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The composite boundary integral equation (BIE) formulation, using a linear combination of the 
conventional BIE and the hypersingular BIE, emerges as the most effective and efficient formula for 
acoustic wave problems in an exterior medium which is free of the well-known fictitious eigen- 
frequency difficulty. The crucial part in implementing this formulation is dealing with the hypersingular 
integrals. Various regularization procedures in the literature give rise, in general, to integrals which are 
still difficult and/or extremely time consuming to evaluate or are limited to the use of special, usually 
flat, boundary elements. In this paper, a general form of the hypersingular BIE is developed for 3-D 
acoustic wave problems, which contains at most weakly singular integrals. This weakly singular form 
can be derived by employing certain integral identities involving the static Green's function. It is shown 
that the discretization of this weakly singular form of the hypersingular BIE is straightforward and the 
same collocation procedures and regular quadrature as that used for conventional BIEs are sufficient to 
compute all the integrals involved. Computing times are only slightly longer than with conventional 
BIEs. The C ~ smoothness requirement imposed on the density function for existence of the hyper- 
singular BIEs and the possibility of relaxing this requirement are discussed. Three kinds of boundary 
elements, having different smoothness, features, are employed. Numerical results are given for 
scattering from a rigid sphere at the fictitious frequencies, for values of wavenumber from "rr to 50. In 
essence, with the methodology in this paper the fictitious eigenfrequency difficulty, long associated with 
the BIE for exterior problems, should no longer be a troublesome issue. 

1. Introduction 

The solution of the conventional (Helmholtz)  BIE formulation for exterior acoustic wave 
problems is nonunique  at the eigenfrequencies of the associated interior problems [1, 2]. In 
numerical  computat ion,  the coefficient matrix of the BIE will yield a large condition number  
(i.e. be ill-conditioned) when the wavenumber  is equal to or near one of the eigenfrequencies. 
This nonuniqueness  is purely a drawback of the mathematical  formulation of the problems and 
does not have any physical significance. Nevertheless, how to circumvent this fictitious 
eigenfrequency difficulty for the exterior problems has been one of the focal points in the 
research of BIE  applications to acoustic wave problems for a long time. 

The C H I E F  (Combined  Helmholtz  Integral Equat ion Formulation) method,  proposed by 
Schenck [1], is one of the earliest and simplest methods to overcome the nonuniqueness 
problem. In this method,  the system of algebraic equations for the conventional BIE is 
combined with a few additional equations generated from the Helmholtz  integral with the 
source point in the interior of the closed boundary. A systematic numerical  study of the 
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CHIEF method was given by Seybert et al. [3], regarding the selection of number and 
locations of the CHIEF points. Despite its simplicity and success with simple problems, the 
CHIEF method can be undesirable for practical problems with complicated boundary 
geometries and wavenumbers in the intermediate range, for which the selection of the CHIEF 
points can become difficult and trial and error procedures are necessary. Nevertheless, the 
CHIEF method, especially when used with boundary elements more sophisticated than 
piecewise constant ones, works well in our experience - better, perhaps, than one would guess 
from all the attention given to alternatives. 

There are indeed many other methods proposed to overcome the fictitious eigenfrequency 
difficulty, such as the exterior overdetermination method of Piaszczyk and Klosner [4], the 
modified kernel methods of Ursell [5] and Jones [6]. However, these methods are often 
difficult to implement or inefficient in computation. 

Burton and Miller's formulation [7] (composite BIE), using a linear combination of the 
conventional (Helmholtz) BIE and the hypersingular (normal derivative) BIE, appears to be 
the most theoretically desirable approach for dealing with the fictitious eigenfrequency 
difficulty. The hypersingular BIE alone also fails for exterior problems at another set of 
eigenfrequencies of the associated interior problem, which is different from that for the 
conventional BIE. However, Burton and Miller proved that the linear combination of these 
two BIEs can furnish unique solutions at all frequencies, provided the imaginary part of the 
coupling coefficient is nonzero. 

