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Some advances in boundary integral methods
for wave-seattering from cracks

G. Krishnasamy, F. J. Rirzo, and Y. J. Lin, Champaign, llinois, US.A,

Summary. This paper deals with some recent and ongoing research involving scattering of time-harmonic
acoustic and elastic waves from eracks and cracklike thin scatterers. The character and treatment of the
singular integral equations invalved in the lormuolation and solution of such problems are discussed and
a number of pumerical examples are presented.

I Introduction

Scattering of elastic waves from arbitrarily — shaped cracks in a lincar clastc solid 15 4 topic of
continuing interest in solid mechanics, and it is of fundamental importance in the nondestrucuyve
evaluation of materials by ultrasonic methods. Formulation of scatiering problems in lerms of
boundary integrals is popular for a number of reasons; these include the atality of such integrals
to express the near and lar scattered fields with accuracy and stress intensity factors with ease and
simplicity. The boundary element method of numerical solution of boundary integral equations,
with elements confined o the crack surlace, provides an attractive approach to practical
problems, especially in three dimensions.

There are two main models for cracks, namely, (1) the mathematical model where the two
surfaces of the crack (hefore loading) occupy the same place. and (1) a thim-crack model where the
twor surlaces are distinet but close logether. This paper discusses the degeneracy in conventional
boundary integral methods for case (1) and the near-degeneracy associated with case (i1), and it
suggests certain strategies Lo surmount these degeneracies.

A scalar counterpart of the crack problem involves scattering of acoustic waves [rom
arbitrarily —shaped, vanishingly —thin rigid screens icf. [1], [2]). All of the essential ideas and
methods involved in the crack problem, that are to be emphasized in this puper, pertain to this
scalar problem. Thus, for ease in presentation, in the pext section we formulate the scalar version
of the crack problem which leads to consideration of a hypersingular integral equation. Then. we
discuss a regularization strategy to do computations with this equation followed by some
numerical examples in Sect, 4, In Sect, 5 we do consider the vector elastodynamic problem of
scattering from a crack and present some data for an elliptical crack. Finally, we consider some of
the issues involved with the thin-crack model, suggest a formulation strulegy, und present some
data for several scalar thin-body scattering problems,

2 Formulation

Consider a ime-harmonic acoustic wave incident upon u thin sereen as shown in Fig. 1. We are
mlerested in the scattered feld which satisfies the Helmhboltz equation
PR+ otu, = 0. (1)
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Ahove, w, is the scattered acoustic pressure which satisfies the radiation condition at infinity,
¢ is the wave speed, m is the frequency, and F is the usual “del” operator in three dimensional
space. On the scatterer surface S, g, + ¢' = g with g, = du,/dn and g' = du'}in, where «' is the
incident pressure and n is the normal to § (Fig. 1). Incident plus scattered hield equals total
field (et. seq.).

To find the scattered field, it is expedient to formulate the above problem in terms
of integral equations defined on the scatterer surface. In Fig. 2 is shown a thin scatterer
S with two surfaces §° and 57 identified between which there is a small but (as yet)
nonzere volume, A familiar application of Green's theorem (cf [3], [4L [S]. [6], [T]) viclds the
identity
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where u and ¢ are the total fields; £ is a point on or off of Sy, x is the location of element of
integration dS, G is the free-space Green's function e™ {{dxr), where k = w/e and r = [ — x|,
and # = 1/2 if & is on 8t (at a point &, with a well defined langent plane) or 2= 11f £ is off
of § but in the acoustic medivm (dependence of all quantities on the frequency e is understood).
Now if the scatterer is rigid lor example, such that ¢ = 0, Eq. (2) with 2 = 1/2 is a boundary
integral equation in the unknown u on Sy, Once this equation is solved!, formula (2) (with
z = 1}, becomes the generator of u at any other § as desired, to complete the solution to the
seattering problem.

