --- element by element stress field (discontinuous across elements) 

σ*--- averaged or smoothed stress field (continuous across elements) 

Then, the error stress field can be defined as: 

σE  = σ - σ*         (4.11) 

Compute strain energies, 
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where M is the total number of elements, iV  is the volume of the element i. 

One error indicator - the relative energy error, is defined as: 
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The indicator η is computed after each FEA solution. Refinement of the FEA model continues 
until, say 

η ≤ 0.05. 

When this condition is satisfied, we conclude that the converged FE solution is obtained. 

 Some examples of using different error estimates in the FEA solutions can be found in 
Ref. [2]. 

 

VII. Summary 

 In this chapter, we briefly discussed a few modeling techniques and concepts related to 
FEA solutions. For symmetrical structures, the symmetry features should be explored in both 
modeling/meshing stage and solution stage (if the BCs are symmetrical as well). Substructuring 
or using superelements is a useful technique for solving large-scale problems with constrained 
computing resources. Convergence of the FEA solutions is the important goal in FEA and should 
be monitored by using the error estimates and employing the adaptive FEA capabilities in the 
software. 

 

VIII. Problems 

Problem 1. Suppose that we need to find out the in-plane effective modulus of a composite 
reinforced with long fibers aligned in the z-direction and distributed uniformly. A 
2-D elasticity model shown below can be used for this study with the FEA. The 
effective modulus can be estimated by using the formula )()( / avexavexeffE εσ= , 
where the averaged stress and strain are evaluated along the vertical edge on the 
right side of the model. Assume for the matrix E = 10 GPa, v = 0.35, and for the 
fibers E = 100 GPa, v = 0.3. The unit cell has a dimension of 1x1 μm2, and the 
radius of the fibers is 0.2 μm. 
Start with 1x1 cell, 2x2 cells, 3x3 cells, … and keep increasing the number of the 
cells as you can. Report the value of the effective Young’s modulus of the 
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composite in the x and y direction. Employ symmetry features of the model in 
generating the meshes for your analysis. 

Problem 2. Suppose that a “meshed panel” will be used in a design in order to reduce the 
weight. For this purpose, we need to find out the in-plane effective modulus of 
this panel in the x- or y-direction. A sample piece of the panel similar to the one 
shown below can be used for this study. Employ symmetry and study the effects 
of the numbers of cells used in the model on the computed moduli. 
Assume the panel is made of aluminum with E = 70 GPa, v = 0.35, a = 10 mm, 
b = 6 mm, c = 1.5 mm, and thickness t = 1 mm.  

 

p 

x 

y 

One unit cell  

 

p 
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y a b 

One cell 

c 
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Chapter 5.  Plate and Shell Elements 
 Many structure members can be categorized as plates and shells [11], which are 
extensions of the 1-D straight beams and curved beams to 2-D cases, respectively. Some of the 
structures that can be modeled as plates are: 

• Shear walls 

• Floor panels 

• Shelves 

While those that can be modeled as shells include: 

• Sea shells and egg shells (the wonder of the nature) 

• Various containers, pipes, and tanks 

• Bodies of cars, boats, aircraft, etc. 

• Roofs of buildings (the Superdome), etc. 

Figure 5.1 shows two recent engineering wonders that are constructed mainly using plate 
and shell structure members. 

    
     (a) The new Boeing 787 aircraft     (b) The National Grand Theatre in Beijing 

Figure 5.1.  Examples of plate and shell structures. 

 The advantages of using plate and shell structures are their light weight, superior load-
carrying capabilities, and sometimes, simply their artistic appeals. 
 

I. Plate Theory 

 A plate has the following characteristics: 

• A flat surface 

• Applied with lateral loading 

• Bending behavior dominates 



Lecture Notes:  Introduction to the Finite Element Method                         

© 1997-2013 Yijun Liu, University of Cincinnati     90 

Forces and Moments Acting on the Plate 

Figure 5.2.  Forces and moments acting on an infinitesimally small element in a plate. 

 

Stresses in the Plate 

Figure 5.3.  Stresses acting on the infinitesimally small element in the plate. 
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Relations Between the Forces and Stresses: 
Bending moments (per unit length): 

  )/(,
2/

2/
mmNzdzM

t

t xx ⋅= ∫−
σ        (5.1) 

  )/(,
2/

2/
mmNzdzM

t

t yy ⋅= ∫−
σ        (5.2) 

 

Twisting moment (per unit length): 

  )/(,
2/

2/
mmNzdzM

t

t xyxy ⋅= ∫−
τ        (5.3) 

 

Shear Forces (per unit length): 

  )/(,
2/

2/
mNdzQ

t

t xzx ∫−
= τ        (5.4) 

  )/(,
2/

2/
mNdzQ

t

t yzy ∫−
= τ        (5.5) 

 

Maximum bending stresses: 

  2max2max

6
)(,6)(

t
M

t
M y

y
x

x ±=±= σσ .       (5.6) 

Note that: 

• Maximum stress is always at 2/tz ±=  

• No bending stresses at midsurface (similar to the beam model) 
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Thin Plate Theory (Kirchhoff Plate Theory) 
 

Assumptions (similar to those for the simple beam theory): 

A straight line along the normal to the mid surface remains straight and normal to the 
deflected mid surface after loading, that is, there is no transverse shear deformation (Figure 5.4): 

0== yzxz γγ . 

Figure 5.4.  Deflection and rotation after loading of a plate according to Kirchhoff plate theory. 

 

Displacement: 
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Strains: 
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           (5.8) 

Note that there is no stretch of the mid surface due to the deflection of the plate. 
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Stresses (plane stress state): 
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or, 
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Note the main variable: deflection ),( yxww = . 

Governing Equation: 

 ),(4 yxqwD =∇ ,                  (5.11)  

where 

),2( 4

4

22

4

4

4
4

yyxx ∂
∂

∂∂
∂

∂
∂

++≡∇  

 
)1(12 2

3

ν−
=

EtD    (the bending rigidity of the plate),             (5.12) 

q = lateral distributed load (force/area). 

 

Compare the 1-D equation for straight beam:  

 )(4

4

xq
dx

wdEI = .                 (5.13) 

 

Note:  Equation (5.11) represents the equilibrium condition in the z-direction.  To see 
this, refer to the Figure 5.2. showing all the forces on a plate element.  Summing the forces in the 
z-direction, we have, 

 ,0=∆∆+∆+∆ yxqxQyQ yx                 (5.14) 
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which yields, 

  0),( =+
∂

∂
+

∂
∂ yxq

y
Q

x
Q yx .                (5.15) 

Substituting the following relations into the above equation, we obtain Eq. (5.11): 
Shear forces and bending moments: 
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wDM yx νν .           (5.17) 

 

 The fourth-order partial differential equation, given in (5.11) and in terms of the 
deflection w(x,y), needs to be solved under certain given boundary conditions. 

 

Boundary Conditions: 

Clamped:   0,0 =
∂
∂

=
n
ww ;               (5.18) 

Simply supported: 0,0 == nMw ;               (5.19) 

Free:   0,0 == nn MQ ;              (5.20) 

where n is the normal direction of the boundary (Figure 5.5). Note that the given values in the 
boundary conditions shown above can be non-zero values as well. 

Figure 5.5.  The boundary of a plate. 
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Examples: 
 A square plate (Figure 5.6) with four edges clamped or hinged, and under a uniform load 
q or a concentrated force P at the center C. 

Figure 5.6.  A square plate. 
 

 For this simple geometry, Eq. (5.11) with boundary condition (5.18) or (5.19) can be 
solved analytically. The maximum deflections are given in the Table 5.1 for the four different 
cases. 

Table 5.1. Deflection at the Center (wc) 

 Clamped Simply supported 

Under uniform load q 0.00126 qL4/D 0.00406 qL4/D 

Under concentrated force P 0.00560 PL2/D 0.0116 PL2/D 

in which:  D= Et3/(12(1-v2)). 

 These values can be used to verify the FEA solutions. 

 

Thick Plate Theory (Mindlin Plate Theory) 
If the thickness t of a plate is not “thin”, for example, when 10/1/ ≥Lt  (L = a 

characteristic dimension of the plate main surface), then the thick plate theory by Mindlin should 
be applied. This theory accounts for the angle changes within a cross section, that is, 

0,0 ≠≠ yzxz γγ . 
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This means that a line which is normal to the mid surface before the deformation will not be so 
after the deformation (Figure 5.7). 

Figure 5.7.  Displacement and rotation based on the Mindlin thick plate theory. 