The most difficult part in implementing this composite formulation is dealing with the 
hypersingular integrals and intensive work has been done on this aspect for acoustic problems 
[7-15]. Various regularization procedures presented in these works, in general, give rise to 
integrals which are still difficult to compute or are limited to the use of special, usually flat, 
boundary elements. Nevertheless, these works show that the composite BIE is ultimately the 
most effective and promising method to overcome the fictitious eigenfrequency difficulty. A 
more detailed review of all these works is provided by Chien et al. [16] in a recent 
comprehensive work on the composite BIE formulation. 

In the present paper, a composite BIE which uses a general form of the so-called 
hypersingular B IE is developed for 3 D  acoustic wave problems. This form contains at most 
weakly singular integrals and is valid for radiation and scattering problems with arbitrary 
boundary geometries. Discretization of this weakly singular form of the hypersingular BIE is 
straightforward. No special numerical integration quadratures are required to compute all the 
integrals and hence the quadrature for conventional BIE can be applied directly. The 
computer time to set up the system of equations for this weakly singular form of the 
hypersingular BIE is found to be only slightly longer than that for the conventional BIE. 

Theory [17-20] imposes a C'  smoothness requirement on the density function of the 
hypersingular BIEs. There seems to be some question in the literature [16] about the actual 
need for this requirement depending on the form of the integrals used for computation. Chien 
et al. [16] are quite explicit that the smoothness requirement for their formulation is only C °. 
In their final formulation, the hypersingular integral is transformed to an integral with 
integrand which is the hypersingular kernel multiplied by the difference of the original density 
function evaluated at the field point and the source point. This is a special CPV integral and 
actually demands the same C ~ smoothness for its convergence. This is not recognized in [16]. 
Indeed, continuity requirements on BIEs are imposed by the order of singularity of the 
kernels, not by the regularization process used or by the final form of the integrals. Ervin et 
al. [21] acknowledge the smoothness requirement, but note, as we do later, that good results 
can be obtained in violation of the C l requirement. This is in agreement with the numerical 
results, if not the reasoning, of Chien et al. [16]. Some discussions on this matter are finally 
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offered here from our understanding of the theory and our own numerical experiments. Our 
numerical work involves three kinds of boundary elements, namely, C ° conforming quadratic 
elements, nonconforming quadratic elements and Overhauser C t continuous elements, each 
having different smoothness features. Examples for scattering from a rigid sphere (of radius a) 
are presented. The fictitious frequencies examined range from ka = "rr to 5~r. 

2. Weakly-singular form of the hypersingular BIE 

The starting point of the derivation is the following Helmholtz integral: 

C(P.)dp(Po)= f~[G(P, P.)Odp(P) OG(P, P.) d~(P)] dS(P) + ~ ' (P . )  
On On 

(1) 

where ~b is the total wave (velocity potential or acoustic pressure) satisfying the Helmholtz 
equation V2~b + k2cb = 0 for time harmonic waves, d, ~ is a prescribed incident wave (for a 
scattering problem), G(P, P.)= eikr/4rrr is the full space Green's function for the Helmholtz 
equation, the coefficient C(P.) = 1, ~ or 0 when the source point P0"is in the exterior region E, 
on the boundary S (if it is smooth) or in the interior region B (a body or scatterer), 
respectively (Fig. 1). Equation (1) with Po E S is the commonly used form of the conventional 
BIE for acoustic wave problems [22]. 

The directional derivative of the representation integral ((1) with P0 ~ E) at P0 in direction 
n. is 

a6(e,,) ] 0¢'(e,,) 
an,, = On,, On On On,, (])(P) dS(P) + On,, 

VP,,EE. (2) 

The second integrand is hypersingular in this representation integral when the source point P, 
is on the boundary S. How to handle this hypersingular integral has been the focus of research 
on applications of the hypersingular BIE. Various regularization methods to reduce the order 
of singularity can be found in the literature as mentioned in the previous section. Here, a 
weakly singular form of the hypersingular BIE is derived from the representation integral (2). 
To do this, it is noticed that the second integral in (2) can be written identically, by 
subtracting and adding back terms, as follows: 

$ 

) 

E 

Fig. 1. Notations. 
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O~G(P, Po) 
dp(P) dS(P) 

