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An integral equation formulation for finite deflection analysis of thin 
elastic plates is presented, based on general nonlinear differential equa- 
tions which are equivalent to the von K~trm~n equations and by virtue of 
generalized Green identities. Boundary element discretization is applied 
and a relaxation iterative approach is employed to solve the nonlinear 
plate bending problems. A number of numerical examples are given; the 
results of computation are compared with the analytical solutions and 
good agreement is observed. It appears that the approach developed in 
this paper is effective. 
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Much progress has been made in plate bending analysis by 
the boundary element method (BEM). The rapid develop- 
ment of this method stems from the fact that a reduction 
in dimensionality can often be accomplished which may 
result in a significant decrease in computational effort. For 
the linear analysis of thin plates, various integral equation 
formulations have been established and numerical solutions 
have been obtained. 1-9 The applications of BEM to plate 
analysis have also spread to the realms of free vibration and 
instability analysis, 1° time-dependent inelastic analysis of 
transverse deflection, 11 and Reissner's plate model. ~2 The 
authors, however, know of little work which has been done 
on the finite deflection analysis of elastic plates by BEM. 
Tanaka 13 and Kamiya 14-~s are known to have published 
work in this field. Tanaka ~3 studied the application of BEM 
to elastic plate bending problems with large deflections. 
He presented incremental integral equation formulations, 
which are equivalent to the von K~rm~n equations, while 
Kamiya investigated the large deflection of elastic plates 
based on Berger's equation. 16 The theoretical validity of 
Berger's equation is often questioned and its practical use 
is confined to such boundary conditions as the in-plane 
displacements being constrained on the boundary. 
Recently, on the basis of the weighted residual method, 
Kamiya and Sawaki have presented the formulation of 
ffmite deflection analysis of plate by virtue of von 
Karm~in plate equations, ~7 but no numerical results 
have been given. 

In this paper a complete formulation is presented, 
which is different from Tanaka's la and Kamiya's, 17 for 
the finite deflection analysis of thin elastic plates by the 
BEM. Starting with the general nonlinear differential equa- 
tions of finite deflection of plates, which are equivalent 

to the yon Kfirmfin equations (see, for example, formulae 
(1.60) and (1.61) in reference 18, p. 36), the BIE formula- 
tion can be deduced by means of the generalized Green 
identities. These integral equations possess the ability to 
solve the large deflection problem of plates under arbitrary 
boundary conditions (e.g. clamped, simply-supported, 
free, in-plane constrained or unconstrained) and different 
load conditions (e.g. transverse load, in-plane load or a 
combination of these). Under certain boundary conditions, 
some difficulties may occur in the direct use of von K~irm~in 
equations. In the formulations presented here, the effect of 
the interaction of the bending and membrane strains is in- 
cluded in the nonlinear coupling terms. An iterative proce- 
dure is applied to achieve the linearization of the nonlinear 
equations. In the iteration process, the proceeding results 
are substituted into the nonlinear coupling terms to obtain 
the linearized formulations for the current calculation. By 
virtue of discretization, the boundary integral equations 
are transformed into two sets of algebraic equations which 
correspond to the bending and membrane actions respec- 
tively. A relaxation factor has been introduced in the com- 
putation to accelerate the convergence of the iteration pro- 
cess. Numerical examples show that the approach de- 
veloped in this paper is effective to be employed to solve 
the finite deflection problems of plate with various bound- 
ary conditions and load conditions. 

Basic re la t ionships  

The theory of finite deflection of the plate is developed in 
detail in the literature (e.g. reference 18). Basic relation- 
ships are outlined here. Consider a thin elastic plate with 
xl- and x2-coordinate axes corresponding to the planar 
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middle surface of the plate, Figure la. An infinitesimal 
element of the plate, subjected to stresses and loads, is 
portrayed in Figure lb .  The material constants of the 
plate are represented by E (Young's modulus) and v 
(Poisson's ratio) and the bending rigidity D = Eha/12(1 -- v2), 
where h is the thickness of the plate. The fundamental non- 
linear differential equations for large deflection of the 
plate, which are equivalent to von Kfirm~in equations, are: 

DV4w =el + hoi/w,i/ (1) 

o~/,/= 0 (2) 

ei/ = ½(ui. / + u/, i + w.iw./) (3) 

oi /= Ei/kt egt (4) 

where the repeated indices imply the Einstein summation 
convention with the indices i,/, k,/, . . . .  e(1,2). The 
tensor: 

2G0 
= - -  ~ij ~kl + G(~ik  ~il + ~il ~jk) Ei/ki 1 -- 2P 

where ~ = v/(l + v), G = E/2(1 + v) and 6i/is the Kron- 
ecker symbol. 