New independent variables: 

xθ  and yθ :  rotation angles of a line, which is normal to the mid surface before the 
deformation, about x- and y-axis, respectively. 
New relations: 

 xy zvzu θθ −== , ;               (5.21) 

and 

 
, , ( ),

, .

y yx x
x y xy

xz y yz x

z z z
x y y x

w w
x y

∂θ ∂θ∂θ ∂θε ε γ
∂ ∂ ∂ ∂

∂ ∂γ θ γ θ
∂ ∂

= = − = −

= + = −
             (5.22) 

Note that if we imposed the conditions (or assumptions) that  

  ,0,0 =−==+= xyzyxz y
w

x
w θ

∂
∂γθ

∂
∂γ                         (5.23) 

then we can recover the relations applied in the thin plate theory. 

 Main variables are:  ( , ), ( , ) and ( , )x yw x y x y x yθ θ . 

 The governing equations and boundary conditions can be established for thick plates 
based on the above assumptions. 
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II.  Plate Elements 

 

Kirchhoff Plate Elements: 
 

A 4-Node Quadrilateral Element: 

 Figure 5.8. A 4-node quadrilateral element with 3 DOFs at each node. 
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x y

∂ ∂
∂ ∂

. 

On each element, the deflection w(x,y) is represented by 
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where Ni, Nxi and Nyi are shape functions. This is an incompatible element [4]. The stiffness 
matrix is still of the form 

  ∫=
V

T dVEBBk ,                  (5.25) 

where B is the strain-displacement matrix, and E the Young’s modulus (stress-strain) matrix. 
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Mindlin Plate Elements: 
Two Quadrilateral Elements: 

(a) 4-node quadrilateral                                        (b) 8-node quadrilateral 

Figure 5.9.  4-node and 8-node quadrilateral plate elements. 

 

DOFs at each node:  w, θx and θy. 

On each element, the displacement and rotations are represented by: 
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 For these elements: 

• There are three independent fields within each element. 

• Deflection w(x, y) is linear for Q4, and quadratic for Q8. 
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Discrete Kirchhoff Element: 
This is a triangular element. First, start with a 6-node triangular element (Figure 5.10), 

Figure 5.10.  A 6-node triangular element with 5 DOFs at each corner node and 2 DOFs at each 
mid node. 

 DOFs at corner nodes:  , , , ,x y
w ww
x y

∂ ∂ θ θ
∂ ∂

; 

 DOFs at mid side nodes:  ,x yθ θ . 

 Total DOFs = 21. 

 Then, impose conditions 0== yzxz γγ , etc., at selected nodes to reduce the DOFs (using 
relations in Eq. (5.22)), to obtain the discrete Kirchhoff triangular (DKT) element (Figure 5.11): 

Figure 5.11.  Discrete Kirchhoff triangular element with 3 DOFs at each node. 
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 Total DOFs = 9  (DKT element). 

Note that w(x, y) is incompatible for DKT elements [4]; however, its convergence is 
faster (w is cubic along each edge) and it is efficient. 
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Test Problem: 
 We consider a square plate with its four edges clamped and a concentrated force P 
applied at the center (Figure 5.12). Using 4-node plate elements, we obtain results in Table 5.2.  

Figure 5.12. A clamped square plate with a concentrated load P. 

 

Table 5.2.  ANSYS result for deflection wc. 

Number of Elements wc (× PL2/D) 

2×2 0.00593 

4×4 0.00598 

8×8 0.00574 

16×16 0.00565 

: : 

Exact Solution 0.00560 
 

Questions: Why results converge from “above”? Contradiction to what we learnt 
about the nature of the FEA solution? 

Reason: This is an incompatible element (See comments on page 177 of Cook’s 
textbook [4]). 
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III.  Shells and Shell Elements 

Shells are thin structure members which span over curved surfaces. The thickness t of a 
shell is usually much smaller than the other dimensions of the shell and thus it can be represented 
mathematically by a 2-D surface in space, with the thickness as a parameter (Figure 5.13). 

Figure 5.13.  A shell structure member and its mathematical representation. 

 

Forces in Shells: 
Unlike the plate models, there are two types of forces in shells, that is: 

Membrane forces (in plane forces) + Bending forces (out of plane forces) 

(cf.  plates:  bending forces only) 

Figure 5.14.  Forces and moments in a shell structure member. 
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Example: A Cylindrical Container 
 

Figure 5.15. Internal forces acting in a cylinder under internal pressure load. 

 

Shell Theories: 
 Similar to the plate theories, there are two types of theories for modeling shells, 
according to the thickness of the shells to be studied: 

• Thin shell theory 

• Thick shell theory 

Shell theories are the most complicated ones to formulate and analyze in mechanics. 
Many of the contributions were made by Russian scientists in the 1940s and 1950s, due to the 
need to develop new aircraft and other light-weight structures. Interested readers can refer to 
Ref. [11] for in-depth studies on this subject. These theoretical work have laid the foundations 
for the development of various finite elements for analyzing shell structures. 
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Flat Shell Elements:  

 
Figure 5.16.  Combination of plane stress element and plate bending element yields a flat shell 

element. 
 
 cf.:   bar + simple beam element  =>  general beam element (for modeling curved beams). 
 

 DOFs at each node: 

Figure 5.17. Q4 or Q8 shell elements. 
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Curved Shell Elements: 

Figure 5.18. A 8-node curved shell element and the DOFs at a typical node i. 

• Curved shell elements are based on the various shell theories;  

• They are the most general shell elements (flat shell and plate elements are subsets);  

• Complicated in formulation. 

Test Cases: 

Figure 5.19.  Four test cases where analytical solutions are available. 
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For the four cases shown in Figure 5.19, check the table on page 188 of Cook’s textbook 
[4] for the exact values of displacement ∆A under various loading conditions, which can be used 
to verify the FEA results in shell analysis. 

Figure 5.20 is a stamping part analyzed using shell elements. The bracket has a uniform 
thickness and is fixed at the four bolt hole positions. A load is applied through a pin passing 
through the two holes in the lower part of the bracket. Note the one layer of elements on the edge 
of each hole (Figure 5.20 (a)), which is a common practice to models holes. Note also that this 
layer of elements on the edge of each hole has been masked in the stress contour plot 
(Figure 5.20 (b)), due to inaccurate stress results near the constraint locations. To reduce the true 
stress levels in the bracket, the thickness can be changed, the shape of the bracket can be 
modified, and the model is re-meshed and re-analyzed, all of which are very easy to carry out 
with the shell elements. 

 

Figure 5.20. Stress analysis of a bracket using shell elements: (a) The FEA model; (b) Stress 
contour plot. 

 

Cautions in Applying Shell Elements: 
 In many cases, however, the plate and shell models may not be adequate for analyzing a 
structure member, even if it is considered thin. For example, the structure component has a 
nonuniform thickness (turbine blades, vessels with stiffeners, thin layered structures, etc.), see 
Figure 5.21, or has a crack for which detailed stress analysis is needed. In such cases, one should 
turn to 3-D elasticity theory and apply solid elements which will be discussed in the next chapter. 

(b) (a) 
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Figure 5.21.  Cases in which shell elements are not adequate: (a) Casting parts; (b) Parts with 

nonuniform thickness. 3-D solid elements should be applied in such cases. 
 

IV. Summary 

 In this chapter, we discussed the main aspects of the plate and shell theories and the plate 
and shell elements used for analyzing plate and shell structures. Plates and shells can be regarded 
as the extensions of the beam elements from 1-D line elements to 2-D surface elements. Plates 
are usually applied in modeling flat thin structure members, while the shells in modeling curved 
thin structure members. In applying the plate and shell elements, one should keep in mind the 
assumptions used in the development of these types of elements. In cases where these 
assumptions are no longer valid, one should turn to general 3-D theories and solid elements. 

 

V. Problems 

Problem 1. The roof structure shown in Figure 5.19 (a) is loaded by its own weight with q = 
90 lbf/in2.  The dimensions and material constants are:  R = 25 in., L = 50 in., t = 
0.25 in., E = 432×106 psi and v = 0.0.  The two straight edges are free, while the 
two curved edges have a “diaphragm” support (meaning that y and z DOFs are 
constrained, but x (along the axis) and all rotational DOFs are unconstrained).  
Use shell elements to find the maximum displacement and von Mises stress in the 
structure. Verify your results (Note that the value of the analytical solution for the 
displacement at the mid point A of the straight edge is 0.3024 in). 