On On o 

0 2 

- fs o. .o Po)- ,,,o)1+(,,,)ds(e)+ fs 
0 2 

= I_ [G(P, Po ) -  C*(P, Po)]eb(P)dS(P) 
On'no j,~ 

fs O~8(P, Po) 
On Ono 

o~8(P, Po) 
On Ono 

[~b(P)- ~b(Po)- dP, k(Po)(Xk- X0k)] dS(P) 

fs OZG'( P, Po) dS(P) 
+ dP(P°) On On o 

dp(P) dS(P) 

fs O2G( P, Po) (x k _ Xok) dS(P) VPo E E (3) 
+ d&k(P°) On On o 

in which 0(P,  Po) = ~xrr' is the Green function in the static case, ( ).k =0( )/OX k and 
summation over k is implied (k = 1,2, 3). By virtue of the identities involving G(P, Po), 
established in [23], the last two integrals in (3) are found to be 

O2(3(P' P) dS(P) = O, (4) 
On On o 

02G(p, P,,) f OG( P, Po) 
On On,, (xk - x°k) OS(P) = Js On ° nk(P ) dS(P) , (5) 

where the source point P0 is outside S. 
Substituting (4) and (5) into (3) and then (3) into (2), one obtains the following result by 

arranging the terms: 

o~,(Po) + ( o~8(P, Po) 
Ono Js on ono [¢b(P)- ¢b(Po) - dP, k(Po)(Xk - X0k)] dS(P) 

+ 
0 2 

f~ On On o 
[G(P, Pc,)- (3(P, Po)ldp(P) dS(P) 

fs OG( P, Po) 
= On ° [~b,k(P) - Cb, k ( P o ) ] n k ( P )  d S ( P )  

fs 0 + ~ [G(P, Po) -  G(P, Po)l[dLk(Po)nk(P)] dS(P) 

o6'(Po) 
+ V P o E S ,  (6) 

On o 

where the source point P0 has been placed on the boundary S. It is noticed that in the limit 
process of P0-"> S, the four integrals in (6) have no jumps if the density function ~b(P) has 
continuous first derivatives on S. However, if ~b(P) does not have continuous first derivatives 
on S, it can be shown that a log D term will appear in the derivation of (6), where D is the 
distance between P0 and the point on S to which Po is approaching. Thus in the limit as 
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Po-" S, an infinite term will be associated with (6) when the density function is not C ' 
continuous (cf. [20]). 

Equation (6) is the desired weakly singular form of the so-called hypersingular boundary 
integral equations for the acoustic wave problems. It can also be derived in a classical way 
similar to that used in [23] for potential problems. When G(P, Po)= C-'(P, Po), the weakly 
singular form of the hypersingular BIE for exterior potential problems [23] is recovered from 
(6). A 2-D version for interior potential problems was first presented by Rudolphi et al. [24]. 
A different approach to establish the weakly singular form of the hypersingular BIE for crack 
scattering problems was developed by Krishnasamy et al. [19] through a novel use of the 
Stokes theorem instead of the identities. The final BIE of this approach involves some area 
integrals on the crack surface (an open surface in 3-D) and line integrals along the edge of the 
crack. 

The advantages of (6) are as follows. First, there is no CPV of any kind involved in this 
formulation. All the four integrals in (6) are at most weakly singular, provided derivatives of 
the density function ~b(P) are continuous, or more precisely, ~b(P)E C ~'~ [19]. This weak 
singularity will be removed completely after a polar coordinate transformation of the surface 
element. Second, the discretization of (6) is straightforward. Since regular Gaussian quadra- 
ture is sufficient to handle the weakly singular integrals, the numerical schemes [22, 25] 
employed for the conventional BIE can be applied here for (6) directly. The only special 
feature of the discretization of (6) is the treatment of the ~b.k term, which is a relatively simple 
task as will be illustrated in the next section. 