The bending and twisting moments Mi/can be evaluated 
by the following relationships in terms of the deflection w: 

Mix = - - D ( w , H  + vw,22) 

M22 = --D(w,22 +/)w, i1) ) (5) 
Ml2 =M21 = - D(1 - v) w, 12 

The bending and twisting moments on the boundary F can 
be written as: 

Mn = Munl2 + M22n22 + 2M12nln2 
(6) 

Mnt = (M22 -- Ml l )  nln2 + M12(n~ -- n 2) 

where n i = cos(n, x/) are direction cosines of the outward 
normal n at the boundary. 

The shear forces: 

Qi = Mi/,/ (7) 

On the boundary, the shear force Qn and the Kirchhoff 
equivalent shear force K n can be expressed as: 

(1) linear case: 

an = aknk  ) 

Kn Qn + Mnr, s I (8) 

(2) nonlinear case: 

an  (NL) = aknk  + pkW, kh 

K(NL ) = anqVL) + Mnr, s j (9) 

po-(~)~_ \t : , n  x2 ~ u2 0 M22 

/ t .  , ,.<,,, 
" r%.._ I L.~A~''" 

a M., b 

Figure I Notation 

The boundary conditions are: 

(1) geometrical boundary conditions: 

w = a, w ,, = w,, ,  (I0) 

u i =Ft i (11) 

(2) mechanical boundary conditions: 

Mn = .,ft n K(NL ) = [~(NL ) (12) 

Pi = oi/n/ = Pi (13) 

where (-) means that the value is prescribed on the 
boundary. 

In tegra l  equa t i on  f o r m u l a t i o n  

If the left-hand side of equation (1) is defined by: 

q =q  + hoiiW, ii 

a pseudo-transverse distributed load exists. It implies that 
the actual load ~ is adjusted by the corrector hoi /w, i /due to 
the nonlinearity of large deflection of plates. Thus, equa- 
tion (1) is of the form: 

DV4w = q (1 4) 

The fundamental solution of biharmonic equation is: 

w* = w*(P, Po) = l---r2 In r (1 5) 
8n 

It 
where r = IPoPI, see Figure la. 

Substitution of equation (1 5) into expressions (6) and 
(8) gives the bending moment M* and the equivalent shear 
force K* corresponding to the fundamental solution w*. 

According to equation (14), by means of the Rayleigh- 
Green identity, 6 the integral equation corresponding to the 
nonlinear bending deformation can be obtained in the 
form: 

f [w*K,,  - -  wK*., 
f 

+ w nM* -- w,*Mn] dF + | q w *  d~2 

I2 

Po ~5 f2 (16) 

Po E F (17) 

P 

=,~Dw(Po) 
( ~Dw(?o) 

where the boundary P is supposed to be smooth enough in 
the sense of Lyapunov. 

Let ~ be a vector at a point Po in the domain ~ of the 
plate (see Figure la). But, if the point Po is on the boun- 
dary P, ~ denotes the outward normal. Differentiating both 
sides of equations (16) and (17) with respect to ~, one 
obtains: 

: [w,*~K. - w K *  ~ + w , , , M T ~ -  w,*~M.]  dr  

F 

+ qw*~ dg2 = ' 
½Dw, ~(eo) Po E F (19) 

I2 

Equations (1 7) and (1 9) are the boundary integral equa- 
tions equivalent to the differential equation (1). Once the 
unknowns included in these equations have been deter- 
mined the deflection and rotation at any interior point of 
the domain can be calculated by use of equations (1 6)and 
(]8). 
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Differentiation of equation (18) with respect to r/ 
yields: 

Ow, ~n(Po) = f wK,. + w °M,. 
F 

- w*,,~,~M,,] dr" + fqw* , da 
t l  

Po E ~ (20) 

where rl is another vector at the point P0- 
Equation (20) can be applied to calculate the value of 

w i i at any point in the domain ~2, then, substitution of 
these values into equation (5) provides the bending and 
twisting moments. The second set of boundary integral 
equations, which represents the nonlinear membrane defor- 
mation state, is established as follows: the fundamental 
solution of the two-dimensional elasticity equation is 
that which satisfies the equation: 

OTk, k + 6q(P, Po) = 0 (21) 

here tS i / (P  , Po) is the Dirac ~-function which represents 
a component in the direction x / o f  a unit force acting at 
point P0 in the direction x i. 