 
(b) (a) 
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Problem 2. Consider a glass cup placed on a table, as shown in the figure. Using an FEA 
software package and 8-node shell elements, find the maximum displacement and 
von Mises stress in the cup when the cup is applied with a pressure load of 10 
N/mm2 on the inner wall. Assume that the cup has a uniform thickness, E = 
70 GPa and v = 0.17. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Problem 3. A fuel tank, with a total length = 5 m, diameter = 1 m, and thickness = 0.01 m, is 

shown below. Using the FEA, find the deformation and stresses when the tank is 
applied with an internal pressure p = 100 MPa and placed on the ground. 

 
Assume the Young’s modulus E = 200 GPa and Poisson’s ratio υ = 0.3. 
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Chapter 6.  Three-Dimensional Elasticity Problems 
 Solid elements based on 3-D elasticity theory [9, 10] are the most general elements for 
stress analysis when the simplified bar, beam, plane stress/strain, plate/shell elements are no 
longer valid or accurate. In this chapter, we first review the elasticity equations in 3-D and then 
discuss a few types of 3-D finite elements commonly used for 3-D stress analysis. 
 

I. 3-D Elasticity Theory 

Stress State: 
 There are six stress components at each point in a 3-D elastic body (Figure 6.1). 
       

                    

 

 

                    

      

               

               

              
             
             
             
             
             
             
             
  

 
 
 
 
 

Figure 6.1.  State of stress in a 3-D element. 

 

yσ  

yxτ  

yzτ  

zyτ  

zxτ  

zσ  
xzτ  

xσ  

xyτ  

y , v 

x, u 

z, w 

x 

y 

z 



Lecture Notes:  Introduction to the Finite Element Method                         

© 1997-2013 Yijun Liu, University of Cincinnati     109 

 The six stress components shown in Figure 6.1 can be wriiten as a vector: 

{ } [ ], or .
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σ        (6.1) 

Strains: 
 Similarly, the six strain components in 3-D can be expressed as: 
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Stress-Strain Relations: 
 The stress-strain relation in 3-D is given by: 
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  (6.3) 

Or in a matrix form: 

  =σ Eε . 

Displacements: 
 The displacement field can be described as: 
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u         (6.4) 
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Strain-Displacement Relations: 
 Strain field is related to the displacement field as given below: 

, , ,
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v u w v u w
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    (6.5) 

These six equations can be written in the following index or tensor form: 
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Equilibrium Equations: 
 The stresses and body force vector f at each point satisfy the following three equilibrium 
equations for elastostatic problems: 
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+ + + =

∂ ∂ ∂
∂ ∂ ∂

+ + + =
∂ ∂ ∂

∂∂ ∂
+ + + =

∂ ∂ ∂

       (6.6) 

Or in index or tensor notation: 

  , 0 .ij j ifσ + =  

Boundary Conditions (BCs): 
 At each point on the boundary Γ and in each direction, either displacement or traction 
(stress on the boundary) should be given, that is: 

, ( );
, ( );

i i u

i i

u u on specified displacement
t t on specified tractionσ

= Γ
= Γ

     (6.7) 

in which the barred quantities denote given values, and the traction (stress on a surface) is 
defined by i ij jt nσ= , or in a matrix form: 
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x x xy xz x

y xy y yz y

z xz yz z z

t n
t n
t n

σ τ τ
τ σ τ
τ τ σ

    
    =    

        

. 

with n being the normal (Figure 6.2). 

 

Figure 6.2.  The boundary of an elastic domain. 

Stress Analysis: 
 For 3-D stress analysis, one needs to solve equations in (6.3), (6.5) and (6.6) under the 
BCs in (6.7) in order to obtain the stress, strain and displacement fields (15 equations for 15 
unknowns for 3-D problems). Analytical solutions are often difficult to find and thus numerical 
methods such as the FEA is applied in 3-D stress analysis. 
 

II. Finite Element Formulation 

 We first summarize the FEA formulation for 3-D elasticity problems, which are straight 
forward extensions of the FEA formulations for 1-D bar and 2-D elasticity problems. 

Displacement Field: 
 As in the FEA formulations for 1-D and 2-D problems, we first interpolate the 
displacement fields within a 3-D element using shape functions Ni: 

1

1

1

,

,

,

N

i i
i
N

i i
i

N

i i
i

u N u

v N v

w N w

=

=

=

=

=

=

∑

∑

∑

        (6.8) 

in which , , andi i iu v w  are nodal values of the displacement on the element, and N is the number 
of nodes on that element. In matrix form, we have: 

p 
 
 
 
 
  

σΓ

( )u σΓ =Γ + Γ  

n 
 
 
 
 
  uΓ  
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0 0 0 0
0 0 0 0(3 1) (3 3 )

(3 1)

u
v

u N N w
v N N u
w N N vN

w

N

 
 
 
 
  × ×

×

 
 
  

=   
   

 
 









 (6.9) 

Or in a matrix form: 

dNu= . 

 Using relations (6.5) and (6.8), we can derive the strain vector to obtain: 

  ε =B d  

in which B is the matrix relating the nodal displacement vector d to the strain vector ε. Note that 
the dimensions of the B matrix are 6×3N. 

Stiffness Matrix: 
 Once the B matrix is found, one can apply the following familiar expression to determine 
the stiffness matrix for the element: 

.T

v

dv= ∫k B EB               (6.10) 

The dimensions of the stiffness matrix k are 3N×3N. A numerical quadrature is often needed to 
evaluate the above integration, which can be expensive if the number of nodes is large, such as 
for higher-order elements. 

A Note of the Rigid-Body Motions: 
 Note that there are six rigid-body motions for 3-D bodies: 
 3 translations and 3 rotations. 
 These rigid-body motions (causes of singularity of the system of equations) must be 
removed from the FEA model for stress analysis to ensure the accuracy of the analysis. On the 
other hand, over constrains can also cause inaccurate or unwarranted results. 
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III. Typical 3-D Solid Elements 

 We can classify the type of elements for 3-D problems as follows (Figure 6.3)according 
to their shapes and the orders of the shape functions constructed on the elements: 

Tetrahedron: 
 
 
 
 
 
 

Hexahedron (brick): 
 
 
 
 
 

Penta: 
 
 
 
 
 
 

   Figure 6.3. Different types of 3-D solid elements. 
 

Whenever possible, try to apply higher-order (quadratic) elements, such as 10-node 
tetrahedron and 20-node brick elements for 3-D stress analysis. Avoid using the linear, especially 
the 4-node tetrahedron elements in 3-D stress analysis, because they are inaccurate for such 
purposes. However, it is fine to use them for deformation analysis or in vibration analysis (see 
next chapter). 

In the following section, we will examine the element formulation for the 8-node brick 
element. 

   linear (4 nodes)                            quadratic (10 nodes) 
 

linear (8 nodes)             quadratic (20 nodes) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

linear (6 nodes)                             quadratic  (15 nodes) 
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Element Formulation: 
Linear Hexahedron Element 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4. Mapping an element to the natural coordinate system. 
 

Displacement Field in the Element:  
8 8 8

1 1 1
, , .i i i i i i

i i i
u N u v N v w N w

= = =

= = =∑ ∑ ∑                                            (6.11) 

Shape Functions:  

                 
                                                             
                      
                              y          
                                                         

                                                               
     
                 z      
 

 mapping (xyz↔ξηζ) 
 (-1≤ ξ,η,ζ ≤ 1) 
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7  (1,1,1) (-1,1,1) 8 
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Note that we have the following relations for the shape functions: 

  
.1),,(

.8,,2,1,,),,(
8

1
∑
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ijjjji

N

jiN

ζηξ
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Coordinate Transformation (Mapping): 

  
8 8 8

1 1 1
, , .i i i i i i

i i i
x N x y N y z N z

= = =

= = =∑ ∑ ∑                         (6.13) 

That is, the same shape functions are used as for the displacement field. This is again called an 
isoparametric element. 

Jacobian Matrix:  

  
.