However, the important theoretical issue regarding smoothness (alluded to above with (6)) 
is the source of some confusion in the literature and needs further discussion. It has been 
shown [19, 20] that for the hypersingular integral 

fs O G(P, e,,) lim dp(P) dS(P) (7) 
PO-'~S On On 0 

to exist, the derivatives of the density function ~b(P) must be Holder continuous (in the 
neighborhood of the source point P0), i.e., ~b(P)E C"". One of the terms in the expression of 
integral (7), which is zero for smooth density functions, can usually be identified as log D 
multiplied by, e.g. in the 2-D case, the difference of the slopes of the density function at each 
side of the point on S to which P0 is approaching. If the smoothness requirement is not 
satisfied, this term will go to infinity as P0 tends to S (i.e. as D ~ 0 )  [20]. This smoothness 
requirement on the density function will exclude, theoretically, the use of the commonly 
applied C ° elements in BEM, such as the linear and quadratic elements, in the discretization 
of (6). 

It is of interest to note that in [16] the use of C o elements is justified, contrary to the view in 
the present paper. Moreover, although we cannot justify the use of such elements, we do 
employ them to see how they work and we find that good data are obtainable with them as do 
the authors of [16]. Further discussion of this matter is postponed following the numerical 
examples which employ three kinds of boundary elements, only two of which we can justify on 
theoretical grounds. 

3. Discretization 

The discretization of (6) is discussed in this section. First, the $.k term in (6) is transformed 
to a form which involves only the nodal values of the boundary variables ~b and Orb~On of the 
problems. Then, the discretized form of the first integral in (6) is presented. Finally, three 
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kinds of boundary elements applied to (6) in the next section are briefly described, namely, C ° 
conforming q~mdratic elements which violate the smoothness requirement, nonconforming 
quadratic elements which satisfy the smoothness requirement in the neighborhood of the 
source point, and Overhauser C ~ continuous surface elements which satisfy the smoothness 
requirement on the entire boundary S. 

Let O¢~ ~:2~3  be a local (curvilinear) coordinate system on a boundary element, where ¢~ and 
¢2 are along two tangential directions and ¢3 = n (Fig. 2). One has the following transforma- 
tion relation: 

0 4 ,  

Ox t 

04, 
?iX9 

o2, 
• 0X3 

= j - I  

"a4'' 

?i4' 
o¢2 
?i4' 

• ? i ~ 3 .  

. . J - '  = [ v , , ]  = [o~,/ox,]. ( 8 )  

where J - t  is the inverse of the Jacobian. Now applying the shape functions on the element, 
i.e., 

" oN,, 04' '¢ aN,, K 04' _ \ ,  _ ~  ,~ 
4' = ,~=~E N~ (~:)4''~, ?i~:~ - fT'=t ~ ( ~ ) 4 ' " '  ?i~:2 =, ~ ( ~: )4' ' (9) 

where ~ = (~1, ~2), 4,~ is the (local) nodal value of 4' and K is the number of nodes on the 
element, one obtains the following expression for 4'., from (8): 

04, 
?ix t 

?i4, 
?iX~ 

?i4, 
Ox 3 

= j - i  

ONj ON 2 . . .  ONK O" 

?IN I ?IN, ?I N h. 
i o l  0 

0 0 " "  0 1_ 
m 

I • 

¢ ( b K  ' . 
w 

a4, 
. O n  . 

(10) 

Let the boundary S be discretized into a total of M surface elements S,,, and let N be the 
total number of nodes on the surface. In the following, the subscripts i and j are reserved to 
indicate global node numbers, no longer the coordinate directions• Now placing the source 
point P0 at node i (i = 1, 2 , . . . ,  N), one can write the first integral in (6) as follows: 

/ g 3 (n) 
2 _ 

X2 

XI 

Fig. 2. Coordinate transformation. 
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f~ a~-O(P, e,,) 
l =  ~n~-no [4b(P) -  6 ( P , , ) -  @.k(P,,)(xk -- x , , k ) l d S ( P )  

= ~ ,[~b - ~b,- (~b ~),(x k - x,k)] d S ( P ) ,  
m= l m a n  an  o 

(11) 

where the subscript i for the kernel function indicates that Po is at node i, ~b~ and (th.k)~ are the 
values of the functions at node i and summation over k is implied. The evaluations of the 
integrals on S,,, in (11) are performed in two different ways according to the locations of the 
source point P.. 