Next, suppose that the surfaces 8 and 8~ approach each other such that the volume between
the surfaces goes to zero (forming a crack in the vector case). Then, there is difficulty with the
solution process based on (2) as described above, Specifically, before the limit as S goes 10 §7,

C > Fig. 2. Thin cracklike scatiersr

" Unigue solution to (2} at certain discrete frequencies is impossible, see eg [8] [9], [10]. However,
mudifications of {2) which guarantee s unigque solution at all frequencies are available. Nevertheless, for
present purposes it is sufficient to note that this uniquensss difficulty disappears as the volume enclosed by
5, goes Lo zero.
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consider the equation
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and another one ust lke it except with £, replaced §,”. Fach cguation represents
an application of (2) (with 2= 1/2) with collocation points & =&" and &,
respectively. Because in the limit Glx, £} has identical values for points on §° and
S, and because o the Timit AGix', &/fn(x™| = —dGilx . £ol/dnlx”] as well, both
Eqs. (3) and its counterpart with £, = §,” are identical. and each in the limit have the
form

1
= ) + -;x i"ﬂ' Aulx) dS(x) = [G[_r. E) Eglx) dS1e) + i€, 4)
) nx

g 5

inwhich 4 = u' — u~ isthe jumpin pressure across 8 ' and § |, Ygisthesumg™ + g ,and §is
either surface 5™ or 87, Tt is apparent now that if, for a rigid scatter, ¢~ = ¢~ = 0, and therefore
Xy =0, both Au and Xu are unknown in (4) such that (4) alone is insulficient to obtain either, and
the previously described solution process breaks down.

What is usually done to overcome this degeneracy is to take the normal derivalive of identity
(2), carefully obtain the form ol this new identity corresponding to §; "or £, as with (3), to
obtain in the limit the counterpart of {4), ic,
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bt e () = 5
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Now setting Ag and Zg = 0 in (5), by virtue of the (rigid) boundary condition, solve (3] for Au
such that Zu across 57 and § may be oblained easily from (4). To obtain u off of the scatlerer,
me.g. in the far field, the proper version of (2) (with & = 1) Lo be used is

g = —I D e asta) + w0 "

The use of (5) with (6) and (4) works well for the infinitesimally — thin screen scatterer,
References [11], [12], [13], [14], [L5] and [16] arc merely & sample of the recent work based on this
solution strategy. An inferesting feature of this stralegy is the presence of the term with the
‘double dash’ through the integral sign in (3). The kernel of this integral involves the second
derivative of the Green's function and thus is of the order 1,7 By contrast, the kernel involving
the first derivative of the Green's function is of order 1/r?, whereas the Green's function itselfl is of
order 1/r. These kernels are termed hypersingular, strongly or Cauchy singular, and weakly
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singular, respectively; und the double dash, single dash., and absence ol any dash, re-
spectively, are intended to signify the special meanmings to be atlached to hypersingular
and strongly singular ntegrals (cf. [17—26]). Indeed, quite a body of literature huas arisen
recently i connection with hypersingular integrals which appear, as described. in the
cruck problem as well as other contexts (eg [27—29), [10]) The strongly singular and
weakly singular integrals, however, are comparatively more familiar in boundary integrals
analysis.

3 Regularization

There exists 4 variety ol options [or regularization (e.g. [30—33]), ie. lowering the singularity
of the integrand of hypersingular integrals before computation is attempted, or for compu-
ting them more directly (see the survey in [33]L Here we use and brefly descnibe only the
regularization process involving a two-term Taylor series expansion, as treated more fully in
[15]

Il Auis expanded in a Taylor serics about &, and the first two terms are subtracted from du in
the hypersingular integrand in (5) and added back, it is possible, with the aid of Stokes’ theorem,
to rewrite the hypersingular integral in (5) in the form
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wherein C is the {line) boundary of § and G* is the static Green's [unction. The subtraction of &*
from ¢ as shown is done for convemence such that the kernel in most terms is independent of
[requency. Mo integral in (7) is more than weakly singular, Conventional boundary element
methods of solving the integral equations, in use for years, may be used with proper care given Lo
the smoothness demanded by (7) [34],
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4 Nuomerical examples