Jacobian matrix

u x y z u
x

u x y z u
y

u x y z u
z

ξ ξ ξ ξ

η η η η

ζ ζ ζ ζ

   ∂ ∂ ∂ ∂  ∂
     ∂ ∂ ∂ ∂ ∂     
   ∂ ∂ ∂ ∂ ∂ =    ∂ ∂ ∂ ∂ ∂    
    ∂ ∂ ∂ ∂ ∂
    ∂ ∂ ∂ ∂ ∂    

≡ J

                          (6.14) 

Inverting this relation, we have: 

  
8

1

1
, with and so on.i

i
i

uu
x

Nu u u u
y

uu
z

ξ

η ξ ξ

ζ

−

=

 ∂ ∂
   ∂∂   
  ∂∂ ∂ ∂  = =   ∂ ∂ ∂ ∂   

   ∂∂
   

∂∂   

∑J    (6.15) 

and similarly for v and w. These relations lead to the following expression for the strain: 
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(6.15)
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∂ ∂ 

ε Bd . 

where d is the nodal displacement vector, that is:  

  .=ε Bd                                              (6.16) 

Strain energy is evaluated as: 

  

1 1 ( )
2 2
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1 .
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U dV dV
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= =

=

 
=  

 

∫ ∫

∫

∫

σ ε Eε ε

ε Eε

d B EB d

   (6.17) 

That is, the element stiffness matrix is 

  .T

V

dV= ∫k B EB                                                 (6.18) 

In ξηζ  coordinates: 

  (det )dV d d dξ η ζ= J                                                 (6.19) 

Therefore, 

  
1 1 1

1 1 1

(det ) .T d d dξ η ζ
− − −

= ∫ ∫ ∫k B EB J                                            (6.20) 

It is easy to verify that the dimensions of this stiffness matrix is 24x24.  
Note that in general, 3-D elements do not use rotational DOFs. 
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Treatment of Distributed Loads: 
Distributed loads need to be converted into nodal forces using the equivalent energy 

concept as discussed in earlier chapters. Figure 6.5 shows the result of a pressure load converted 
to nodal forces for a 20-node hexahedron element. Note the direction of the forces at the four 
corner nodes, which is not intuitive at all.  
 

 
 
 
 
  
 
                                Surface Area =A                                      Nodal forces for 20-node brick element  

Figure 6.5. Equivalent nodal forces on a 20-node brick element for a constant distributed load p. 

 
Stresses: 
 To compute the the stresses within an element, one uses the following relation once the 
nodal displacement vector is known for that element: 

  dBEεEσ == . 

 Stresses are evaluated at selected points (Gaussian points or nodes) on each element. 
Stress values at the nodes are often discontinuous and less accurate. Averaging of the stresses 
from surrounding elements around a node are often employed to smooth the stress field results. 
 The von Mises stress for 3-D problems is given by: 

2
13

2
32

2
21 )()()(

2
1 σσσσσσσσ −+−+−== VMe .              (6.21) 

where 1 2 3, andσ σ σ  are the three principal stresses. 

 3-D stress analysis using solid elements is one of the most difficult tasks in FEA. 
Meshing structures with complicated geometries can be very tedious and time consuming. Great 
care need to be taken to make sure that the FEA mesh is in good quality (for example, with no 
distorted elements). Computing cost is another factor. For structures with stress concentrations, 
large FEA models are often needed, which can run hours or days to solve even on today’s best 
computers. A good CAE engineer should be able to decided where to apply a fine mesh and 
where not to, in order to trike a balance between the cost and accuracy for an FEA task. 
 

             pA/3       pA/12 
          p 
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Examples: 
 Figure 6.6 show a drag link FEA model using solid elements. Although the structure has 
a slender shape, it has a bended angle and holes. 3-D solid elements are needed for the stress 
analysis in this case. Great care is taken in meshing this part, where 20-node brick elements are 
used for better accuracy in the stress analysis. Buckling analysis may also be conducted for 
slender structures when they are under compressions. More information about buckling analysis 
using FEA can be found in the references or in documents of FEA software packages. 

 
 

 
Figure 6.6. FEA for a drag link: (a) The model; (b) Mesh for the right end; (c) Stress distribution 

due to tension loads applied at the two ends. 
 

 

(c) 

(a) (b) 
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 Figure 6.7 show a 3-D FEA of a gear coupling which is applied to transmit powers 
through two aligned rotating shafts. Contact stresses and failure modes are to be determined 
based on detailed 3-D FE models. This analysis requires the use of nonlinear FEA options, which 
are readily available now in almost all FEA software packages. 
 

 
 

 
Figure 6.7.  Analysis of a gear coupling: (a) Ring gear; (b) Hub gear; (c) High contact stresses in 

the gear teeth obtained using nonlinear FEA. 

(a) (b) 

(c) 
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IV. Solids of Revolution (Axisymmetric Analysis) 

 Many mechanical parts can be considered as solids of revolution or axisymmetric solids 
(Figure 6.8). If the applied loads on these axisymmetric parts are also axisymmetric, the 3-D 
analysis can be simplified by using the axisymmetric models. 
 
 
 
 
 
 
                                     (a)  A baseball bat                                                  (b) A shaft 

Figure 6.8.  Examples of axisymmetric solids. 

 
Cylindrical Coordinates: 

Axisymmetric models are based on the cylindrical coordinate (r, θ, z) (Figure 6.9). 

 
 
 
 
 
 
                                 (a)                                                       (b)                                                 

 
 
 
 
 
 
            
                                 (c)                                                         (d) 

Figure 6.9.  (a) An axisymmetric body; (b) The cylindrical coordinates; (c) An axisymmetric 
model; (d) Stress components in the cylindrical coordinates. 
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dθ 
r 

(r+u)dθ  
rdθ 

u 

 In this cylindrical coordinates, one can establish the strain-displacement and stress-strain 
relations, and the equilibrium equations. 

Displacement Field: 

 ( )( , ), ( , ), 0 Nocircumferentialcomponentu u r z w w r z v= = = . 

Strain-Displacement Relation (Figure 6.10): 

 
, , ,

, 0.
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γ γ γ

∂ ∂
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∂ ∂

= + = =
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                                                (6.22) 

 
 
 
 
 

Figure 6.10.  The geometric relations used in deriving strain-displacement relations. 
 

Stresses-Strain Relation:  
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Axisymmetric Elements (Figure 6.11): 
 
 
 
 
 
 
 
 

Figure 6.11.  Axisymmetric 3-node and 4-node elements. 
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Formulation of the axisymmetric elements are similar to other 2-D plane stress/strain 
elements. The stiffness matrix, for example, is given by: 

 T

V
rdr d dzθ= ∫k B EB ,                                                          (6.24) 

or 

 

2 1 1

0 1 1
1 1

1 1

(det )

2 (det ) ,

T

T

r d d d

r d d

π

ξ η θ

π ξ η

− −

− −

=

=

∫ ∫ ∫

∫ ∫

k B EB J

B EB J
       (6.25) 

in which B is the matrix relating the nodal displacement vector to strain vector in the cylindrical 
coordinate system. 

These axisymmetric elements have planar shapes, but actually represent rings in the 
circumferential directions of the axisymmetric solids. 

 
Applications: 

Many rotating parts, such as a flywheel (Figure 6.12), can be modeled using 
axisymmetric elements.  
 
 
 
 
 
 
 
 
 
 

Figure 6.12.  Cross-section of a flywheel that is rotating with an angular velocity ω. 
 

Body forces in rotating parts are given by the following formulas: 

 
2 , equivalent radialcentrifugal/ inertial force;

, gravitational force;
r

z

f r

f g

ρ ω

ρ

=

= −
    (6.26) 

where ρ is the mass density and g is gravitational acceleration. 

z 
ω  angular velocity (rad/s) 

r 
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Other examples include cylinders subject to internal pressure (Figure 6.13) and press fit 
(Figure 6.14). 
 
 
 
 
 
 
 
 
 
 

Figure 6.13.  A cylinder with internal radius 0r  is subjected to internal pressure p. 

 
 
 
 
 
 
 
                                            (a) ring (sleeve)                                               (b) shaft 

 
 
 
 
 
 
 
 
    (c) Interface condition (Multi-Point Constraint (MPC)) 

Figure 6.14.  An example of press fit. 
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A more advanced example is the Belleville (conical) spring shown in Figure 6.15: 
 
 
 
 
 
 
 
 
 
 
 
   (a)              (b) 

 
 
 
 
 
 
 
             (c) 

Figure 6.15.  A Belleville (conical) springs. 
 
 This is a geometrically nonlinear (large deformation) problem (because of the nonlinear 
behavior shown in the force-displacement curve as in Figure 6.15(c). Iteration approaches 
(incremental methods) need to be employed to solve this type of problems. 
 Examples of axisymmetric solids shown in Figures 6.12-15 can be used as test problems. 
One can build both 3-D solid models and corresponding 2-D axisymmetric models to compare 
the modeling and computational efficiencies. The accuracy of the results for the two type of 
models should be within certain tolerance if correct boundary conditions and same mesh 
patterns/densities are employed. 
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V. Summary 

 In this chapter, we discussed the 3-D (solid) elements for elasticity problems, that is, 
general 3-D deformation and stress analyses. Solid elements are the most accurate elements and 
should be applied when the bar, beam, plane stress/strain, plate/shell elements are no longer valid 
or accurate. Especially for stress concentration problems, higher-order solid elements, such as 
10-node tetrahedron or 20-node hexahedron (brick) elements should be employed in the FEA. 
For rotating parts or solids of revolution and under axisymmetric loading, the axisymmetric 
elements are most effective and efficient. 
 

