Elastic stability analysis of thin plate by the
boundary element method — a new formulation
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A new boundary integral equation formulation for the elastic stability analysis of thin plate is pre-
sented in this paper. This formulation involves only two kinds of integral equations which are similar
to those employed in the linear analysis of plate bending problems by the boundary element method
and are suitable to plates with arbitrary plan forms and under general boundary conditions or in-plane
load conditions. A new simple boundary element discretisation scheme is established based on these
integral equations. Satisfactory numerical results obtained on a microcomputer with constant elements
clearly show the applicability and efficiency of the approach developed in this paper.
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INTRODUCTION

The boundary element method (BEM), as a new and power-
ful tool of numerical analysis, has aroused the wide atten-
tion of engineers and research workers in various fields. Its
application to the linear analysis of plate bending problems
has been investigated intensively in several papers.!™*® The
subjects of free vibration,! time-dependent inelastic analysis
of transverse deflection,!® and Reissner’s plate model?® have
also been dealt with for plate bending problems. In the field
of finite deflection analysis of thin elastic plate, much
progress has been made in the past few years2™27 For the
elastic stability analysis of thin plate by BEM, however,
only two papers have been published according to the best
knowledge of the author. Gospodinov and Ljutskanov!!
presented an indirect formulation under the condition that
the plate is loaded with uniformly distributed normal forces
p (ie. 0, =0, =constant, 7,, =0 in the domain). Costa
and Brebbia?® developed a direct BEM formulation, with
three kinds of integral equations (five equations altogether),
for the buckling problem of plates under general in-plan
loading and boundary conditions. The numerical results
provided by Costa and Brebbia showed the applicability
and potentiality of BEM for the plate stability analysis.
Based on the previous work?*7% this paper presents a
new boundary integral equation formulation for the elastic
stability analysis of thin plate. This formulation needs only
two kinds of integral equations (three equations altogether)
which are similar to those employed in the linear plate
bending problems and can be applied to plates with arbi-
tary plan forms and under arbitrary in-plan load and bound-
ary conditions. A much simpiified direct BEM formulation,
with the above mentioned integral equations, is developed
with constant elements. The dimensions of matrices in this
BEM discretisation can be greatly reduced for plates with
clamped and simply supported edges or their combination,
which makes the stability analysis of plates by BEM more
efficient and practical. Numerical examples of square and
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circular plates under various load and boundary conditions
were studied on a microcomputer, and the results clearly
demonstrated the accuracy and efficiency of the approach
developed in this paper.

BASIC RELATIONSHIPS

The co-ordinate system Ox,x,z (ie. Oxyz) and notations
of some basic quantities are shown in Fig. 1a. Let £ be the
elastic modulus of the material, v the Poisson’s ratio, / the
plate thickness and D = Ex>/12(1 —v?) the bending rigidity.
For concise, the Einstein summation convention is implied
and the range of values of subscripts i, j, &k, /... is from
1to 2.

The relationships of bending, twisting moments M;; and
deflection w can be represented as follows:

in the domain
M;; = —Djjraw (1)
on the boundary
M, =M;in;n; 2)
My = Myjn;t; (3)

here n; = cos(n, x;), t; = cos(¢, x;) and the rigidity tensor
Djjig = D[vd;idgg + (1 — ) . 8;] 4

with 6,; being the Kronecker symbol.
The shear forces can be expressed as:

in the domain

Qi=M;,; (%)
on the boundary

On=Qin; =My ;n; (6)
and the Kirchhoff equivalent shear force is

Kp=0np+ My, (M
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Figure 1. Notations

The fundamental differential equation for the elastic
stability analysis of thin plate can be written as:

DViw= Naoyw ; VpEQ (8)

in which V*= () gy is the biharmonic operator in Ox;x,
co-ordinate system; X the load factor and o;; the membrane
stresses corresponding to external in-plane forces.

The boundary conditions of the plate stability analysis
are:

for clamped boundary I'°

w=0 w,=0 9)
for simply supported boundary I'’

w=0 M,=0 (10)
for free boundary I'V

M, =0 K,=0 (11)
where

reuprsurf=r

INTEGRAL EQUATION FORMULATION

The fundamental solution of biharmonic equation is:
1
w* =w*(P, Po)=—r*Inr (12)
8n

where r=|PoP| (Fig. 1a). w* satisfies the following
equation

Viw* =8(P,Py) Vp€EIR? 13)

here 8 (P, Py) is the Dirac §-function which represents a unit
force acting at point Py in an infinite plate.

Taking equations (8)and (13) into the following Rayleigh-
Green identity:

(b)

J (wVw* —w*V4w) dQ

Q

1
=BJ‘[W*K,,—WK: +w My —whM,] dT (14)
r

where the boundary I' is supposed to be smooth enough
in the sense of Lyapunov, one can obtain

Dw(Po) =Xh J 0w ;iw* dQ

Q

+ J‘ [W*K,, —wK} + w My —w% M,] dT’
T
VP, EQ (15)

M} and K} are bending moment and Kirchhoff equivalent
shear force corresponding to the fundamental solution w*.