CASE 1: PoJ~S,,,.  In this case the integrals on S m are regular and one proceeds as follows: 

ll 0. an , , j , [4> - 6 ,  - (@.k ) i (Xk  -- X,k)] dS(P) 
IPI 

= ~ ,,, an an,'~-i i 14b - ~b,] dS(P)  

a2t~ ],[(4,.k)i(x~ - x,~)] dS(e) [0.0n- --: 

- on o°,, 

N N 

= ~ ,  eis(4J s - 4Ji) - ~ ,  eo(xsk  - X i k ) ( l , k ) i  (sum on global node number) 
#=l #=i 

62 
[ - ] :  

= e i  l el2 . . . .  ~ e o • . .  e i N  , • , 
j ~ i ~)i 

. ~ N .  

a@ 
O x  i 

06 
- [~i, g 2  g 3 l  ' a x  ~ , 

a@ 

, O x  3 i 

(12) 

where the summation over m is carried out on the elements of which the node i is not a local 
node,  e 0 and ~ik are the coefficients composed of the integrals on S,,, and the coordinates. It is 
noticed that the diagonal term e,  is obtained by summing the off-diagonal terms in the same 
row and need not be determined directly. 
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CASE 2: Po E Sm. In this case the integrals on S m are weakly singular. In order to keep this 
weak singularity and hence to ensure the convergence of the numerical integration, the density 
function in the two-term expansion form must be retained. The transformation relation (8) 
gives 

a,/, a~, a,/, a,/, a#, 

Applying this and the shape functions in (9), one can write 

12 S~ [ a2(~ ] , , ,  a n  an,, = ~ i[ 6 - d# i - (6.k)i(Xk -- Xik)] dS(P) 

,~ = 1 ,,, O n  a n .  i 

, - ~ -  (¢,) + ~'k2 -~-2 (~:, - )l d ~  4," 

- ~ ,,, "On On,-------~ i[Tk3(xk - x°k)]lJ( ~)l d~(  ~n ), ' (13) 

where the summation over m is carried out on the elements surrounding the node i. It is 
observed that the weakly singular feature of the original integral is retained in the above 
discretization, as desired. 

Thus, the integral in (11) is obtained by I = I~ + 12, which is the discretized form of the first 
integral in (6). The discretizations of the other three integrals in (6) are much easier since the 
distinction between P0~S,,, and Po E S,,, is unnecessary and all the integrals involved are at 
most weakly singular. The weak singularities in all the cases can be removed after a polar 
coordinate transformation [25] and regular Gaussian quadrature is sufficient to be employed in 
the computation of all the integrals. 

In this paper, three kinds of boundary elements are applied in the discretization of (6) (and 
also that of the conventional BIE in the composite formulation). First, conforming quadratic 
elements (Fig. 3) are tested, which belong to the C ° class and are widely used in the BEM 
literature [3, 13, 16, 22, 25]. The smoothness requirement imposed on (6) is violated by these 
elements. Nevertheless, as mentioned in the previous section, if smoothness requirements are 
relaxed somewhat, acceptable results can be often achieved by these elements. The major 
practical problem with these elements is the nonuniqueness of the derivatives of the density 
function at the nodal points. For example, in the computation of the integrals in I, (eq. (13)), 
different values of the derivatives of ~b and the normal of the discretized surface at the source 
point P0 are used corresponding to different elements surrounding P0, in order to achieve the 
convergence of these integrals. In 1~ (eq. (12)), the derivatives of ~b at P0, which are 

Fig. 3. Conforming quadratic elements. 
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determined by expression (10), can assume different values when different elements are used 
in the evaluation of (10). A reasonable strategy then is to use the averaged values for these 
derivatives as is adopted in this work. Second, the nonconforming quadratic elements [19] 
(Fig. 4) are applied, where the nodes are moved inside the elements so that the smoothness 
requirement can be met in the neighborhood of every node. It is relatively easier to implement 
these elements in the computer codes since no averaging process is needed. Finally, the 
Overhauser C ~ continuous surface elements developed by Hall and Hibbs [26-28] (Fig. 5) are 
used, which meet the smoothness requirement on the entire boundary. For the quadrilateral 
element, four nodes are placed at the corners. Twelve auxiliary nodes on the surrounding 
elements are also used in the definition of the shape functions (16 altogether). For the 
triangular element, there are three nodes on the element and nine auxiliary nodes (12 shape 
functions altogether). The Overhauser elements are expected to give better numerical results 
than the quadratic elements since they provide a smooth representation of both the geometry 
of the surface and the density function. Another important feature of the Overhauser 
elements is that for a fixed number (M) of boundary elements, they produce a much smaller 
system of linear algebraic equations (number of nodes N is approximately equal to M, 
assuming most of the elements used are quadrilateral), compared with the conforming 
quadratic elements ( N ~ 3 M )  and the nonconforming quadratic elements (N~-8M). The 
comparisons of the numerical results obtained by the above three kinds of elements are 
presented in the next section. 