VI.  Problems 

Problem 1. For a tapered bar shown below, study the deformation and stresses in the bar with 
a 3-D model using solid elements and a 1-D model using 1-D bar elements. 
Assume R1 = 1 m, R2 = 0.5 m, L = 5 m, force F = 3000 N, the Young’s modulus 
E = 200 GPa and Poisson’s ratio υ = 0.3. The bar is fixed at the left end. Compare 
the results from the 3-D model and 1-D model.  

 
 
Problem 2. An open cylinder shown below has an inner radius a = 1 m, outer radius 

b = 1.1 m, length L = 10 m and is applied with a pressure load p = 10 GPa on the 
inner surface. 
(a) Compute the stresses in the cylinder using 2-D plane stress, 2-D axisymmetric 

and 3-D solid models. Compare the FEA results based on these models. 
(b) Consider the same cylinder, added with a hole of radius r = 0.2 m on the 

cylinder wall, centered at the mid-length, and along the radial direction. 
Assume the Young’s modulus E = 200 GPa and Poisson’s ratio υ = 0.3. 

L 

R2 
2R1 

F 
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Problem 3. For the rotating part sketched below, assume that it is made of steel with the 

Young’s modulus E = 200 GPa, Poisson’s ratio υ = 0.3, and mass density 
ρ = 7850 kg/m3. Assume that the part is rotating at a speed of 1000 RPM about 
the z axis. Ignore the gravitational force. Compute the stresses in the part using 
the FEA with a full 3-D model and an axisymmetric model. Compare the results 
with the two models. 

 
 

a 

b L 

z 
ω   

5 mm 8 mm 

30 mm 16 mm 

12 m
m

 30 m
m

 

50 m
m
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Chapter 7.  Structural Vibration and Dynamics 
 In this chapter, we first review the basic equations and their solutions for structural 
vibration and dynamic analysis. Then, we discuss the FEA formulations for solving vibration and 
dynamic responses. Guidelines in modeling and solving such problems are provided. 
 There are three main types of problems for structural vibration and dynamic analyses: 

• Natural frequencies and modes (f(t) = 0); 

• Frequency response (f(t) = fo sinωt); 
• Transient response (f(t) is arbitrary); 

where f(t) is the dynamic force applied on the structure, t the time, and ω the circular frequency 
(Figure 7.1) 

 f(t) 

 
Figure 7.1.  A dynamic force applied to the structure. 

 

I. Basic Equations 

A. Single DOF System 
 First, let us consider a single degree of freedom (DOF) system shown in Figure 7.2. 
                                                          

 
                                                        
 
 

 
 
 

  
 

Figure 7.2.  A single DOF system with damping. 
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From the free-body diagram (FBD) and Newton’s law of motion (ma = f), we have: 

ucukf(t)um  −−= , 

that is: 

f(t)ukucum =++  ,                                                        (7.1) 

where u is the displacement,  /u du dt=  the velocity, and 2 2  /u d u dt=  the acceleration. 

Free Vibration (Normal Mode Analysis):  
If the applied force f(t) = 0 and no damping (c = 0), Eq. (7.1) becomes: 

0=+ ukum  .                                                        (7.2) 

The physical meaning of this equation is: inertia force + elastic/stiffness force = 0.  
Although there is no applied force, the structural can have nonzero displacement or 

experience vibrations under contain initial conditions (ICs). To solve for such nontrivial 
solutions, we assume: 

sinu(t) U tω= , 

where ω is the circular frequency of oscillation, U the amplitude. Substituting this into Eq. (7.2) 
yields: 

2 sin sin 0U ω m ωt kU ωt− + =  

that is: 
2 0m k Uω − + =  . 

For nontrivial solutions for U, we must have: 
2 0m kω − + =  ,  

which yields 

m
k

=ω .                       (7.3) 

This is the circular natural frequency of the single DOF system (rad/s).  The cyclic frequency 
(1/s = Hz) is ω/2π. 

Equation (7.3) is a very important result in free vibration analysis, which says that the 
natural frequency of a structural is proportional to the square-root of the stiffness of the structure 
and inversely proportional to the square-root of the total mass of the structure.  

The typical response of the system in undamped free vibration is sketched in Figure 7.3. 
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Figure 7.3.  Typical response in an undamped free vibration. 

 
For non-zero damping c, where 

mkmcc c 220 ==<< ω     (cc = critical damping)       (7.4) 

we have the damped natural frequency: 
21 ξωω −=d ,                                 (7.5) 

where  

/ cc cξ =           (7.6) 

is called the damping ratio. 

For structural damping: 15.00 <≤ ξ   (usually 1~5%) 

ωω ≈d .                                          (7.7) 

That is, we can ignore damping in normal mode analysis.  
The typical response of a system in damped free vibration is sketched in Figure 7.4. We 

can see that damping has the effect of reducing the vibration of the system. 
 
 
 
 
 
 
 
 

Figure 7.4.  Typical response of a free vibration with a nonzero damping cc c< . 
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B. Multiple DOF Systems 
Equation of Motion: 

For multiple DOF systems, the equation of motion can be written as: 

)(tfKuuCuM =++  ,                  (7.8) 

in which: u  nodal displacement vector; 

 M  mass matrix of the structure; 

 C  damping matrix; 

 K  stiffness matrix; 

 f   forcing vector. 
The physical meaning of Eq. (7.8) is : 

Inertia forces + Damping forces + Elastic forces = Applied forces 
 We already know how to determine the stiffness matrix K for a structure, as discussed in 
previous chapters. The main tasks in vibration analysis is to determine the mass matrix and 
damping matrix for the structure. 

Mass Matrices: 
 There are two types of mass matrices: lumped mass matrices and consistent mass 
matrices. The former is empirical and easier to determine, and the latter is analytical and more 
involved in their computing. 

We use a bar element to illustrate the lumped mass matrix (Figure 7.5). 
 
 
 
 
 

Figure 7.5.  The lumped mass for a 1-D bar element. 
 

For this bar element, the lumped mass matrix for the element is found to be: 

0
2 ,
0

2

AL

AL

ρ

ρ

 
 

=  
 
  

m  

which is a diagonal matrix and thus is easier to compute. 
In general, we apply the following element consistent mass matrix: 

21
ALm ρ

=
22
ALm ρ

=
ρ, A, L 1 2 

u1 u2 
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dV
V

T∫= NNm ρ ,                                                     (7.9) 

where N is the same shape function matrix as used for the displacement field, and V is the 
volume of the element. 

Equation (7.9) is obtained by considering the kinetic energy within an element: 

        

( )

( ) ( )

2

2

1 1                              (cf. )
2 2
1 1     
2 2
1    
2

1 .
2

T

T

V V

T

V

T T

V

mv

u dV u udV

dV

dV

ρ ρ

ρ

ρ

Κ =

= =

=

=

∫ ∫

∫

∫
m

u mu

Nu Nu

u N N u

 

  

 

 



   (7.10) 

For the bar element (linear shape function), the consistent mass matrix is: 

 

[ ]

                      
3/16/1
6/13/1

    

1
1

2

1
u
u

AL

ALd
V













=

−






 −
= ∫

ρ

ξξξ
ξ

ξ
ρm

                 (7.11) 

which is a non-diagonal matrix. 
As in the case for stiffness matrices, element mass matrices are established in local 

coordinates first, then transformed to global coordinates, and finally assembled together to form 
the global structure mass matrix M. 

 
 

 
 
 

Figure 7.6.  The lumped mass for a 1-D simple beam element. 
 

For a simple beam element (Figure 7.6), the consistent mass matrix can be found readily 
by applying the four shape functions listed in Eq. (2.41). We have: 

1

1
    θ
v

2

2

    θ
v

ρ, A, L 
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1
2 2

1

2
2 2

2

156 22 54 13
22 4 13 3

     
54 13 156 22420
13 3 22 4

T dV

vL L
L L L LAL

vL L
L L L L

ρ

θρ

θ

=

− 
 − =
 −
 − − − 

∫V
m N N









    (7.12) 

 
 Selecting a proper unit system is very important in vibration or dynamic analysis. Two 
choices of the units are listed in Table 7.1. Make sure they are consistent in the FEA models. 
 