The integral equation (15) involves w ;; = 3>w/dx; 0x; in
the domain. To reduce the order of differentiation of w y,
integrating the domain integral in (15) by parts and noticing
that g;; ; = 0 in €2, one can derive:

JUI-]'W,I']'W* dQ = JOUW:’;]W dQ

2 192

+ jpk(w,kw* —whw) dl' (16)
r

in which py = ox;n; are tractions on the boundary. Substi-
tuting this expression into (15) and taking point Py toward
boundary T give the following kind of integral equations:
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N J o wiw dQ2+NA J.pk(w,kw* —wihw) dl

r

+ J [W*K,, —wK}; +w , M} —wh, M, ] dT

r
~ {DW(PO) vP,EQ (17)
“liDw(Py)  WPyET (18)

Let ¢ denote the outward normal of boundary T" at point
P, (Fig. 1b). Differentiating both sides of equation (18)
with respect to &, one obtains a supplementary integral
equation as follows:

N J 0 wiyw dQ+ A jpk(w,kw’*s —whew) dl’

2 r

+ J WK,—wKy ¢+ w MY —wh M| dI’
I
—iDw (P VP,ET (19)

Thus, the integral equations (17), (18) and (19) for the
elastic stability analysis of thin plate have been established.
This integral equation formulation is not related to the
internal quantities w ;; (/,j = 1,2) introduced in the original
differential equation (8), and therefore eliminates three
integral equation expressions for w ;; in the domain. Equa-
tions (17), (18) and (19) are similar to the integral equations
in linear plate bending analysis by BEM and can be applied
to solve elastic stability problems of plates with arbitrary
plan forms and under arbitrary boundary conditions and
in-plane load conditions.

BOUNDARY ELEMENT DISCRETISATION SCHEME

A boundary element discretisation scheme with constant
elements will be formulated on the bases of integral equa-
tions (17), (18) and (19). This solution scheme can be
further simplified for plates with clamped and simply sup-
ported edges or their combination.

The term p,w  in equations (17), (18) and (19) can be
expressed as:

pkw.kzpnw,n+ptw,t (20)

where p,, and p, are components of traction in the direction
of normal n and tangent ¢ of boundary I' respectively. For
clamped and simply supported boundary conditions (9) and
(10), w , = 0 exactly; but for free boundary condition (11),
w . is not equal to zero everywhere in general case. For the
purpose of avoiding the introduction of new unknown
variable, it is necessary to replace w , with w by means of
interpolation functions in the BEM formulation.

Suppose the boundary T is discretised into NV constant
boundary elements; the domain €2 into L cells (meshes),
Fig. 2. For an element, the boundary variables w, w ,, M,
and K, are assumed to be constant and equal to their values
at the mid-point of the element. Therefore w , = 0 approxi-
mately for free edges in this boundary element discretisation.
On each cell the deflection w is also assumed to be con-
stant, equal to its value at the centre of the cell.

By virtue of the discretisation scheme mentioned above,
the two integral equations (18) and (19) will be reduced to
the following algebraic equations:
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[H,Hz]{ :}: [c,cz]{ :1}+ )\[F,Fz]{ :}+ \Cy  (21)

where w, 8, m, k(€ RY) are vectors composed of w, w ,,
M, and K, on the boundary I respectively; y (€IR") is the
vector of w at centres of the internal cells; Hy, H,, G;, G,,
Fy, F, (ER*¥*Y) and C (€ R *%) are relative coefficient
matrices originated from the integrals of known functions
on the boundary elements or internal cells. The integral
equation (17) will be transformed into the following:

w k
y+ [Hman]{ P }z [Gmcnz]{ m}

FAFaFaal{ 1+ ACay  (22)
]

where Hgi, Has, Gai, Gaz, Fai, Faz (EREXY) and
Cq (€IRL*L) are coefficient matrices.

Substitution of the boundary conditions (9), (10) and
(11) into (21) and (22) produces:

Gx = AFx + ACy 23)

where x (€R?") is the vector of unknown boundary vari-
ables with unknown w or K, in the first N components;
matrices GE€ R*¥**V and G, € RE*?N, Matrices F
(ER*™*™N) 4nd F, (€RE*™) take different forms under
different boundary conditions; for examples:

for clamped boundary condition

F=0 Fg=0 (25)
for simply supported boundary condition

F=[0F)] Fg=[0Fq] (20)
for free boundary condition

F=[F.F,] Fq=[FgFg,] (27)

where 0 are null matrices.
Equations (23) and (24) can be combined to form the
following eigenvalue problem:

e elbble, @)

where u=1/x and I (€ IRE*LY is a unit matrix. This equa-
tion is a generalised eigenvalue problem which can be con-
verted to:

DO P S B

The dimension of this standard eigenvalue problem is

(2N + L).
Substituting equation (23) into (24) one can obtain:
(Ca—GaG'C)y+(Fq —GoG™'F) x = py (30)

For the plate clamped on edges, F =0 and Fg, =0, the
above equation reduces to:

(Ca—GaG'C)y =y (31)

The dimension of this eigenvalue problem is L, much lower
than that of problem (29).