The discretized equation of the weakly singular form of the hypersingular BIE, eq. (6), is 
finally written as 

AhX = b h , (14) 

where A h is the N by N matrix of the coefficients, x the unknown vector and b h the known 
vector composed of the values of the incident wave (for scattering problem) or the prescribed 
boundary conditions (for radiation problem), at the nodes. Suppose that the discretized 
equation of the conventional BIE, eq. (1), with P0 E S, is given by 

= ( 1 5 )  

then the composite formulation which is free of any fictitious eigenfrequencies can be 
represented by 

(A¢ + / 3 A h ) X - - ( b  c -t-/3bh) , (16 )  

where/3 is the coupling complex constant (Im(/3) ~0) .  

4 - - -  " - - S  8~ 

'-."" i } i :'" : : ' 

Fig. 4. Nonconforming quadratic elements. Fig. ~. Overhauser C ~ continuous elements. 
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4. Numerical examples 

The numerical examples are for the scattering problem of a plane incident wave d~ ~ from a 
rigid sphere (Od~/On=O on the boundary) (Fig. 6). The magnitudes of the ratio of the 
scattering wave os  to d~ ~ at r =  5a are plotted versus the angle 0 for various fictitious 
frequencies of this problem, ranging from ka = ~r to 5~, and compared with the analytical 
solution [22, 29]. In all the cases, M is the total number of elements on the whole spei'e and N 
the total number of nodes. 

Figure 7 shows the results by the three BIE formulations with Overhauser elements, for 
ka = 4.4934, which is the second fictitious frequency of the conventional BIE. The convention- 

x 

0 

Y ::~ incident wave 
/ 

F i g .  6.  T h e  s p h e r e .  

0,5 

0.4 

0.3 ~ 

m 

%. o.2 

0.1 

~ [] 

[] ~ 

[] 
Analytical solution 

13 Composite BIE ( [j =i) 
o 

Conventional BIE 
[] 

'Hypersin~ular' BIE 

0 , I I I I I I I I I I I I I , I , 

0 20 40  60 80 100 120 140 160 180 

0 (degree) 

Fig. 7. Scattering wave for ka = 4.4934, Overhauser elements (M = 56, N = 54). 
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al BIE, eq. (15), breaks down at this frequency as shown in the figure, which is also indicated 
clearly by a large condition number of the coefficient matrix. The hypersingular BIE, eq. (14), 
and the composite BIE, eq. (16), on the other hand, give fairly good results with a relatively 
small number of elements. 

Figure 8 presents the results of a test on the choice of the coupling coefficient fl used in the 
composite formulation, eq. (16), for ka = =. The hypersingular BIE corresponds to the case 
when fl tends to infinity (along the imaginary axis). Best results with 80 Overhauser elements 
are obtained when fl = 0.3333i. This is in agreement with the conclusion, first made by Meyer 
et al., based also on numerical experiments [9], that the best performance of the composite 
BIE formulation is achieved when the coupling coefficient fl is related to the wave number by 
fl = i / k .  