Table 7.1. Units in dynamic analysis 

 Choice I Choice II 

t (time) 

L (length) 

m (mass) 

a (accel.) 

f (force) 

ρ (density) 

s 

m 

kg 

m/s2 

N 

kg/m3 

s 

mm 

Mg 

mm/s2 

N 

Mg/mm3 

 
II. Free Vibration of Multiple DOF Systems 

Free vibration or normal mode analysis aims to study the dynamic characteristics of a 
structure, which include: 

• Natural frequencies; 
• Normal modes (shapes). 

Let f(t) = 0 and C = 0 (ignore damping) in the dynamic equation (7.8) and obtain: 

0KuuM =+           (7.13) 

Assume that displacements vary harmonically with time, that is: 

),sin()(

),cos()(
),sin()(

2 tt

tt
tt

ωω

ωω
ω

uu

uu
uu

−=

=
=





 

where u  is the vector of the amplitudes of the nodal displacements. 
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Substitutes these into Eq. (7.13) yields: 
2ω − = K M u 0 .        (7.14) 

This is a generalized eigenvalue problem (EVP). The trivial solution is 0u =  for any values 
of ω (not interesting). Nontrivial solutions ( 0u ≠ ) exist if and only if: 

02 =− MK ω           (7.15) 

This is an n-th order polynomial of ω2, from which we can find n solutions (roots) or eigenvalues 
ωi  (i = 1, 2, …, n). These are the natural frequencies (or characteristic frequencies) of the 
structure. 

The smallest non-zero eigenvalue ω1 is called the fundamental frequency. 

For each ωi , Eq. (7.14) gives one solution or eigen vector: 

[ ] 0uMK =− ii
2ω . 

iu  (i=1, 2, …, n) are the normal modes (or natural modes, mode shapes, etc.).  

Properties of the Normal Modes: 
 Normal modes satisfy the following properties: 

0=j
T
i uKu , 0=j

T
i uMu ,           for i ≠ j,                    (7.16) 

if ji ωω ≠ . That is, modes are orthogonal (thus independent) to each other with respect to K and 
M matrices.  

Normal modes are usually normalized such that: 
21,T T

i i i i iω= =u Mu u Ku .     (7.17) 

 
Notes: 

• Magnitudes of displacements (modes) or stresses in normal mode analysis have no 
physical meanings. 

• For normal mode analysis, no support of the structure is necessary. 

• ωi = 0  means  there are rigid-body motions of the whole or a part of the structure. This 
can be applied to check the FEA model (to see if there are rigid-body motions, 
mechanisms or free elements in the FEA models). 

• Lower modes are more accurate than higher modes in the FEA calculations (because of 
less spatial variations in the lower modes, leading to that fewer elements/wave length are 
needed). 
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Example 7.1: 
 Consider the free vibration of a cantilever beam with one element as shown below. 
 
 
 
 
 
 
 We have the following equation for the free vibration (EVP): 

22

2

0
,

0
v

ω
θ

    − =       
K M  

where 

2 23

12 6 156 22
,             .

6 4 22 4420
L LEI AL

L L L LL
ρ− −   

= =   − −   
K M  

The equation for determine the natural frequencies is:    

2 2

12 156 6 22
0,

6 22 4 4
L L

L L L L
λ λ
λ λ

− − +
=

− + −
 

in which EIAL 420/42ρωλ = . 

       Solving the EVP, we obtain: 
1

2
2

1 4
2 1

1
2

2
2 4

2 2

1v
3.533 ,     ,1.38

1v
34.81 ,     .7.62

EI
AL L

EI
AL L

ω
θρ

ω
θρ

     = =    
      

     = =    
      

 

The exact solutions of the first two natural frequencies for this problem are: 
1 1

2 2

1 24 43.516 ,       22.03 .EI EI
AL AL

ω ω
ρ ρ

   
= =   

   
 

We can see that for the FEA solution with one beam element, mode 1 is calculated much more 
accurately than mode 2. More elements are needed in order to compute mode 2 more accurately. 
The first three mode shapes of the cantilever beam is shown in the insert above. 
 

L

x1 2

v2

ρ, A, EI

y

θ2
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III. Damping 
There are two commonly used models for viscous damping. 

A. Proportional Damping (Rayleigh Damping) 
 In this damping model, the damping matrix C is assumed to be proportional to the 
stiffness and mass matrices in the following fashion: 

α β= +C K M ,                                   (7.18) 

where the constants α and β are found from the following two equations: 

,
22

,
22 2

2
2

1

1
1 ω

βαωξ
ω
βαωξ +=+=      (7.19) 

with 1 2 1 2,  ,   and ω ω ξ ξ  (damping ratios) being specified by the user. The plots of the above 
two equations are shown in Figure 7.7. 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 7.7. Two equations for determining the proportional damping coefficients. 
 

B. Modal Damping 
In this damping model, the viscous damping is incorporated in the modal equations to be 

discussed in the next section. 
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IV. Modal Equations 
Use the normal modes (modal matrices), we can transform the coupled system of 

dynamic equations to uncoupled system of equations or modal equations. 
We have: 

2 ,      1, 2, ...,i i i nω − = = K M u 0 ,                (7.20) 

where the normal modes iu  satisfy: 







=

=

,0
,0

j
T
i

j
T
i

uMu
uKu

   for i ≠ j, 

and 

2

1,
,

T
i i
T
i i iω

 =


=

u Mu
u Ku

  for i = 1, 2, …, n. 

Form the modal matrix: 

          [ ]nnn uuuΦ   21)( =×             (7.21) 

We can verify that: 

.

,matrix) Spectral(

00
0

0
00

 

2
n

2
2

2
1

IMΦΦ

ΩKΦΦ

=





















==

T

T

ω

ω
ω









      (7.22) 

Transformation for the displacement vector: 

1 1 2 2 n nz z z= + + + =u u u u Φz ,        (7.23) 

where  





















=

)(

)(
)(

2

1

tz

tz
tz

n



z
  

are called the principal coordinates. 
Substitute (7.23) into the dynamic equation (7.8) and obtain: 

( ).t+ + =MΦz CΦz KΦz f     

 Pre-multiply this result by ΦT, and apply (7.22): 
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( ),tφ+ + =z C z Ωz p                                  (7.24) 

where φ α β= +C I Ω  if proportional damping is applied, and ( )T t=p Φ f . 

 If we introduce modal damping: 

  




















=

nnωξ

ωξ
ωξ

φ

20

20
002

22

11







C
,    (7.25) 

where iξ  is the damping ratio at mode i, Eq. (7.24) becomes: 

),(2 2 tpzzz iiiiiii =++ ωωξ        i = 1, 2, …, n.    (7.26) 

Equations in (7.24) with modal damping, or in (7.26), are called modal equations.  These 
equations are uncoupled, second-order differential equations, which are much easier to solve 
than the original dynamic equation which is a coupled system. 

To recover u from z, apply transformation (7.23) again, once z is obtained from (7.26). 
 

Notes: 

• Only the first few modes may be needed in constructing the modal matrix Φ (that is, Φ 
could be an n×m rectangular matrix with m<n).  Thus, significant reduction in the size of 
the system can be achieved. 

• Modal equations are best suited for structural vibration problems in which higher modes 
are not important (that is, for structural vibrations, but not for structures under impact or 
shock loadings). 

 

V. Frequency Response Analysis 
 Frequency response analysis is also called harmonic response analysis, when the applied 
dynamic load is a sine or cosine functions. In this case, the equation of motion is: 

Harmonic loading

sin tω+ + =Mu Cu Ku F 



                            (7.27) 

A. Modal Method 
In this approach, we apply the modal equations, that is: 

22 sini i i i i i iz z z p tξ ω ω ω+ + =  ,   i = 1, 2, …, m.         (7.28) 

These are uncoupled equations. The solutions for z are in the form: 
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),sin(
)2()1(

)(
222

2

i
iii

ii
i tptz θω

ηξη

ω
−

+−
=          (7.29) 

where 

2

i

2arctan ,  phase angle;
1

;

,  damping ratio.
2

i i
i

i

i

i i
i

c i

c c
c m

ξ ηθ
η

η ω ω

ξ
ω

 = − =

 = =


 

The response of each mode iz  is similar to that of a single DOF system. Once the natural 
coordinate vector z is known, we can recover the real displacement vector u from z using 
Eq. (7.23). 
 

B. Direct Method 
In this approach, we solve Eq. (7.27) directly, that is, compute the inverse of the 

coefficient matrix, which is in general much more expensive than the modal method. 