In conformity with the linear fundamental solution, the 
strain-displacement and stress-strain relations can be 
written, respectively, as: 

e~. = ½(u~i + ui*i) (22) 

O.*U.-- * -- Eiikl ekl (23) 

As a consequence of the application of the Green 
formula, taking into account equations (3), (4), (22) 
and (23), the following identity can be established: 

f oi/./u* dS2- f * oi/,/ui d~2 

I2 I2 

1 * 

= f Piu? dr"-- f P?ui dr"---;2 f oi/w.iw / d~ (24) 

F P ~2 

Substitution of equations (2) and (21) into (24)gives: 

f Pku*k dr"-- f p*kUk dr"- -~  I O~ktW, kW,, d~2 
F P I2 

ui(Po) Po E ~ (25) 

½ui(Po) Po E r" (26) 

where the boundary r" is smooth and the subscript i indi- 
cates that the direction of the unit force is x i. 

The fundamental solution U*k and P*k for the isotropic 
material is given in reference 19, p. 139, and the expres- 
sion for O*kt is written as: 

1 
• _ [2r, ir, kr, t O i, k l 

4rr(l -- P) r 

+ (1 - -  2P)(~ikr ,  i + 5ilr, k - -  ~klr,  i)] (27) 

where P = v/(l + v), r i = O r / O x  i.  
Equation (26) is the boundary integral equation which is 

equivalent to the differential equations of nonlinear mem- 
brane deformation (2)-(4). 

Differentiating both sides of equation (25), yields: 

O u i ( P o )  _ 
-f f 

aXoj d OXoj d aXo/ 
P F 

1 0 
f O * k l W k w ,  i d~'~ P o ~  ( 2 8 )  

20Xoi o I 
I2 

Considering that the expression (27) includes singularity, 
the derivative of the improper integral: 

f O*klW, kWt da 
f~ 

with respect to the parameter Xoi can be performed as: 

3Xo/ O*klW, kW l d ~  
12 

= w g w I d ~  
,J aXo/ ' ' 
f2 

1 
+ - -  [2(3 - 4p) w, iw, i 

8(1-o) 

+ (4P-- 1) W, kW, g ~i]] 

where: 

f OO*kt - -  w, kw, t d~2 
OXoi 

I2 

(29) 

is a Cauchy-type integral. 
Substituting (29) into (28) and taking into account the 

geometric relationship (3) and the constitutive relationship 
(4), one obtains the membrane stress expression: 

oii(Po) = f DijkPk dP--  f si/kuk dP 
P P 

l I 2 TiiklW, kWt dgZ 

G 
+ 8(1 - 0) (2w'iw'/+ N kw' kSij) Po ~ a (30) 

The expressions for Di/k and Si/k are shown in reference 19, 
p. 130, and Tqkt is of the form: 

dPi/kl(P, Po) 
Ti/k I = r2 (31 ) 

where: 

¢iikt 
G 

- -  [8r, ir ir, kr, i + (1 -- 4P) ~ii ~kl 2rr(l - o) 

- - ( 1 -  2P)(25ijr ' gr l + 2~glr ,ir,i + ~ik 5il 

+ 5il S /k )  - -  2 P ( ~ i k r , / r l  + 8]kr, ir, l 

q- ~itr,  i r, k + ~.il r, i r, k)] (32) 
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therefore, in equation (30) the integral: 

f Tijk/W, kw, t d~.2 = ~(Pi]k! j r2 W. kW, l d~2 
~2 ~2 

is a singular integral, Let L be a circle of  radius p with the 
centre at point Po. It can be proved that the function @iigt 
satisfies the condition: 

f @ijkl dI" 0 

F 

This is the necessary and sufficient condition for the 
existence of  the Cauchy principal value of  the afore- 
mentioned singular integral. 2° 

Thus, the boundary integral equation formulations 
(l 7), (19) and (26) for the finite deflection analysis of  
elastic plates have been obtained. However, these boun- 
dary integral equations cannot be solved by the conven- 
tional technique due to the nonlinear bending and mem- 
brane coupling terms. 

T e c h n i q u e  o f  i te ra t ive  s o l u t i o n  

For the purpose of  solution, an iterative procedure is 
developed. In the process of iteration, the values of  w,q 
and oil obtained in the preceding cycle of iteration are 
substituted into the q =C/+  hoqw.i ] to approximate the 
pseudo-transverse distributed load for the calculation of  
the current cycle. Thus, the nonlinear boundary integral 
equations (17), (19) and (26) are transformed into the 
linear equations for each cycle of iteration. 