Figure 9 is a comparison of the three types of boundary elements applied in this paper, for 
ka = 2~, namely C ° conforming, nonconforming and Overhauser elements. First, the results 
by the three elements are compared for the same number of elements (M =56).  The 
nonconforming elements with N = 432 (square syr o ls )  provide very accurate results over the 
whole range of values of 0 except near the backscattering direction, while the C" conforming 
elements with N = 154 (shallow triangles) give fairly good results for most values of 0 except 
near the forward scattering direction. However, for M = 56, the results by Overhauser 
elements with N = 54 (solid triangles) are not acceptable. It seems that the small number of 
Overhauser elenients used cannot represent the variations of the boundary variables very well 
at this frequency. (Note that the same number of Overhauser elements gives fairly good 
results for ka = 4.4934, Fig. 7.) Second, to compare the performance of the three elements for 
a fixed number of nodes used, the number of C" conforming elements is increased to M = 153 
with N = 427, which is almost as many as that of the nonconforming elements. The accuracy of 
the results (asterisks) are improved to a level close to those of the nonconforming elements 
(squares) for most of values of 0. Because the effort to obtain a mesh of Overhauser elements 

-e- 

-e- 

0.3 

0.25 

0.2 
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0.05 
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Fig. 8. Test  on the coupling coefficient fl, ka = ~, Overhauser  elements (M = 80, N = 78). 
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sufficiently fine to yield about 400 nodes would be prohibitive with existing software available 
to the authors, a finer mesh of Overhauser elements with M = 152 and N = 150 is used. The 
results (circles) are improved greatly althougil the number of nodes used is only one-third of 
that of the nonconforming elements. A more detailed study of Overhauser elements compared 
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Fig .  11. Result for ka = 4"a', c o m p o s i t e  B I E  (/3 = 0 .08i) .  

with C ° conforming and nonconforming elements, regarding efficiency and accuracy, will be 
presented in a future paper. 

Figures 10, 11 and 12 are the results for ka = 3~r, 4~r and 5~r, respectively. The results 
clearly demonstrate the effectiveness of the composite BIE formulation with the weakly 
singular form of the hypersingular BIE as the key ingredient. 
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It should also be pointed out that ka = 5xr is an uncommonly high frequency for a successful 
BIE solution for a 3-D scattering problem. Moreover BIE results at such high frequencies are 
probably more than needed in most problems of this type since high frequency approximation 
methods can be employed above ka of about 10. Thus the numerical results show that the 
composite BIE formulation developed in this paper is capable of providing a suitable bridge 
between low and high frequency approximations. 

5. Discussion 

This paper is a continued effort of the previous work [24, 17-20,23] on applications of 
hypersingular BIEs. It is understood now that singular or hypersingular BIEs in applications 
of boundary element methods can, in fact, be written in weakly singular forms. Weakly 
singular forms of various BIEs can be derived from the representation integrals directly, if 
certain properties of the fundamental solutions are recognized and utilized [23] as has been 
done for (6), or equivalently, certain analytical manipulations are applied [19,24]. 

The weakly singular form of the hypersingular BIE has many advantages. Since the same 
numerical integration scheme as that used for conventional BIE can be applied to compute all 
the integrals in this form of the hypersingular BIE, the discretization of the latter is 
straightforward. It is also found that the CPU time consumed to generate the matrix for the 
hypersingular BIE, eq. (14), is only about 1.2 times the CPU time for the conventional BIE, 
eq. (15). This efficiency in the formation of the system is in strong contrast with that of the 
double integral (operator) approach to the hypersingular BIE (or Galerkin approach), 
introduced by Burton and Miller [7] and studied numerically in [13, 30, 31]. In [30, 31] it is 
reported that the formation time for the composite BIE with the double integral approach to 
the hypersingular BIE is considerably higher than that for the regular BIE by a factor of more 
than 20. 

The efficiency of the present work is also contributed by the integration scheme developed 
in [32]. In this integration scheme, the number of the Gauss points is not fixed for all the 
elements, but varies according to the distance and orientation of the source point to the 
element, the size of the element and the wavenumber. It should be noted that the composite 
BIE, eq. (16), needs to be applied only when needed, i.e. only when the conventional BIE, 
eq. (15), fails (indicated by a large condition number of the matrix), although it is understood 
that the fictitious eigenfrequencies are more closely spaced with increasing frequency. 