Using complex notation to represent the harmonic response, we have i te ω=u u  and 
Eq. (7.27) becomes: 

2iω ω + − = K C M u F       (7.30) 

Inverting the matrix 2iω ω + − K C M , we can obtain the displacement amplitude vector u . 

However, this equation is expensive to solve for large systems and the matrix 2iω ω + − K C M  

can become ill-conditioned if ω is close to any natural frequency ωi of the structure. Therefore, 
the direct method is only applied when the system of equations is small and the frequency is 
away from any natural frequency of the structure. 

 

VI. Transient Response Analysis 

In the transient response analysis, also called dynamic response/time-history analysis, we 
are interested in computing the responses of the structures under arbitrary time-dependent 
loading (Figure 7.8). 
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f(t)

t
 

(a) 

u(t)

t
 

(b) 
Figure 7.8.  (a) A step type of loading; (b) Structural response to the step loading. 

 
To compute the transient responses, integration through time is employed (Figure 7.9). 

t 0  t 1  t 2                               t n  t n+1                                         

u 1

u 2

u n  u n+1

t

 
Figure 7.9.  Computing the responses by integration through time. 

 

We write the equation of motion at instance nt , n = 0, 1, 2, 3, ⋅⋅⋅, as: 

u(t) 
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.nnnn fKuuCuM =++         (7.31) 

Then, we introduce time increments:  ∆t=tn+1-tn, n=0, 1, 2, 3, ⋅⋅⋅, and integrate through the time. 
There are two categories of methods for transient analysis as described in the following 

sections. 
 

A. Direct Methods (Direct Integration Methods) 
Central Difference Method: 

Approximate the velocity and acceleration vectors by using finite difference: 
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Dynamic equation becomes, 
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11112 nnnnnnn tt
fKuuuCuuuM =+
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
 −

∆
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which yields 

)(1 tn FAu =+          (7.33) 

where  
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( ) ( )

2

12 2

1 1 ,
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2 1 1( ) .
2n n n
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t
tt t −
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F f K M u M C u
 

We compute un+1 from un and un-1, which are known from the previous time step. The solution 
procedure is repeated or marching from ,,1,,1,0  +nn tttt  until reach the specified maximum 
time. This method is unstable if ∆t is too large. 

Newmark Method: 
We use the following approximations: 
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 (7.34) 

(7.32) 
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where β and γ  are chosen constants.  These lead to the following equation: 

)(1 tn FAu =+         (7.35) 

where 

).,,,,,,,,()(

,
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1

1

2

nnnn tft
tt

uuuMCfF

MCKA

∆=
∆

+
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+=

+ βγ
ββ

γ

 

This method is unconditionally stable if 
12 .
2

β γ≥ ≥  

For example, we can use 1 1,  
2 4

γ β= = , which gives the constant average acceleration method. 

Direct methods can be expensive, because of the need to compute A-1, repeatedly for each 
time step if nonuniform time steps are used. 
 

B. Modal Method 
In this method, we first do the transformation of the dynamic equations using the modal 

matrix before the time marching: 

),(2

,)(
1

tpzzz

tz

iiiiiii

m

i
ii

=++

Φ== ∑
=

ωωξ 

zuu
            i = 1,2,⋅⋅⋅, m.    (7.36) 

Then, solve the uncoupled equations using an integration method.  We can use, for example, 
10% of the total modes (m =  n/10). The advantages of the modal method are as follows: 

• Uncoupled system; 

• Fewer equations; 

• No inverse of matrices; 

• More efficient for large problems. 
However, the modal method is less accurate if higher modes are important, which is the 

case for structures under impact or shock loading. Table 7.2 summarizes the advantages and 
disadvantages of the direct and modal methods for transient response analysis. 
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Table 7.2. Comparisons of the methods 

Direct Methods Modal Method 

• Small models 

• More accurate (with small ∆t) 

• Single loading 

• Shock loading 

• … 

• Large models 

• Higher modes ignored 

• Multiple loading 

• Periodic loading 

• … 

 

Cautions in Dynamic Analysis 

• Symmetry model should not be used in the dynamic analysis (normal modes, etc.) 
because symmetric structures can have non-symmetric modes. However, symmetry can 
still be applied in creating the FEA model of a symmetric structure. 

• Mechanism or rigid body motion means ω = 0.  Can use this to check FEA models to see 
if they are properly connected and/or supported. 

• Input for FEA: Loading F(t) or F(ω) can be very complex and data can be enormous in 
real engineering applications (for example, the load data for a car) and thus they often 
need to be filtered first before being used as input for FEA. 

 

Example 7.2: 

 
Figure 7.10.  FEA model of a front bumper and supporting brackets. 
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 Figure 7.10 shows a front bumper and the supporting brackets in a car. The model was 
applied to study the dynamic responses of the bumper. Shell elements were used for this study 
and the natural frequencies and vibration modes were obtained first. Figure 7.11 shows the first 
mode of the bumper when it is constrained at the bracket locations. The frequency response of 
the bumper was also analyzed using the same FE model, as shown by the red curve in 
Figure 7.12 and with the acceleration of the two brackets as the input. Several modifications of 
the bumper design were also studied with the goal to increase the base natural frequency (for 
example, from below 30 Hz to above 35 Hz) and to reduce the magnitudes of the frequency 
responses. The improved responses are shown by the other three curves in Figure 7.12. 

 
Figure 7.11.  The first vibration mode of the bumper. 

 

 
Figure 7.12.  Frequency response of the bumper from 0 to 50 Hz. 

 

Reference Model   
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Example 7.3: 
One of the most interesting applications of the dynamic analysis with FEA is to conduct 

crash analysis and virtual drop tests of various products. The most popular FEA software for 
such analyses is the LS-DYNA package from Livermore Software Technology Corporation 
(LSTC). Figure 7.13 is an example of crash analysis of a car using LS-DYNA. Figure 1.4 is an 
example of drop test simulation of a soda can, also using LS-DYNA. 
 

 
Figure 7.13.  Car crash analysis using LS-DYNA (from LSTC website www.lstc.com). 

 
 More information about how to perform the impact analysis and drop test using the 
dynamic FEA, especially the software LS-DYNA, can be found from the LSTC website and the 
documents with the LS-DYNA software package. 
 

VII. Summary 

 In this chapter, we first reviewed the equation of motion for both single DOF and 
multiple DOF systems and discussed how to compute the mass and damping matrices in the FEA 
formulations. Then, we discussed the methods for solving normal modes, harmonic responses, 
and transient responses for structural vibration and dynamic problems. The advantages and 
disadvantages of the direct method and modal method are discussed. Several examples of 
vibration and dynamic analyses are also discussed to show the applications of the FEA in 
vibration and dynamic analyses. 
 

VIII.  Problems 

Problem 1. For the cantilever beam studied in Example 7.1, apply more beam elements and 
investigate the convergence of the FEA solutions for the first ten natural 
frequencies and normal modes of the beam. 
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Problem 2. For a square plate with edge length = 1 m, thickness = 0.005 m, Young’s modulus 
E = 70 GPa, Poisson’s ratio υ = 0.3, and mass density ρ = 2800 kg/m3, find the 
first five natural frequencies and normal modes using the FEA when the plate is: 
(a) Clamped at the four edges; 
(b) Simply supported at the four edges; 
(c) Free at the four edges (not supported). 
Study the convergence of your FEA results and discuss the effects of the support 
on the natural frequencies of the plate. 

Problem 3. A fuel tank, with a total length = 5 m, diameter = 1 m, and thickness = 0.01 m, is 
shown below. Using the FEA, find the first ten natural frequencies and 
corresponding normal modes, when: 
(a) The tank is not supported at all; 
(b) The tank is constrained along the circumferences in the radial directions at the 

two locations 1 m away from the two ends. 

 
Carefully build your FE mesh (using shell elements) so that the symmetry of the 
tank is reserved and the boundary conditions in part (b) can be applied readily. 
Assume the tank is made of steel with the Young’s modulus E = 200 GPa, 
Poisson’s ratio υ = 0.3, and mass density ρ = 7850 kg/m3. 
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Chapter 8.  Thermal Analysis 
 In this chapter, we will discuss briefly the thermal analysis using the FEA. Thermal 
stresses due to changes of the temperatures are common in most engineering systems, such as 
cars, airplanes, bridges, electronic devices, and many consumer products.  
 The two main objectives in thermal analysis are: 

• Determine the temperature field (steady state or unsteady state); 
• Determine the thermal stresses in structures due to the temperature changes. 