After performing the discretization by use of  various 
kinds of  boundary elements (e.g. constant element, linear 
element or high-order element), the boundary integral 
equations (17) and (19) become a set of  algebraic equa- 
tions: 

Ax = q(oi/; w, i/) (33) 

and the equation (26) is transformed into another set of  
algebraic e.quations: 

By = f(w.i) (34) 

In equations (33) and (34) A and B are the matrices of  
coefficients of  the algebraic equations; x a n d y  are the 
unknown vectors of  boundary variables. On the right-hand 
side of  the equation (33), the vector q is determined by o O 
and w# ,  and in (34) the vec to r / can  be found ifw, i is 
known. 

The relaxation iterative procedure can be illustrated as 
follows: suppose that w (IO, o}~, etc. express the Kth ap- 
proximations. The initial values of the iteration (K = 0) 
can be set arbitrarily, for example, o} °) = 0, e(~) = 0. In 
the iteration one can solve for K -- 0, 1, 2, 3 . . . .  : 

( l )  Ax(K+I)= g[o}/K); ~V,(i~3 ] 

to obtain X (K+I), and then to evaluate W (K+I), W, (K+I) and 
w (K+0 in the domain 

, I]  

(2) By(K+I)=f[W!K+I) l 

to f'mdy (K+ 1),and then to calculate u} K+I) and o}~ "+ I). 

The iteration is continued until the change in the cur- 
ent estimate of  the maximum deflection is small enough, 
i.e. until: 

(K+D (35) Wmax -- W(mK)ax I < e 

where e is the convergence tolerance; otherwise: 

= ~(K) ~ } ~ + 1 )  ~ ( K + I ) _ } _  ( l _ _ ~ )  
,i/ ,ii 

where ~ is the relaxation factor, and then continue the 
iteration. 

It is interesting to note that in (33) and (34) the 
matrices A, B and other matrices for the calculation of  all 
values in the domain depend only upon the geometric and 
material parameters of  plates. Once these matrices have 
been formed, they can be stored in the core and used in 
each cycle of  iteration without any change. It can reduce 
the computing time by about three-quarters. 

N u m e r i c a l  e x a m p l e s  

Numerical examples are presented to show the feasibility 
and efficiency of  the proposed approach. In these ex- 
amples constant elements are used. The boundary element 
division and the interior mesh are illustrated in Figure 2. 

Example 1: Clamped circular plate under uniform lateral 
load 

Figure 3 shows the numerical results of  the maximum 
deflection Wma x obtained in this study, which are com- 
pared with those given in reference 21. The error of  
Wmax/h with 20 boundary elements in comparison with 
the analytical solutions is less than 0.60%. 

Example 2: Clamped square plate under uniform lateral 
load 

In addition to the case of  the in-plane immovable 
boundary condition, i.e. the case of  existing constraints 
on the membrane deformations on the boundary, the case 
of  movable boundary condition (without constraints on the 
membrane deformations on the boundary) is also con- 
sidered in this example. Numerical results are shown in 
Figure 4. 

Example 3: Simply supported square plate under uniform 
lateral load 

As in Example 2, immovable and movable edges are 
studied separately. The numerical results obtained and the 
analytical solutions are shown in Figure 5 for comparison. 

In ter ior ,  . . . . . .  , 

mesh o4e ' - ~/# - " 
N Boundary  

b element 

Figure 2 Boundary element division and interior mesh; (a) circu- 
lar plate, (b) square plate 
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Figure 3 
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Figure 5 
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Simply supported square plate (v = 0.3) 

In the case of in-plane movable boundary conditions of 
Examples 2 and 3, the first order approximations given in 
reference 18 are cited for comparison with the present 
results for lack of exact solutions. For the simply supported 
square plate with movable edges, the present results are 
very close to the experimental data. 24 It appears that the 
approach developed in this paper gives more accurate 
results than the first-order approximation. 

The rate of convergence depends upon the appropriate 
choice of relaxation factors. In the above examples, the 

cycles of iteration are, on average, less than 20 with an 
error tolerance e = 0.00005. 

Conclusions 

The effectiveness of the approach developed in this paper 
has been shown by numerical examples. This approach 
appears to be very promising for the finite deflection 
analysis of thin elastic plates with various boundary con- 
ditions and load conditions. 

A p p l .  M a t h .  M o d e l l i n g ,  1 9 8 5 ,  V o l .  9, J u n e  1 8 7  
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