For illustration, consider a penny-shaped rigid scatterer. The scatterer surface §' or §7 is
discretized into 25 elements using three rings and 8 radial lines with one (circular) element in the
middle, These elements used to describe the scatterer are the standard conforming quadraltic
glements [33], but the jump in potential. Au, on the scatterer surface is approximated by
nonconforming elements, where the collocation points are away from the element edpes and have
sufficient smoathness for (7) o exist. The square-root behavior of the solution along the crack
edges is built into the elements at the crack edge, The Aw for inclined waves atka = Jand ka = 4
at 30° and 45" with the normal, respectively, is as in Figs. 3 and 4. These data are verified by
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Fig. 3, Scattering due fo plane wave inclined ar 307 w the normal and fa = 3.0
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Fig. 4. Scattering due 1o plane wave inclined at 45 1o the normal and ka = 4.0
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solving the problems aguin nsing the essentially independent thin-hody formulation as described
1 Sect. 6. Also. for normally incident waves, the data (see [15]) compare well with the analytical
solution,

5 Vector crack problem — examples

The scattering ol elastic waves from an arbitranly shaped crack can be ¢xpressed as an integral
equation,
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where Au; 15 the crack opening displacement across the crack surfuce, ¢ is the traction due to the
incident field, G, is the free-space, ime-harmonic. elastodynamic Green's function and G, is
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Fig 5. Normalized crack opening displacement for elliptical crack, La = 440, No. of elements = 25
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Fig. 6. Normalived crack opening displacement [or elliptical erack, k.a = 5.0, No. of elements = 25

the static equivalent of Gf, otherwise referred to as the Kelvin solution (ef. [15]). Again € 15 the
line which encloses the crack. For flat arcular or elliptical cracks, the above eguation can be
sulved for du. When a plane wave al ka = 4.0 and ko = 3.0 sirikes an elliptical crack of aspect
ratio 2 at normal incidence, du,. the crack opening displacement normal to the crack surface is
presented in Figs. 5 and 6 In these figures the crack opening displacement is plotted along the
major and minor axis and radial lines at 15 degree intervals between the major and minor axis.
These data compare well with those presented io [14]

6 Thin scatterer (cracklike) model

We return now to the scalar problem of scattering of acoustic waves, but here we examine
a dilferent scatterer, namely, a thin rigid scatterer of small but linite thickness. Our intention is to
come 1o grips with the two main difficulties associated with the thinness of such shapes. These are
{a) ill-conditioning of the formulation (i.e. (3) and its counterpart with &, replaced by £, ) which
was shown to degenerate in the limit as the two scatlerer surfaces come together, and (b) dilficulty
m obtaining avcurate values of the integrals over boundary elementls which are very close
together across the small thickness. Such problems are important in a variety of cases where the
arbitrarily — thin or true-crack maodel is inappropriste. They are useful also in testing the limits
of applicability of the simpler true-crack model.

Therefore, to begin, consider the normal derivative of identity (2) again but now applied o the
thin shape of Fig 2 with specific reference Lo {collocation) points £, as wrilten helow
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The combination of (%) with formula (3) has very different propertics compared with the
combination of (3) with its counterpart referring to point &, . Indeed, and it is a key observation
for thin-hody problems, that a formulation imvelving a conventional boundary intepral equation
{e.z. (31} collocated on one surface of a thin shape and with a hypersingular boundary integral
equation [e.g. (9)) collocated on the other surface is nondegenerate in the limit and therefore well-
conditioned for thin shapes. This observation takes care of difficulty (a) above.