Regarding the smoothness issue and the type of elements which are acceptable for use with 
hypersingular integral, however they may be written, e.g. in less (weakly) singular forms, we 
offer the following remarks. If the density function tb(P) multiplying the hypersingular kernel 
in (7) is represented by shape functions which are only C °, or more precisely C °'~, at a 
collocation point P0, the limit in (7) does not exist because of the presence of an unbounded 
term added to other finite terms. If this unbounded term (which is not present for C ~, or more 
precisely C ~'~, shape functions) is ignored, and computation made with the finite terms only, it 
appears, nevertheless, that good results can be obtained as discussed above, and in [20, 21]. 
The comments and numerical experiments in [20] suggest caution and concern about results 
which can be scale dependent, and we are uneasy at best about trusting any data or building a 
computational scheme in flagrant violation of theoretical demands. Nevertheless, data can be 
good, albeit surprising to us. 

The situation in [16] is noteworthy in that the authors insist that the use of C O elements is 
justified with their formulation. The key integral in the final hypersingular BIE formulation 
presented as (40) or (43) in [16] is 
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O2G(P, Po) 
On Or/0 

dS(P) ,  

where AS is the area containing the elements surrounding the source point P0. This is a special 
kind of CPV integral, which is similar to the integral in [8] (the dynamic kernel is replaced by 
the static one), and demands special treatment. It is true that the existence of this integral 
'involves a more stringent requirement on the density' than that of the ordinary CPV integrals, 
as stated in [16]. A necessary condition for the existence of this integral, or equivalently that 
of integral (7), is the so-called Lyapunov condition [33] which reads (assuming certain 
smoothness of the surface) 

, [dp(P)-dp(P,,)]dO < K r  l+° , K , p > 0 ,  

where (r, 0) are the coordinates of P in the polar coordinate system with origin at Po. This 
Lyapunov condition for surface integrals can be regarded as a weaker version (in an averaging 
sense) of the C ~''~ requirement for line integrals. However, it can easily be shown that C ° 
quadratic elements do not satisfy the Lyapunov condition at the nodes, by considering, e.g., 
two adjacent quadrilateral elements with source point Po being the middle node on the 
common edge. This is in conflict with the statement that such elements are justified by the 
Lyapunov condition as made in [16] (eq. (41)). Thus the authors' use of C O (conforming) 
quadratic elements in [16] for their integrals appears not to be justified either. Most 
importantly, continuity requirements on 4~ are not greater for the present method or those of 
[19] because of the explicit appearance of ~.k in these works. The continuity requirements are 
imposed by the order of singularity of the kernels, not by the regularization process used; the 
latter may or may not involve a derivative like 4~.k explicitly. Indeed, it should be noted that in 
the last step of discretization in [16], i.e. eq. (48), the constants a i and fli are actually the 
values of the derivatives of the shape functions at the source point and hence the 4~.k terms are 
implicitly subtracted from the density function in order to reduce the order of singularity. This 
procedure has the same effect as the method of this paper. The difference is that the 
subtraction of the t~.k terms is done in the analytical formulation stage in this paper as opposed 
to the discretization stage in [16]. 

All of the considerations above suggest that the present formulation for exterior acoustics 
problems is a highly efficient and competitive one. Indeed, on the competitive issue, the 
recent work [31, 34] with domain-based formulations for exterior problems, based on the work 
of Givoli and Keller [35,36], seems to be motivated at least in part by the following 
assumption: the most analytically complete BIE formulation, due to Burton and Miller [7], is 
entirely free of the fictitious eigenfrequency difficulty but the formulation presents serious 
computational drawbacks or is otherwise unattractive because of the presence of hypersingular 
integrals. However, there exists a body of fairly recent literature on hypersingular integral 
equations, e.g. [10, 16, 17, 19, 21, 23, 37-46], which suggests a variety of modern treatments of 
hypersingular integrals, and which breathes new life into the Burton-Miller formulation. 
Admittedly, most of the hypersingular references mentioned focus on elastodynamics or the 
mathematics involved without specification application, rather than acoustics, but the ideas in 
these papers are entirely relevant to the issue at hand. Thus, the Burton-Miller formulation is 
becoming quite attractive as work with hypersingular integrals progresses. We hope that the 
present work is an illustration of this. 

It is believed that the weakly singular forms of the hypersingular BIEs will find more and 
more applications in problems for which the conventional BIEs are inefficient or fail. One 
such application to elastodynamic problems is already underway. 
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