 

I. Temperature Field 

For the temperature field in a 1-D space, such as a bar (Figure 8.1), we have the 
following Fourier heat conduction equation: 

  
x
Tkfx ∂

∂
−= ,    (8.1) 

where, 
 fx = heat flux per unit area, 
 k = thermal conductivity, 
 T = T(x, t) = temperature field. 
 
 
 
 

Figure 8.1.  The temperature field T(x, t) in a 1-D bar model. 
 
 For 3-D case, we have: 
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where, fx, fy, fz = heat flux in the x, y and z direction, respectively. In the case of isotropic 
materials, the conductivity matrix is: 
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 The equation of heat flow is given by: 

T(x, t) 

x 
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in which, 
 qv = rate of internal heat generation per unit volume, 
 c = specific heat, 
 ρ = mass density. 

For steady state case ( 0=∂∂ tT ) and isotropic materials, we can obtain: 

  vqTk −=∇2 .    (8.5) 

This is a Poisson equation, which needs to be solved under given boundary conditions. 
 Boundary conditions for steady state heat conduction problems are (Figure 8.2): 

  ,TT =    on TS ;    (8.6) 

  ,TQ k Q
n

∂
≡ − =

∂
 on qS .     (8.7) 

Note that at any point on the boundary qT SSS = , only one type of BCs can be specified. 

 

x 

y 

ST 

Sq 

n 

 
Figure 8.2.  Boundary conditions for heat conduction problems. 

 

Finite Element Formulation for Heat Conduction: 
 For heat conduction problems, we can establish the following FE equation: 

  qTK =T        (8.8) 

where, 
 KT = conductivity matrix, 
 T = vector of nodal temperature, 
 q = vector of thermal loads. 
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 The element conductivity matrix is given by: 

  ∫=
V

T
T dVΚBBk .      (8.9) 

 This is obtained in a similar way as for the structural analysis, that is, by starting with the 
interpolation eT NT=  for the temperature field (with N being the shape function matrix and Te 
the nodal temperature). Note that there is only one DOF at each node for the thermal problems.  
 For transient (unsteady state) heat conduction problems, we have: 

  0≠
∂
∂

t
T . 

In this case, we need to apply finite difference schemes (use time steps and integrate in time), as 
in the transient structural analysis, to obtain the transient temperature fields. 

 

II. Thermal Stress Analysis 

 To determine the thermal stresses due to temperature changes in structures, we can 
proceed to: 

• Solve Eq. (8.8) first to obtain the temperature (change) fields. 
• Apply the temperature change ΔT as initial strains (or initial stresses) to the structure to 

compute the thermal stresses due to the temperature change. 
 

 
 
 
 
 

 
Figure 8.3.  Expansion of a bar due to increase in temperature. 

 

1-D Case: 
 To understand the stress-strain relations in cases of solids undergo temperature changes, 
we first examine the 1-D case (Figure 8.3). We have for the thermal strain (or initial strain): 

  To ∆= αε ,       (8.10) 

in which, 

α  = the coefficient of thermal expansion, 

At temperature T1 

At temperature T2 

εo 
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12 TTT −=∆  = change of temperature. 

 Total strain is given by: 

  oe εεε +=        (8.11) 

with eε  being the elastic strain due to mechanical load. 

 That is, the total strain can be written as: 

  TE ∆+= − ασε 1 ,      (8.12) 

Or, inversely, the stress is given by: 

  )( oE εεσ −= .       (8.13) 

 

Example 8.1:  
 Consider the bar under thermal load T∆  as shown in Figure 8.3. 

(a) If no constraint on the right-hand side, that is, the bar is free to expand to the 
right, then we have: 

 0,0, === σεεε eo , 

 from Eq. (8.13), that is, there is no thermal stress in this case! 
(b) If there is a constraint on the right-hand side, that is, the bar can not expand to the 

right, then we have: 

  TEToe ∆−=∆−=−== ασαεεε ,,0 , 

 from Eqs. (8.11) and (8.13). Thus, thermal stress exists! 
 From this simple example, we see that the way in which the structure is constrained has a 
critical role in inducing the thermal stresses. 
 

2-D Cases: 
 For plane stress, we have: 
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 For plane strain, we have: 
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in which, ν  is the Poisson’s ratio. 

 

3-D Case: 
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Observation: Temperature changes do not yield shear strains. 
 In both 2-D and 3-D cases, the total strain can be given by the following vector equation: 

 oe εεε += .         (8.17) 

And the stress-strain relation is given by: 

 )( oe εεEEεσ −== .        (8.18) 

 

Notes on FEA for Thermal Stress Analysis: 

• Need to specify α  for the structure and T∆  on the related elements (which experience 
the temperature change). 

• Note that for linear thermoelasticity, same temperature change will yield same stresses, 
even if the structure is at two different temperature levels. 

• Differences in the temperatures during the manufacturing and working environment are 
the main cause of thermal (residual) stresses. 

 

Example 8.2: 
First, we study a heat sink model taken from Ref. [8] for thermal analysis. A heat sink is 

a device commonly used to dissipate heat from a CPU in a computer. In this heat sink model, a 
given temperature field ( 120T = ) is specified on the bottom surface and a heat flux condition 

( 0.2TQ k
n

∂
≡ − = −

∂
) is specified on all the other surfaces. The 20-node brick elements are used 

and the FE mesh shown in Figure 8.4 has 127,149 nodes. This mesh for the volume was obtained 
by extruding the cross section meshed with quadrilateral area elements so that a mapped mesh 
was obtained. The computed temperature distribution on the heat sink using ANSYS is shown in 
Figure 8.5. The cooling effect of the heat sink is most evident. 
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Figure 8.4.  A heat-sink model used for heat conduction analysis. 

 
 

 

Figure 8.5.Computed temperature distribution in the heat-sink. 
 

Example 8.3: 
 Next, we study the thermal stresses in structures due to temperature changes. For this 
purpose, we employ the same model of a plate with a center hole (Figure 8.6) as used in Chapter 
3 and Chapter 4 to show the relation between the thermal stresses and constraints. We assume 
that the plate is made of steel with the Young’s modulus E = 200 GPa, Poisson’s ratio ν = 0.3 
and thermal expansion coefficient α = 12x10-6 1/°C. The plate is applied with a uniform 
temperature increase of 100 °C. 
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Figure 8.6.  A square plate with a center hole and under a uniform temperature load. 

 
 Figure 8.7 shows the computed thermal stresses in the plate under two different types of 
constraints. When the plate is constrained (roller support) at the left side only, the plate expands 
uniformly in both the x and y directions, which causes no thermal stresses (Figure 8.7 (a), note 
that the numbers, ranging from 10-6 to 10-3, are actually machine zeros). However, when the 
plate is constrained at both the left and right sides, the plate can expand only in the y direction 
and significant thermal stresses are induced (Figure 8.7 (b)), especially near the edge of the hole. 

 

 

(a) 
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Figure 8.7.  Thermal (von Mises) stresses in the plate: (a) When the plate is constrained at left 
side only (thermal stresses = 0); (b) When the plate is constrained at both left and right sides. 

 
 In many cases, the changes of the material properties of a structure should be considered 
as well when the temperature changes are significant, especially when the structure is exposed to 
high temperatures such as in an aircraft engine. Cyclic temperature fields can also cause thermal 
fatigue of structures and lead to failures. All these phenomena can be modeled with the FEA and 
interested readers can consult with the documents of the FEA software at hand.  
 

III. Summary 

 In this chapter, we briefly discussed the governing equations for heat conduction 
problems and the FEA formulation. Thermal stresses due to changes of temperatures in 
structures are also discussed and the effects of constraints of the structures on the thermal 
stresses are emphasized. 
 

IV.  Problems 

Problem 1. Study the heat conduction problem in a simple annular region shown below, using 

the FEA. Assume 1, 2, 100, and 200a b
Ta b T Q k
n

∂
= = = = − = −

∂
. Determine the 

temperature field and heat flux in this region and compare your FEA results with 
the analytical solution. 

 

(b) 
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Problem 2. For the same glass cup model studied in Chapter 5, as shown in the figure below, 

determine the thermal stresses when the inner surfaces of the cup experience a 
temperature change from a room temperature of 20 °C to 100 °C, while all other 
surfaces are kept at the same room temperature of 20 °C. Assume that the cup has 
a uniform thickness, E = 70 GPa, v = 0.17 and the coefficient of thermal 
expansion α = 8.0×10-6 ⁄ °C. 

 
 
 
 
 
 
 
 
 
 
 
 

a b 

O 

V 

Sb 

Sa 

40 mm 
15
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m

m
 

30 mm 

Thickness = 4 mm 
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