Difficulty (b} remains [or thin shapes regardless of the formulas (conventional or hypersingu-
lar) used. However, il oo can be surmounted, and the speciiic means for doing so is addressed in
another paper [33] which deals in more detail with the formulation of the thin-body problem as
well as more detail with numerical issues (see also [36]). Tt suffices here to mention that the key
ingredient 1n developing our integration scheme, accurate even for closely-parallel boundary
elements, involves reduction of all integrals to weakly smgular form, This is accomplished
throvgh the 1wo-term Taylor series expansion for the density [unctions in the highly singular
integrands, as mentioned in Secl. 3,

7 Thin scatterer — cxamples

Consider the problem of scattering of acoustic waves by a thin rigid screen of thickness 2h as
shown in Fig. 7. Waves ol various frequencies and angles of incidence ¢ impinge upon the
scatterer and we are interested in the scattered feld for various thicknesses b Our purpose is to
examing the conditioning of our equations and the accuracy of our solution as h gets small. In the
process we can compare differences between the thin body and the arbitranily — thin model of the
scatterer, To do the computations, we discretize both surlaces 57 and 87 of the circular scallerer
with elemenis as used lor only one surface in Sect. 4,

In Fig. 8 is shown the magnitude of the scattered field for ka = 1, at a distance of 5 radii, as
a function of 0, for a normal-incident wave, for various values ol h compared with the ‘arbitrarily’
thin h = 0 model. The formulation is well conditioned at the values ol A shown as well as smaller
valuesdown toh = 10 7, Note for values of fi less than about 0.1, there is little difference with the
h = (0 model. We should mention that the i = (0 model has built in the square root singularity at
the cdges whereas the finite thickness model does not.

Therelore, for h = 0.1 we examined the backscatter and specular scatter as a funchon of
incident-wave angle at various values of ke and compared with the h = 0 model at various
distances from the crack, Specilic data are not shown but in essence we found that differences
with the h = 0 model decrease with distance und with higher frequency.

We close Lhis section with the observation that if the thin-body shape is an inclusion, e
a region of [luid of (perhaps) different properties rather than a rigid inclusion, it is possible to
solve this problem using a [ormulation with the same good properties as found above. Indeed, as
a check, we modelled a thin melusion with the same properties as the sarrounding ficld, and
obtained the homogeneous (i.c. no scalterer) solution, as expected.

: Fig. 7. Edge view of thin circular rigid scatterer
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Fig. 8, Scattering for a normal incident wave, N, of elements = 10, N, of nodes = B0, ka — L0

8 Discassion

Tn this paper we have attempted to digest some of our recent and ongoing research with integral
methods for scattering [rom eracks in solids and cracklike shapes in acoustic fluids. Specifically,
we indicated the degeneracy in the conventional formulation for cracks or arbitranly — thin
scatlerers and presented an appropriate remedy involving hypersingular integral equations,
Drata for some example problems for scalar and vector waves are presented following a particulur
strategy [or dealing with (regularizng) the hvpersingular integrals. Then the problems associated
with scattering from thin bodies or cracklike scatterers with associated near degeneracy was
addressed. Here we suggested a formulation based on collocation with conventional equations
on one surface of the thin body and collocaton with hypersingular equations on the other
surface. Such a formulation has excellent propertics and an llustrative example involving
acoustic scattering from a thin penny-shaped rigid scatterer was presented for verification.

In closing we should point out some recent work [37 — 39] for scattering from multiple objects
which involves a series approach. 1n this work the influence of the interactive scattering between
scatterers is associated with the number of terms in a series. Thus, truncating the series neglects
higher order interactive scatlering. The method is shown [39] 1o be elfective and ellicient for
4 number of shapes, incloding those which are cracklike, even though the formulation invalves
conventional integral equations (as supposed to hypersingular) only,

All of these treatments of scattering from cracks, cracklike shapes and other shapes, in fluids
or solids may be regarded as ways of solving the so called forward problem, i.e. the prohlem
where the scatlerers are known and the scattered held is unknown. The more difficult problem,
und the one more technologically significant in nondestructive evaluation and target identifica-
ton and characterization, is the inverse problem, wherein the object doing the scattering is
unknown, Tt is well understood, however, that almost all strategies for the inverse prohlem
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require accurale data and efficient schemes for solving the forward problen. Indeed, boundary
wntegral methods are already used in that capacity e.g. [40], [41]. Hopelully, the work developed
ahove may vltimately find its way as a valued ingredient in such inverse problem strategies.
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