For the plate with simply supported edges, F and Fg are
not null matrices, but in the numerical computation of all
the examples with simply supported edges, studied in this
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paper, the matrix (Fg — G G™'F) is a null matrix within
the range of effective numbers in all cases. Therefore, for
plates with simply supported edges, eigenvalue problem
(31) can be solved instead of (29), which will save much
effort of computation. This is an interesting phenomenon
and needs to be further investigated so as to understand the
physical and mathematical meanings behind it.

Thus, the boundary element discretisation scheme with
constant elements has been established based on the integral
equations (17), (18) and (19). For plates under general
boundary conditions, formulation (29) can be utilised; for
plates under clamped and simply supported boundary
conditions or their combination, the more efficient formu-
lation (31) is preferred. In the studies of numerical examples
presented in this paper, the critical force factors A are
determined by the highest eigenvalues ., of eigenvalue
problem (31). For the plate with simply supported edges,
problem (29) is also solved and the results show that its L
eigenvalues are the same as those of problem (31) and
another 2V eigenvalues are zeros.

NUMERICAL RESULTS AND DISCUSSIONS

Numerical examples of square and circular plates under
various boundary and in-plane load conditions were studied
with constant elements to verify the BEM formulation (29)
and (31) described above. The boundary element division
and the interior meshes are portrayed in Fig. 2. All the
numerical computations were performed on the micro-
computer IBM PC.

Numerical results for square and circular plates are
presented in Table 1. For square plate with side length a,
the critical load is expressed by Pe = A m2D/a” and the
number of internal points (i.e. the number of internal cells)
L = (N/4)%. For circular plate with radius R, P, = A\; D/R?
and L =37, 81, 141, 217 when N = 16, 24, 32, 40 respec-
tively. The critical load factors computed in this paper a-e
compared with the analytical solutions and the BEM results
presented in ref. 28, and good agreement is achieved. It
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Figure 2. Boundary element division and interior meshes;
(a) square plate, (b} circular plate

should be noted that the dimension of the matrix in the
final algebraic eigenvalue problem is 3L for the BEM
formulation in ref, 28, but is L for the BEM formulation
in this paper.

The numerical results demonstrate that the BEM formu-
lation developed in this paper is correct and efficient.
Acceptable data, in view of engineering applications, can
be obtained with few constant elements on a microcomputer.
To further improve the accuracy of results, boundary ele-
ment and interior mesh discretisations with higher order
can be introduced, and problems such as the twist moment
discontinuity at corners, which has been neglected in this
paper for its minor effect on solutions away from the
corners, can be taken into account. The distribution of in-
plane stresses, which has been input with the exact solu-
tions of the simple examples, can be first determined in
general cases by using the BEM solution program for two-
dimensional elasticity problems.

As it was expected, the matrices in eigenvalue problems
(29) and (31) are found to be positively definite matrices

Table 1. Critical force factors of square and circular plates under various load and boundary conditions (v = 0.3)
BEM solutions of this paper Ref. 28
Plate Load Boundary (N = 36, Exact
shapes conditions conditions N=16 N=24 N=32 N=40 L =64 values?®
Square pp{x)=—P SS on all edges 4.055 4.039 4.026 4.018 4.13 4.00
plates on edges y = 0,4 C on all edges 10.910 10.622 10.401 10.286 10.51 10.07
Conx=0,a 8.181 8.024 7.900 7.831 8.01 7.80
SSony =0,a
pp=—F SS on all edges 2.028 2.019 2.013 2.009 2.05 2.00
on all edges C on all edges 5.925 5.609 5.479 5416 5.43 5.33
Pn(x)=—Px/a SS on all edges 7.989 7.910 7.871 7.851 8.00 7.80
on edges y = 0,a
Pp(x)=—P(1— 2x/a) SS on all edges 24.643 25.949 25.832 25.727 26.61 25.60
onedgesy =0,a
pyx)=—P SS on all edges 10.600 9524 9371 9.338 9.67 9.34
onedgesy = 0,4 C on all edges 17.994 15.383 14.885 14.742 14.90 14.71
pe() =P Conx=0,a 14.986 13.096 12.748 12.647 1253 12.28
onedges x = 0,a SSony =0,a
Circular Pp=—PF SS on edge 4,745 4.494 4,394 4.342 - 4.20
plates C on edge 15.147 14.958 14.852 14.798 - 14.68
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by the numerical computation (all eigenvalues are real
positive numbers). Therefore simple methods for eigenvalue
calculation, such as the vector iteration method, can be
applied, which will take much less CPU time than the
HQR method employed in studies of the above examples.

CONCLUSIONS

It can be concluded that the integral equation formulation
developed in this paper is effective and efficient for the
elastic stability analysis of thin plate with arbitrary plan
form and under arbitrary load and boundary conditions.
The boundary element discretisation scheme based on this
formulation with constant elements is shown to be appli-
cable and especially efficient for plates with clamped and
simply supported edges or their combination.
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